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Abstract Let £ be the category of all locally compact abelian (LCA) groups. Let G ∈ £
and H ⊆ G be a subgroup. The first Ulm subgroup of G is denoted by G(1) and the closure of
H by H . A proper short exact sequence 0 → A

ϕ→ B
ψ→ C → 0 in £ is said to be a TFU

extension if 0 → A(1) ϕ→ B(1) ψ→ C(1) → 0 is a proper short exact sequence where ϕ = ϕ |
A(1)

and ψ = ψ |
B(1) . We introduce some results on TFU extensions. Also, we establish conditions

under which the TFU extensions are split.

1 Introduction

Throughout, all groups are Hausdorff topological abelian groups and will be written additively.
Let £ denote the category of locally compact abelian (LCA) groups with continuous homomor-
phisms as morphisms. A morphism is called proper if it is open onto its image, and a short exact
sequence 0 → A

ϕ→ B
ψ→ C → 0 in £ is said to be proper exact if ϕ and ψ are proper mor-

phisms. In this case the sequence is called an extension of A by C ( in £ ). Following [6], we let
Ext(C,A) denote the group of extensions of A by C. A subgroup H of a group G is called pure
if nH = H ∩nG for all positive integers n. An extension 0 → A

ϕ→ B
ψ→ C → 0 is called a pure

extension if ϕ(A) is pure in B. The elements represented by pure extensions of A by C form a
subgroup of Ext(C,A) which is denoted by Pext(C,A) (For more on Pext, see [5] and [8]). In
this paper, we introduce a new concept on extensions. An extension 0 → A

ϕ→ B
ψ→ C → 0 in

£ is called a TFU extension if 0 → A(1) ϕ→ B(1) ψ→ C(1) → 0 be an extension where ϕ = ϕ |
A(1)

and ψ = ψ |
B(1) . In Section 1, we show that every extension of a divisible group by an LCA

group is a TFU extension (Corollary 2.6). We show that every pure extension of an LCA group
by a compact totally disconnected group is a TFU extension (Corollary 2.8). In Section 2, we
establish some results on splitting of TFU extensions (see Lemma 3.3,3.4,3.5,3.7,3.8,).

The additive topological group of real numbers is denoted by R, Q is the group of rationals
with the discrete topology, Z is the group of integers and Z(n) is the cyclic group of order n.
For any group G, G0 is the identity component of G and tG, the maximal torsion subgroup of
G. For groups G and H , Hom(G,H) is the group of all continuous homomorphisms from G to
H , endowed with the compact-open topology. The dual group of G is Ĝ = Hom(G,R/Z). For
more on locally compact abelian groups, see [9].

2 TFU extensions

Let A and C be groups in £. In this section, we define the concept of a TFU extension of A by
C.

Definition 2.1. An extension 0 → A
ϕ→ B

ψ→ C → 0 in £ is called a TFU extension if
0 → A(1) ϕ→ B(1) ψ→ C(1) → 0 is an extension.
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Remark 2.2. Let G1 and G2 be two groups. An easy calculation shows that (G1 ⊕G2)(1) =

G
(1)
1 ⊕G

(1)
2 .

Definition 2.3. The extension 0 → A→ A⊕ C → C → 0 is called the trivial extension.

Lemma 2.4. Let A and C be groups in £. The trivial extension of A by C is a TFU extension.

Proof. It is clear by Remark 2.2.

Lemma 2.5. Let G ∈ £ and H be a closed, divisible subgroup of G. Then (G/H)(1) = G(1)/H .

Proof. Let π : G → G/H be the natural mapping. Then, π(G1) ⊆ π(G(1)) = (G/H)(1). On
the other hand, π(G(1)) = (G(1))/H . So, G(1)/H ⊆ (G/H)(1). Let x + H ∈ (G/H)(1). We
show that x ∈ G(1) (and hence (G/H)(1) ⊆ G(1)/H). Let V be an open subset of G containing
x and n, an arbitrary positive integer. Then y + H ∈ (V + H)/H

⋂
(G/H)(1) ̸= ϕ for some

y ∈ G. From y +H ∈ (V +H)/H , deduce that y +H = z +H for some z ∈ V . Since H is
divisible, it follows that z = y + nh for some h ∈ H . On the other hand, y + H ∈ (G/H)(1).
So y +H = ng +H for some g ∈ G. Hence z ∈ nG. This shows that z ∈ V

⋂
G(1) and hence,

x ∈ G(1).

Corollary 2.6. Every extension of a divisible group by an LCA group is a TFU extension.

Proof. It is clear by Lemma 2.5.

Lemma 2.7. Let G ∈ £ and H be a closed, pure subgroup of G such that (G/H)(1) = 0. Then
G(1) = H(1).

Proof. Let x ∈ G(1) and n, an arbitrary positive integer. Then x = ng for some g ∈ G. So
x+H ∈ n(G/H). Since n be arbitrary, it follows that x+H ∈ (G/H)(1) = 0. This shows that
G(1) ⊆ H . Since H is pure, G(1) = H(1).

Corollary 2.8. Every pure extension of an LCA group by a compact totally disconnected group
is a TFU extension.

Proof. Let E be a pure extension of an LCA group by a compact totally disconnected group G.
By [9, Theorem 24.24], G(1) = 0. Hence, by Lemma 2.7, E is TFU.

Corollary 2.9. Let G ∈ £ such that nG is closed in G for all positive integers n. Then, every
pure extension of an LCA group by G/G(1) is a TFU extension.

Proof. Let x + G(1) ∈ (G/G(1))(1) and n be an arbitrary positive integer. Then x + G(1) =
ng +G(1) for some g ∈ G. This shows that x ∈ G(1). Hence (G/G(1))(1) = 0.

The dual of an extension E : 0 → A → B → C → 0 is defined by Ê : 0 → Ĉ → B̂ → Â.
The following example shows that the dual of a TFU extension need not be TFU .

Example 2.10. Consider the extension E : 0 → Z ×2→ Z → Z2 → 0. Clearly, E is a TFU
extension. But, Ê : 0 → Z2 → R/Z ×2→ R/Z → 0 is not a TFU extension.

Recall that two extensions 0 → A
ϕ1→ B

ψ1→ C → 0 and 0 → A
ϕ2→ X

ψ2→ C → 0 are said to be
equivalent if there is a topological isomorphism β : B → X such that the following diagram

0 // A
ϕ1 //

1A

��

B
ψ1 //

β

��

C //

1C

��

0

0 // A
ϕ2 // X

ψ2 // C // 0

is commutative.
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Lemma 2.11. An extension equivalent to a TFU extension is TFU .

Proof. Let
E1 : 0 → A

ϕ1→ B
ψ1→ C → 0

E2 : 0 → A
ϕ2→ X

ψ2→ C → 0

be two equivalent extensions such that E1 is TFU . Then, there is a topological isomorphism
β : B → X such that βϕ1 = ϕ2 and ψ2β = ψ1. Since β(B(1)) = X(1),

ψ2(X(1)) = ψ2β(B(1)) = ψ1(B(1)) = C(1)

Hence ψ2 : X(1) → C(1) is surjective. Since ϕ2 = βϕ1 and E1 is TFU ,

ψ2ϕ2(A(1)) = ψ2(βϕ1(A(1))) = ψ1ϕ1(A(1)) = 0

Hence Imϕ2 ⊆ Kerψ2. Now, we show that Kerψ2 ⊆ Imϕ2. Let x ∈ X(1) such that ψ2(x) = 0.
Then there exists b ∈ B(1) such that x = β(b). Since ψ1(b) = ψ2β(b) = ψ2(x) = 0 and E1 is
TFU , b = ϕ1(a) for some a ∈ A(1). Hence

ϕ2(a) = βϕ1(a) = β(b) = x

and 0 → A(1) ϕ2→ X(1) ψ2→ C(1) → 0 is an exact sequence. Since

ψ2 = ψ1(β)
−1, ϕ2 = β(ϕ1)

It follows that ψ2 and ϕ2 are open. So E2 is a TFU extension.

Lemma 2.12. Let C ∈ £ be a torsion-free group, 0 → A
ϕ→ B

ψ→ C → 0 a TFU extension and
let

0 // A
µ
//

1A

��

X
ν //

θ

��

Y //

f

��

0

0 // A
ϕ
// B

ψ
// C // 0

is the standard pullback diagram in £ (See [6, Proposition 2.3]) such that f : Y (1) → C(1)

be a proper morphism. Then
0 → A

µ→ X
ν→ Y→0

is TFU .

Proof. We have
X = {(y, b) ∈ Y ⊕B : f(y) = ψ(b)}.

and
µ : a 7→ (0, ϕ(a)), ν : (y, b) 7→ y, θ : (y, b) 7→ b.

Consider the following standard pullback diagram

0 // A(1)
ϕ′

//

��

N
ψ′

//

��

Y (1) //

f
��

0

0 // A(1)
ϕ
// B(1)

ψ
// C(1) // 0

Where N = {(y, b) ∈ Y (1) ⊕ B(1) : f(y) = ψ(b)}. First, we show that X(1) = {(y, b) ∈
Y (1) ⊕ B(1) : f(y) = ψ(b)}. Let (y, b) ∈ X(1) and n an arbitrary positive integer. Then y = ny1
and b = nb1 for some y1 ∈ Y and b1 ∈ B. Also, f(y1) = ψ(b1). We have

f(y) = f(ny1) = ψ(nb1) = ψ(b)
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Since n be arbitrary, X(1) ⊆ {(y, b) ∈ Y (1) ⊕ B(1) : f(y) = ψ(b)}. Conversely, let (y, b) ∈
Y (1) ⊕ B(1), f(y) = ψ(b) and n be an arbitrary positive integer. Then y = ny1 and b = nb1
for some y1 ∈ Y and b1 ∈ B. Since C is torsion-free, n(f(y1) − ψ(b1)) = 0 deduce that
f(y1) = ψ(b1). Hence (y, b) ∈ nX . Since n be arbitrary, (y, b) ∈ X(1). An easy calculation
shows that X(1) = N . Clearly, ϕ′ = µ and ψ′ = ν. Hence 0 → A(1) µ→ X(1) ν→ Y (1)→0 is an
extension.

Lemma 2.13. Let A ∈ £ be a divisible group. Then, a pushout of a TFU extension of A by an
LCA group is TFU .

Proof. Let E : 0 → A
ϕ→ B → C → 0 be a TFU extension and f : A → G a proper

morphism. Then fE : 0 → G → X → C → 0 is a pushout of E, where X = (G ⊕ B)/H
and H = {(−f(a), ϕ(a)); a ∈ A} (See [6, Proposition 2.3]). Since E is TFU , E′ : 0 →
A → B(1) → C(1) → 0 is an extension. Hence hE′ is an extension where h : A → G(1)

defined by h(a) = f(a) for every a ∈ A. But, hE′ : 0 → G(1) → Y → C(1) → 0 where
Y = (G(1) ⊕ B(1))/K and K = {(−h(a), ϕ(a)); a ∈ A}. Clearly, K = H . Since H is a closed,
divisible subgroup of G⊕ B, by Lemma 2.5 and Remark 2.2, X(1) = (G(1) ⊕ B(1))/H = Y . It
follows that fE is a TFU extension.

3 Splitting of TFU extensions

An extension is called split if it is equivalent to the trivial extension. Let Exttfu(C,A) be the
class of all equivalence classes of TFU extensions of A by C. Recall that for groups A,C ∈ £,
Ext(C,A) = 0 (or Exttfu(C,A) = 0) deduce that every extension (or TFU extension) of A by
C splits. In this section, we establish some conditions on A and C such that Exttfu(C,A) = 0.

Theorem 3.1. ([11, Theorem 2.1]) Let G ∈ £ and f : A→ C be a proper morphisn .

(i) f∗ : Ext(G,A) → Ext(G,C) defined by f∗([E]) = [fE] and

(ii) f∗ : Ext(C,G) → Ext(A,G) defined by f∗([E]) = [Ef ]

are group homomorphisms.

The exact sequences (i) and (ii) of the following proposition establish a closed connection
between Hom and Ext in £.

Proposition 3.2. ([7, Corollary 2.10]) Let G ∈ £ and 0 → A
ϕ→ B

ψ→ C → 0 be an extension in
£. Then the following sequences are exact:

(i) 0 → Hom(C,G) → Hom(B,G) → Hom(A,G) → Ext(C,G) → Ext(B,G) →
Ext(A,G) → 0

(ii) 0 → Hom(G,A) → Hom(G,B) → Hom(G,C) → Ext(G,A) → Ext(G,B) →
Ext(G,C) → 0

Lemma 3.3. Let A be a discrete group such that Exttfu(X,A) = 0 for all groups X ∈ £. Then
A is a reduced group such that A/tA is a divisible group.

Proof. Let A be a discrete group such that Exttfu(X,A) = 0 for all groups X ∈ £. Let D be
a divisible subgroup of A and C a connected group. By Proposition 3.2, we have the following
exact sequence

...→ Hom(C,A/D) → Ext(C,D)
i∗→ Ext(C,A) → ...

Since C is a connected group and A/D a discrete group, Hom(C,A/D) = 0. Hence i∗ is in-
jective. By Lemma 2.13, i∗(Exttfu(C,D)) ⊆ Exttfu(C,A) = 0. So Exttcf (C,D) = 0. By
Corollary 2.6, Ext(C,D) = 0. Hence D = 0 (see [7, Theorem 3.3]). It follows that A is a re-
duced group. Now, we show that A/tA is a divisible group. By Corollary 2.8, Pext(Q̂/Z, A) ⊆
Exttfu(Q̂/Z, A) = 0. So Ext(Q̂/Z, A/tA) = 0. Hence A/tA is a divisible group (see the proof
of [19, Theorem 2] ).
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Lemma 3.4. Let G be a compact group such that Exttfu(X,G) = 0 for all groups X ∈ £. Then
G ∼= Rn ⊕ (R/Z)σ ⊕M , where n is a positive integer, σ a cardinal number and M is a direct
product of finite cyclic groups.

Proof. Let G be a compact group, C a connected group and Exttfu(X,G) = 0 for all groups
X ∈ £. Then Exttfu(C,G) = 0. Consider the exact sequence 0 → G0

i→ G→ G/G0 → 0. We
have the following exact sequence

...→ Hom(C,G/G0) → Ext(C,G0)
i∗→ Ext(C,G) → ...

SinceC is a connected group andG/G0 a totally disconnected group,Hom(C,G/G0) = 0. So i∗
is injective. By Lemma 2.13, i∗(Exttfu(C,G0)) ⊆ Exttcf (C,G) = 0. So Exttfu(C,G0) = 0.
By Corollary 2.6, Ext(C,G0) = 0 for all connected groups C ∈ £. Hence G0 ∼= (R/Z)σ ⊕ Rn
(see [7, Theorem 3.3]). By [7, Corollary 3.4], G0 splits in G. So G ∼= G0 ⊕ G/G0. Set
M = G/G0. Then M is a compact totally disconnected group. By Corollary 2.8, Pext(X,G) ⊆
Exttfu(X,G) = 0 for all compact totally disconnected groups X . Since Ĝ0 is torsion-free,
0 → M̂ → Ĝ→ Ĝ0 → 0 is a pure extension. By [4, Theorem 53.7], we have the following exact
sequence

...→ Pext(Ĝ, X̂) → Pext(M̂, X̂) → 0
By [10, Lemma 2.3], Pext(Ĝ, X̂) ∼= Pext(X,G) = 0. So Pext(X,M) ∼= Pext(M̂, X̂) = 0 for
all compact totally disconnected groups X . Now, let Y be a compact group. By [5, Proposition
2 ], we have the following exact sequence

0 = Pext(Y/Y0,M) → Pext(Y,M) → Pext(Y0,M) → ...

By [3, Theorem 4.2 ] , Pext(Y0,M) = 0. Hence Pext(Y,M) = 0 for all compact groups Y ∈ £.
By [4, Proposition 53.4 ] and [10, Lemma 2.3 ], M̂ is a direct sum of finite cyclic groups. Hence,
M is a direct product of finite cyclic groups.

Lemma 3.5. Let A be a σ−compact group such that A(1) = 0 and C, a divisible group in £.
Then every TFU extension of A by C splits.

Proof. Let E : 0 → A
ϕ→ B

ψ→ C → 0 be a TFU pure extension. An easy calculation shows
that B = B(1) + ϕ(A). Since ψ : B(1) → C is a topological isomorphism, B(1)

⋂
ϕ(A) = 0.

Hence, by [6, Corollary 3.2 ], B = B(1) ⊕ ϕ(A). So E splits.

Lemma 3.6. Let A be a discrete, torsion-free group. Then A ∼= A(1) ⊕A/A(1).

Proof. Let A be a discrete, torsion-free group. First, we show that A/A(1) is torsion-free. Let
m(a + A(1)) = 0 for some positive integer m. Then ma ∈ A(1). Let n be an arbitrary positive
integer. Then ma = mna1 for some a1 ∈ A. So a = na1 and hence, a ∈ A(1). An easy
calculation shows that A(1) is pure in A. On the other hand, A(1) ⊆ nA for every positive integer
n. Hence A(1) is a divisible group. By [4, Theorem 21.1], A ∼= A(1) ⊕A/A(1).

Lemma 3.7. Let A be a discrete, torsion-free group such that Exttfu(A,X) = 0 for all groups
X ∈ £. Then A ∼= (⊕σZ)⊕D where D is a discrete, torsion-free and divisible group.

Proof. LetA be a discrete, torsion-free group such thatExttfu(A,X) = 0 for all groupsX ∈ £.
By Lemma 3.6, A ∼= A(1) ⊕ A/A(1). By Lemma 2.12, Exttfu(A/A(1), X) = 0 for all groups
X ∈ £. Hence, Ext(A/A(1), X) = 0 for all groupsX ∈ £ (see Corollary 2.9). By [12, Theorem
3.3], A/A(1) ∼= ⊕σZ.

Lemma 3.8. Let G be a compact, torsion-free group. Then Exttfu(G,X) = 0 for all groups
X ∈ £ if and only if G = 0.

Proof. Let G be a compact, torsion-free group and Exttfu(G,X) = 0 for all groups X ∈ £.
Let X be totally disconnected in £. Consider the following exact sequence

0 = Hom(G0, X) → Ext(G/G0, X)
π∗

→ Ext(G,X) → ...

By Lemma 2.12, π∗(Exttfu(G/G0, X)) ⊆ Exttfu(G,X) = 0. So Exttfu(G/G0, X) = 0. On
the other hand, by [13, Lemma 2.4],G/G0 is torsion-free. So by Corollary 2.8,Ext(G/G0, X) =
0. It follows that G = G0 (see [7, Theorem 3.5 ] ). By Corollary 2.6, Ext(G,Q) = 0 which is a
contradiction by [1, Lemma 2.10 ]. So G = 0.
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4 Conclusion remarks

This paper is part of an investigation which answers the following question:
For groups A,C ∈ £, under what conditions on A and C, an extension of A by C splits? In
[2, 3, 14, 15, 16, 18, 19] we have been able to answer the above question by defining a new
subset or subgroup of Ext(C,A). The concept of splitting of extensions is very important in
LCA groups. By this concept, We determined the structure of an LCA group G such that tG is
closed [17]. Therefore, the results of this work are variant, significant and so it is interesting and
capable to develop its study in the future.
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