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Abstract. The purpose of the paper is to investigate curvature restricted geometric prop-
erties of a warped product metric with 1-dimensional base and 3-dimensional fibre and found
that such a metric is pseudosymmetric and possesses various type of pseudosymmetric struc-
tures such as, Ricci generalized pseudosymmetry, Ricci generalized projective pseudosymmetry,
Ricci generalized concircular pseudosymmetry (W · R = fRQ(S,R)), pseudosymmetry due to
conharmonic curvature tensor (K ·R = fRQ(g,R)), semisymmetry due to conharmonic curva-
ture tensor (R ·K = 0) etc. Later, it is also found that the warped product metric is an Einstein
manifold of degree 2 and Ricci tensor has quasi-Einstein nature. Finally, the novelty of the work
is that the energy momentum tensor of the metric has also pseudosymmetric nature.

1 Introduction

Let ∇ be the Levi-Civita connection of a connected and smooth manifold M with dim M =
n ≥ 3 and let M be furnished with a semi-Riemannian metric g of signature (ξ, n − ξ). Then
Lorentzian and Riemannian manifolds form natural subclasses of semi-Riemannian manifolds
for ξ = 1 or n− 1 and ξ = 0 or n respectively. We also denotes the Riemann-Christoffel curva-
ture (resp., Ricci curvature and the scalar curvature) by R (resp., S and κ). The 4-dimensional
connected Lorentzian manifolds are of special interest as these are physically treated as space-
times in general relativity. During the investigation of the existence of weakly W2 symmetric
manifold, in 2007, Shaikh et al. ([60], Example 4) first exihibited an warped product metric,
which can be written in terms of (t, r, θ, ϕ) coordinates system as follows:

ds2 = (ϕ)4/3[(dt)2 + (dr)2 + (dθ)2] + (dϕ)2. (1.1)

The same metric was further considered by Baisya in [4] for the Lorentzian signature as
follows:

ds2 = (ϕ)4/3[(dt)2 + (dr)2 + (dθ)2]− (dϕ)2. (1.2)

The curvature of a semi-Riemannian manifold assists to understand the geometry of the man-
ifold as the curvature performs an important role in determination of shape of the manifold. By
imposing a particular restriction on the curvature tensor of a semi-Riemannian manifold M , we
obtain a specific class of manifolds. For example, the class of locally symmetric manifolds due
to Cartan [5] is defined as ∇R = 0; the class of semisymmetric manifolds again due to Cartan
[6, 79, 80, 81] is defined as R · R = 0; the class of pseudosymmetric manifolds by Adámow
and Deszcz [1] is defined as R · R = LRQ(g,R) etc. For precise definition of the symbols used
here we refer the section 2. Again, many authors have generalized the notion of local symme-
try in several ways such as recurrent [45, 46, 47, 86] manifolds by Ruse, generalized recurrent
[52, 69, 70, 71, 73, 72] manifolds by Shaikh and his coauthors, curvature 2-forms of recurrent
manifolds by Besse [3, 36], pseudosymmetric manifolds by Chaki [7, 8] and weakly symmet-
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ric manifolds by Tamássy and Binh [83, 84], etc. The curvature restricted geometric structures
of a manifold indicate the structures that arise by imposing covariant derivative(s) of 1st order
or higher order on several type of curvature tensors of that manifold. Deszcz’s notion of pseu-
dosymmetry (see e.g. [2, 10, 26, 32, 35, 49, 50, 56, 77]) is significant in the study of differential
geometry because of its application in the theory of general relativity and cosmology. Literature
reveals that there are different type of pseudosymmetry, in the sense of Deszcz and Chaki.

The concept of warped product metric is a generalization of Riemannian product metric, and
it is applicable in the theory of general relativity and cosmology as FLRW-model of the universe
is an warped product metric. Let M = M̄ × M̃ , where (M̄, ḡ) is ρ dimensional and (M̃, g̃) is
(n − ρ) dimensional semi-Riemannian manifolds, (1 ≤ ρ ≤ n − 1). Then the warped product
metric on a semi-Riemannian manifolds M is given as follows:

g = π∗(ḡ) + (f ◦ π)2σ∗(g̃)

where π : M → M̄ and σ : M → M̃ are two cannonical projections on M̄ and M̃ respectively
and f ∈ C∞(M), the ring of smooth functions on M . The manifold M̄ , M̃ are respectively
known as the base and fibre and the positive smooth function f is called the warping function on
M .

Our main aim is to investigate the geometric structures arising out from various curvature
tensors of spacetimes within the frame of the metrics (1.1) and (1.2). We found that (1.1) and
(1.2) modeled various pseudosymmetric type curvature conditions such as: Ricci generalized
pseudosymmetric, Ricci generalized projectively pseudosymmetric and Ricci generalized con-
harmonicly pseudosymmetric conditions. Also, it has semisymmetric conharmonic curvature
tensor. Moreover, it is an Einstein manifold of degree 2 and Ricci tensor has quasi-Einstein na-
ture.

The present article is oriented as follows: section 2 contains some introductory definitions of
different structures of geometry. In section 3, the curvature restricted geometric structures of the
warped product metrics (1.1) and (1.2) are calculated. In section 4, we investigate some geomet-
ric structures of energy momentum tensor. Finally, the paper is concluded with some discussions
on the respective topic.

2 Preliminaries: some introductory definitions of different geometric
structures

Let the second order symmetric covariant tensor be µ and ζ. Now, we define the type of (0, 4)
tensor as follows:

(µ ∧ ζ)(ϑ1, ϑ2, λ1, λ2) = µ(ϑ1, λ2)ζ(ϑ2, λ1)− µ(ϑ2, λ1)ζ(ϑ1, λ2)

+µ(ϑ1, λ1)ζ(ϑ2, λ2)− µ(ϑ2, λ2)ζ(ϑ1, λ1),

which is called as Kulkarni-Nomizu product (see, [17, 33, 68]).
The endomorphisms on M (see, [17, 25, 33, 35, 54, 67]) are represented as:

(ϑ1 ∧µ ϑ2)λ = µ(ϑ2, λ)ϑ1 − µ(ϑ1, λ)ϑ2,

BR(ϑ1, ϑ2) = [∇ϑ1 ,∇ϑ2 ]−∇[ϑ1,ϑ2],

BC (ϑ1, ϑ2) = BR(ϑ1, ϑ2)−
1

(n− 2)

(
S ϑ1 ∧g ϑ2 + ϑ1 ∧g S ϑ2 −

κ

n− 1
ϑ1 ∧g ϑ2

)
,

BP(ϑ1, ϑ2) = BR(ϑ1, ϑ2)−
1

(n− 1)
(ϑ1 ∧S ϑ2) ,

BW (ϑ1, ϑ2) = BR(ϑ1, ϑ2)−
κ

n(n− 1)
(ϑ1 ∧g ϑ2) ,

BK (ϑ1, ϑ2) = BR(ϑ1, ϑ2)−
1

(n− 2)
(ϑ1 ∧g S ϑ2 + S ϑ1 ∧g ϑ2) ,

where S is the Ricci operator, which is defined by g(ϑ1,S ϑ2) = S(ϑ1, ϑ2).
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Through out the paper, we assume that ϑ,ϑ1,ϑ2, · · · , λ, λ1, λ2, · · · ∈ χ(M), the Lie algebra of
all smooth vector fields on M .

Now, for an endomorphism B(λ1, λ2), we can define the (0, 4) type tensor as

B(λ1, λ2, λ3, λ4) = g(B(λ1, λ2)λ3, λ4).

Replacing B by BR (resp., BW , BP , BC , BK), we can get the type of (0, 4) Riemann curvature
tensor R (resp., concircular curvature tensor of W , projective curvature tensor of P , conformal
curvature tensor of C, conharmonic curvature tensor of K and Gaussian curvature tensor of G).
For a type of (0, u) tensor field on E, u ≥ 1, we can operate an endomorphism B(λ1, λ2) to type
of (0, u+ 2) tensor field B · E as follows ([14, 15, 24, 57, 63])

(B · E)(ϑ1, ϑ2, · · · , ϑu;λ1, λ2) = (B(λ1, λ2)E)(ϑ1, ϑ2, · · · , ϑu)
= −E(B(λ1, λ2)ϑ1, ϑ2, · · · , ϑu)− · · · − E(ϑ1, ϑ2, · · · ,B(λ1, λ2)ϑu).

Also, if B(λ1, λ2)=λ1 ∧µ λ2, then we get the tensor field Q(µ,E), which is known as Tachibana
tensor (see, [22, 57, 62, 82]) given as follows:

Q(µ,E)(ϑ1, ϑ2, · · · , ϑu;λ1, λ2) = ((λ1 ∧µ λ2) · E)(ϑ1, ϑ2, · · · , ϑu)
= −E((λ1 ∧µ λ2)ϑ1, ϑ2, · · · , ϑu)− · · · − E(ϑ1, ϑ2, · · · , (λ1 ∧µ λ2)ϑu)

= µ(λ1, ϑ1)E(λ2, ϑ2, · · · , ϑu) + · · ·+ µ(λ1, ϑu)E(ϑ1, ϑ2, · · · , λ2)

−µ(λ2, ϑ1)E(λ1, ϑ2, · · · , ϑu)− · · · − µ(λ2, ϑu)E(ϑ1, ϑ2, · · · , λ1).

Representation of the tensor B · E and Q(µ,E), in terms of the local coordinates system are
given as follows:

(B · E)w1w2...wuaf = −gbd[Bafw1dEbw2...wu + · · ·+BafwudEw1w2...b],

Q(µ,E)w1w2...wuaf = µfw1Eaw2...wu
+ · · ·+ µfwu

Ew1w2...a

− µaw1Efw2...wu
− · · · − µawu

Ew1w2...f .

Definition 2.1. [1, 11, 12, 18, 19, 62, 65, 66] The pseudosymmetric type manifold is defined
by the linear dependency of the tensors B · E and Q(g,E) i.e., a manifold M is called E-
pseudosymmetric due to the tensor B if B ·E = fEQ(g,E) holds on M , and a Ricci generalized
E-pseudosymmetric manifold M due to the tensor B is defined by E · B = f̄EQ(S,E), fE and
f̄E being some smooth functions on M . In particular, if E · B = 0 holds on M then it is called
E-semisymmetric manifold due to B.

For B = R and E = R, then a E-pseudosymmetric manifold is called simply a pseudosym-
metric manifold and for B = R and E = C (resp., P , K and W ) it is called conformal (resp.,
projective, conharmonic and concircular) pseudosymmetric manifold. Simmilarly Ricci general-
ized pseudosymmetric manifolds can be defined accordingly. We mention here that Robertson-
Walker spacetime [2, 43], Schwarzschild spacetime [32], Reissner-Nordström spacetime [35]
are oldest examples of pseudosymmetric manifolds.

Definition 2.2. ([19, 20, 23, 48, 67]) A manifold M is called Einstein (resp., quasi-Einstein
[61, 75] and 2-quasi Einstein) manifold if rank of (S − λg) = 0 (resp., 1 and 2), for a scalar λ.
If λ = 0, then the quasi-Einstein manifold turns into Ricci simple manifold.

It is to be noted that Morris-Thorne spacetime [29] is a Ricci simple manifold, Robertson-
Walker spacetime [2] is quasi-Einstein, Kantowski-Sachs spacetime [54] is 2-quasi Einstein and
Kaigorodov spacetime [56] is Einstein.

Definition 2.3. [3, 13, 16, 20, 21, 57, 63, 67] A manifold M corresponds to generalized Roter
type if its Riemann curvature tensor gets the following explicit form:

R = µ22(g ∧ g) + (µ11S + µ12g) ∧ S + (µ00S
2 + µ01S + µ02g) ∧ S2
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where µij are some scalars. If the tensors g ∧ g, g ∧ S and S ∧ S are linearly dependent with R,
then we call it a Roter type manifold [13, 14, 23, 27, 34].

We mention here that Melvin magnetic spacetime [50] and Nariai spacetime [51] are Roter
type manifold while Vaidya-Bonner spacetime [55] and Lifshitz spacetime [74] are generalized
Roter type manifold.

Definition 2.4. ([3, 62, 64, 67]) An Einstein manifold of degree 4 is defined by the equation

ζ1S
4 + ζ2S

3 + ζ3S
2 + ζ4S + ζ5g = 0

where ζi ∈ C∞(M) and ζ1 ̸= 0. Again, for ζ1 = 0 but ζ2 ̸= 0 (resp., ζ1 = ζ2 = 0 but ζ3 ̸= 0) it
is known as Einstein manifold of degree 3 (resp., Einstein manifold of degree 2).

Definition 2.5. The Ricci tensor of a semi-Riemannian manifold M is called cyclic parallel [31,
53, 58, 59] if

(∇ϑ1S)(ϑ2, ϑ3) + (∇ϑ2S)(ϑ3, ϑ1) + (∇ϑ3S)(ϑ1, ϑ2) = 0

holds, and Codazzi type Ricci tensor [30, 76] is defined by the relation

(∇ϑ1S)(ϑ2, ϑ3) = (∇ϑ2S)(ϑ1, ϑ3).

It may be noted that the Gödel spacetime [25] has Ricci tensor of cyclic parallel while the
(t− z)-type plane wave spacetime [28] has been investigated with Codazzi Ricci tensor.

Definition 2.6. ([9, 15, 16, 22, 37, 38, 39]) Let µ be a symmetric type of (0, 2) tensor on M
corresponding to the endomorphism Bµ and B be a (0, 4) tensor. Then µ is called B-compatible
if

B(Bµϑ1, λ, ϑ2, ϑ3) +B(Bµϑ2, λ, ϑ3, ϑ1) +B(Bµϑ3, λ, ϑ1, ϑ2) = 0

holds. When φ⊗ φ is B-compatible then 1-forms φ is said to be B-compatible.

Replacing, µ by S and B by R (resp., K, C, W and P ), we can get Ricci and Riemann (resp.,
conharmonic, conformal, concircular and projective) compatible tensors.

Definition 2.7. A weakly symmetric manifold in the sense of Tamássy and Binh [83, 84] is
defined as:

(∇XR)(ϑ1, ϑ2, ϑ3, ϑ4) = Π(X)⊗R(ϑ1, ϑ2, ϑ3, ϑ4) + Ã(ϑ4)⊗R(ϑ1, ϑ2, ϑ3, X)

+ A(ϑ3)⊗R(ϑ1, ϑ2, X, ϑ4) + B̃(ϑ2)⊗R(ϑ1, X, ϑ3, ϑ4)

+ B(ϑ1)⊗R(X,ϑ2, ϑ3, ϑ4)

where Π, A, Ã, B, B̃ are some 1-forms on a semi-Riemannian manifold M . If Π = A
2 = Ã

2 =
B
2 = B̃

2 , then it reduces to a Chaki pseudosymmetric manifold [7, 8].

Definition 2.8. Let B be a (0, 4) type tensor field on M . Then the corresponding curvature
2-forms Ωm

(B)l [78] are recurrent [40, 41, 42] if and only if

S
ϑ1,ϑ2,ϑ3

(∇ϑ1B)(ϑ2, ϑ3, λ, ϑ) = S
ϑ1,ϑ2,ϑ3

η(ϑ1)B(ϑ2, ϑ3, λ, ϑ)

where S being the cyclic sum over ϑ1, ϑ2 and ϑ3. Again, let µ be the symmetric type of (0, 2)
tensor field. Then the 1-forms Λ(µ)l [78] are recurrent if

(∇ϑ1µ)(ϑ2, λ)− (∇ϑ2µ)(ϑ1, λ) = η(ϑ1)µ(ϑ2, λ)− η(ϑ2)µ(ϑ1, λ)

for some 1-form η.

Definition 2.9. ([44, 63, 85]) LetB be a (0, 4) type tensor onM . If the set of 1 form ψ satisfying

S
ϑ1,ϑ2,ϑ3

ψ(ϑ1)⊗B(ϑ2, ϑ3, λ, ϑ) = 0,

configures a k-dimendional vector space with k ≥ 1, then M is known as a B-space by Venzi.



224 Absos Ali Shaikh1, Shyamal Kumar Hui2 and Mousumi Sarkar3

Replacing, B by R (resp., K, C, W and P ), we can get Venzi spaces for Riemann (resp.,
conharmonic, conformal, concircular and projective).

3 Calculation of curvature restricted geometric properties of the warped
product metric

For the metric (1.2), the components are g11 = g22 = g33 = (ϕ)4/3, g44 = −1, gij = 0, i ̸= j
for i, j = 1, 2, 3, 4. and for the metric (1.1), the components are g11 = g22 = g33 = (ϕ)4/3, g44 =
1, gij = 0, i ̸= j for i, j = 1, 2, 3, 4.

Now, we calculate the components of different type of curvature tensors of the metrics (1.1)
and (1.2).
The components other than zero of the Christoffel symbols of second kind (Γh

ij) of the metric
(1.2) are given by:

Γ4
11 =

2ϕ1/3

3 = Γ4
22 = Γ4

33, Γ1
14 =

2
3ϕ = Γ2

24 = Γ3
34;

and for the metric (1.1), the components are given by

Γ4
11 = − 2ϕ1/3

3 = Γ4
22 = Γ4

33, Γ1
14 =

2
3ϕ = Γ2

24 = Γ3
34;

The components other than zero of the Riemann-Christoffel curvature tensor Rhijk and the
Ricci tensor Sij of the metric (1.2) are given by:

R1212 =
4ϕ2/3

9 = R1313 = R2323, R1414 =
2

9ϕ2/3 = R2424 = R3434;
S11 = − 2

3ϕ2/3 = S22 = S33, S44 = − 2
3ϕ2 ;

and for the metric (1.1), the components are given by

R1212 = − 4ϕ2/3

9 = R1313 = R2323, R1414 =
2

9ϕ2/3 = R2424 = R3434;
S11 =

2
3ϕ2/3 = S22 = S33, S44 = − 2

3ϕ2 ;

Also the scalar curvature, for the metric (1.2), is κ = − 4
3ϕ2 , and for the metric (1.1), κ = 4

3ϕ2 .
The metrics (1.1) and (1.2) are conformally flat.

From the above calculation of the components of different type of tensors of the metrics (1.1)
and (1.2) we can state the following:

Proposition 3.1. Both the metrics (1.1) and (1.2) are

(i) quasi-Einstein as rank (S − αg) = 1 for α = − 2
3ϕ2 and 2

3ϕ2 respectively,

(ii) Einstein manifold of level 2 i.e., fulfilled the condition S2 = βg for β = 4
9ϕ4 ,

(iii) Ricci tensor for both the metrics are Riemann compatible, conharmonic compatible, con-
circular compatible and projective compatible,

(iv) both the metrics are conformally flat.

Let V1 = ∇R and V2 = ∇S. Then the non-zero components of the covariant derivatives of
the tensor Rabcd and Sab of the metric (1.2) are given as below:

V1
1212,4 = − 8

9ϕ1/3 = V1
1313,4 = V1

2323,4, V1
1214,2 = − 4

9ϕ1/3 = V1
1314,3 = V1

2324,3,

V1
1224,1 =

4
9ϕ1/3 = V1

1334,1 = V1
2334,2, V1

1414,4 = − 4
9ϕ5/3 = V1

2424,4 = V1
3434,4;

V2
11,4 =

4
3ϕ5/3 = V2

22,4 = V2
33,4, V2

14,1 =
8

9ϕ5/3 = V2
24,2 = V2

34,3, V2
44,4 =

4
3ϕ3 ;



CURVATURE PROPERTIES OF A WARPED PRODUCT METRIC 225

and for the metric (1.1), the components are given by

V1
1212,4 =

8
9ϕ1/3 = V1

1313,4 = V1
2323,4, V1

1214,2 =
4

9ϕ1/3 = V1
1314,3 = V1

2324,3,

V1
1224,1 = − 4

9ϕ1/3 = V1
1334,1 = V1

2334,2, V1
1414,4 = − 4

9ϕ5/3 = V1
2424,4 = V1

3434,4;
V2

11,4 = − 4
3ϕ5/3 = V2

22,4 = V2
33,4, V2

14,1 = − 8
9ϕ5/3 = V2

24,2 = V2
34,3, V2

44,4 =
4

3ϕ3 ;

The components other than zero of the projective curvature tensor Pabcd of the metric (1.2)
are given below:

P1212 =
2ϕ2/3

9 = P1313 = P2323, P1221 = − 2ϕ2/3

9 = P1331 = P2332, P1414 =
4

9ϕ2/3 = P2424 = P3434;

and for the metric (1.1), the components are given by

P1212 = − 2ϕ2/3

9 = P1313 = P2323, P1221 =
2ϕ2/3

9 = P1331 = P2332, P1414 =
4

9ϕ2/3 = P2424 = P3434.

The components other than zero of the concircular curvature tensor Wabcd of the metric (1.2)
are given below:

W1212 =
ϕ2/3

3 =W1313 =W2323, W1414 =
1

3ϕ2/3 =W2424 =W3434;

and for the metric (1.1), the components are given by

W1212 = −ϕ2/3

3 =W1313 =W2323, W1414 =
1

3ϕ2/3 =W2424 =W3434.

The components other than zero of the conharmonic curvature tensor Kabcd of the metric
(1.2) are given below:

K1212 = − 2ϕ2/3

9 = K1313 = K2323, K1414 =
2

9ϕ2/3 = K2424 = K3434;

and for the metric (1.1), the components are given by

K1212 =
2ϕ2/3

9 = K1313 = K2323, K1414 =
2

9ϕ2/3 = K2424 = K3434.

From above components we get the following recurrent structures for the metrics (1.1) and (1.2):

Proposition 3.2. For both the metrics (1.1) and (1.2) are

(i) the Ricci 1-forms are recurrent i.e., ∇ϑ1S(ϑ2, ϑ3) − ∇ϑ2S(ϑ1, ϑ3) = η(ϑ1) ⊗ S(ϑ2, ϑ3) −
η(ϑ2)⊗ S(ϑ1, ϑ3) for η =

{
0, 0, 0,− 2

3ϕ

}
,

(ii) conharmonic curvature K is recurrent for the 1-form Π =
{

0, 0, 0,− 2
ϕ

}
,

(iii) projective curvature 2-forms and concircular curvature 2-forms are recurrent for the same
1-form

{
0, 0, 0, 2

3ϕ

}
.

Let H1 = R · R, I1 = Q(g,R), I2 = Q(S,R). Then the components other than zero (upto
symmetry) of the tensors H1, I1 and I2 of the metric (1.2) are given by:

H1
1224,14 = − 4

27ϕ4/3 = H1
1334,14 = H1

2334,24, H
1
1214,24 =

4
27ϕ4/3 = H1

1314,34 = H1
2324,34;

I1
1224,14 = − 2ϕ2/3

3 = I1
1334,14 = I1

2334,24, I
1
1214,24 =

2ϕ2/3

3 = I1
1314,34 = I1

2324,34;
I2

1224,14 = − 4
27ϕ4/3 = I2

1334,14 = I2
2334,24, I

2
1214,24 =

4
27ϕ4/3 = I2

1314,34 = I2
2324,34;

and for the metric (1.1), the components are given by

H1
1224,14 =

4
27ϕ4/3 = H1

1334,14 = H1
2334,24, H

1
1214,24 = − 4

27ϕ4/3 = H1
1314,34 = H1

2324,34;

I1
1224,14 = − 2ϕ2/3

3 = I1
1334,14 = I1

2334,24, I
1
1214,24 =

2ϕ2/3

3 = I1
1314,34 = I1

2324,34;
I2

1224,14 =
4

27ϕ4/3 = I2
1334,14 = I2

2334,24, I
2
1214,24 = − 4

27ϕ4/3 = I2
1314,34 = I2

2324,34;
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Proposition 3.3. The metric (1.2) realizes the curvature conditions

R ·R =
2

9ϕ2Q(g,R) and R ·R = Q(S,R)

and the metric (1.1) fulfills R ·R = − 2
9ϕ2Q(g,R) and R ·R = Q(S,R) i.e., both the metrics are

pseudosymmetric and also Ricci generalized peudosymmetric.

Let H2 = P ·R, I3 = P ·K and I4 = Q(S,K). Then the components other than zero (upto
symmetry) of the tensors H2, I3 and I4 of the metric (1.2) are given by:

H2
1224,14 = − 8

81ϕ4/3 = H2
1334,14 = H2

2334,24 = H2
1214,42 = H2

1314,43 = H2
2324,43,

H2
1214,24 =

8
81ϕ4/3 = H2

1314,34 = H2
2324,34 = H2

1224,41 = H2
1334,41 = H2

2334,42;
I3

1224,14 = − 8
81ϕ4/3 = I3

1334,14 = I3
2334,24 = I3

1214,42 = I3
1314,43 = I3

2324,43,

I3
1214,24 =

8
81ϕ4/3 = I3

1314,34 = I3
2324,34 = I3

1224,41 = I3
1334,41 = I3

2334,42;
I4

1224,14 =
8

27ϕ4/3 = I4
1334,14 = I4

2334,24, I
4
1214,24 = − 8

27ϕ4/3 = I4
1314,34 = I4

2324,34;

and for the metric (1.1), the components are given by

H2
1224,14 =

8
81ϕ4/3 = H2

1334,14 = H2
2334,24 = H2

1214,42 = H2
1314,43 = H2

2324,43,

H2
1214,24 = − 8

81ϕ4/3 = H2
1314,34 = H2

2324,34 = H2
1224,41 = H2

1334,41 = H2
2334,42;

I3
1224,14 =

8
81ϕ4/3 = I3

1334,14 = I3
2334,24 = I3

1214,42 = I3
1314,43 = I3

2324,43,

I3
1214,24 = − 8

81ϕ4/3 = I3
1314,34 = I3

2324,34 = I3
1224,41 = I3

1334,41 = I3
2334,42;

I4
1224,14 = − 8

27ϕ4/3 = I4
1334,14 = I4

2334,24, I
4
1214,24 =

8
27ϕ4/3 = I4

1314,34 = I4
2324,34.

Proposition 3.4. The metric (1.2) fulfills the curvature relations

P ·R =
4

27ϕ2Q(g,R) and P ·R = Q(S,R)

and the metric (1.1) satisfies the curvature conditions P ·R = 4
27ϕ2Q(g,R) and P ·R = Q(S,R)

i.e., both the metrics are pseudosymmetric due to projective curvature tensor and Ricci general-
ized projective pseudosymmetric manifold.

Let H3 =W ·R and H4 = K ·R. Then the components other than zero (upto symmetry) of
the tensors H3 and H4 of the metric (1.2) are given below:

H3
1224,14 = − 2

9ϕ4/3 = H3
1334,14 = H3

2334,24, H
3
1214,24 =

2
9ϕ4/3 = H3

1314,34 = H3
2324,34;

H4
1224,14 = − 4

27ϕ4/3 = H4
1334,14 = H4

2334,24, H
4
1214,24 =

4
27ϕ4/3 = H4

1314,34 = H4
2324,34;

and for the metric (1.1), the components are given below :

H3
1224,14 =

2
9ϕ4/3 = H3

1334,14 = H3
2334,24, H

3
1214,24 = − 2

9ϕ4/3 = H3
1314,34 = H3

2324,34;
H4

1224,14 =
4

27ϕ4/3 = H4
1334,14 = H4

2334,24, H
4
1214,24 = − 4

27ϕ4/3 = H4
1314,34 = H4

2324,34;

Proposition 3.5. The metric (1.2) yields the following pseudosymmetric type curvature condi-
tions

W ·R =
1

3ϕ2Q(g,R), K ·R =
2

9ϕ2Q(g,R), W ·R = Q(S,R) and K ·R = Q(S,R)

and the metric (1.1) fulfills the conditions W · R = − 1
3ϕ2Q(g,R), K · R = − 2

9ϕ2Q(g,R),
W · R = Q(S,R) and K · R = Q(S,R) i.e., both the metrics are pseudosymmetric due to
concircular curvature, pseudosymmetric due to conharmonic curvature and Ricci generalized
concircular pseudosymmetric as well as Ricci generalized conharmonic pseudosymmetric.

Thus we can conclude that the curvature properties of the metrics (1.1) and (1.2) can be stated
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as follows:

Theorem 3.6. The metrics (1.1) and (1.2) admit the following curvature properties:

(i) both are pseudosymmetric and consequently pseudosymmetric for Ricci curvature, projec-
tive curvature, concircular curvature and conharmonic curvature,

(ii) both are pseudosymmetric due to concircular, conharmonic and projective curvatures,

(iii) both are special Ricci generalized pseudosymmetric and Ricci generalized pseudosymmet-
ric for projective, concircular and conharmonic curvatures as well,

(iv) both are quasi-Einstein manifolds and Einstein manifolds of level 2,

(v) conharmonically semisymmetric R ·K = 0 and semisymmetric type conditions W ·K = 0
and K ·K = 0 are realized by both the metrics,

(vi) conharmonic curvature is recurrent for both the metrics,

(vii) projective curvature 2-forms, concircular curvature 2-forms are recurrent for both the met-
rics,

(viii) both are Ricci 1-forms are recurrent for both the metrics,

(ix) Ricci tensor is compatible for Riemann, projective, conharmonic and concircular curva-
tures for both the metrics.

Remark 3.7. The metrics (1.1) and (1.2) do not fulfill the following geometric structures:

(i) B-Venzi space for B=R, P , W , K,

(ii) Codazzi type Ricci tensor or cyclic parallel Ricci tensor,

(iii) Super generalized recurrence, hyper generalized recurrence and weakly generalized recur-
rence,

(iv) Chaki pseudosymmetry.

4 Some geometric properties of energy momentum tensor of the metric (1.2)

In the well known theory of general relativity, energy momentum tensor describes the physics
of a spacetime and Einstein field equation made a bridge between the physical quantity energy
momentum tensor and geometrical quantity ‘curvature’ of a spacetime via

S − k

2
g =

8πG
c4 T

G being Newton’s gravitational constant, T being the energy momentum tensor, c being the
speed of light in vacuum. We assume 8πG

c4 = 1 and compute the stress energy momentum tensor
in terms of its components for the metric (1.2) by the above equation.

The only non-vanishing component of the energy momentum tensor is

T44 = − 1
6πϕ2 .

For the metric (1.2), the components other than zero of R · T , W · T and K · T are

(R · T )1414 = − 1
27πϕ8/3 = (R · T )2424 = (R · T )3434,

(W · T )1414 = − 4
9πϕ8/3 = (W · T )2424 = (W · T )3434,

(K · T )1414 = − 8
27πϕ8/3 = (K · T )2424 = (K · T )3434.
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Also, let I5 = Q(g, T ) and I6 = Q(T,R). For the metric (1.2), the components other than zero
of I5 and I6 are given by:

I5
1414 = − 1

6πϕ2/3 = I5
2424 = I5

3434,

I6
122414 = − 16

27ϕ4/3 = I6
133414 = −I6

121424

= I6
233424 = −I6

131434 = −I6
232434.

From the above components we get the following:

Theorem 4.1. The following pseudosymmetric type curvature conditions are represented by the
energy momentum tensor T of the metric (1.2):

(i) R · T = − 2
9ϕ2Q(g, T ) and R · R = 1

4Q(T,R) i.e., the nature of the energy momentum
tensor is pseudosymmetric and fulfills Ricci generalized pseudosymmety as well,

(ii) W · T = 2
9ϕ2Q(g, T ) and W ·R = 1

2Q(T,R),
(iii) K · T = 2

9ϕ2Q(g, T ) and K ·R = 1
4Q(T,R),

(iv) P ·R = 1
6Q(T,R) and also

(v) the energy momentum tensor T is compatible for Riemann, projective, conharmonic and
concircular curvatures.

5 Conclusions

In this article the curvature restricted geometric properties of a warped product metric with
1-dimensional base and 3-dimensional fibre are studied. In differential geometry one of the wor-
thy notion of symmetry is pseudosymmetry and we find that this is admitted by both the metrics
(1.1) and (1.2). These metrics also admit special Ricci generalized pseudosymmetry. Several
kinds of pseudosymmetries such as pseudosymmetry due to concircular curvature, conharmonic
curvature and projective curvature are also fulfilled by both the metrics. These metrics are also
quasi-Einstein, Ein(2) but conformally flat manifolds. The nature of the conharmonic curvature
is recurrent and semisymmetric type. The novelty of the work is that the energy momentum
tensor of the warped product metric (1.2) is pseudosymmetric and realized several types of pseu-
dosymmetries. We can consider the metric (1.2) as model of a pseudosymmetric, special Ricci
generalized pseudosymmetric spacetime which has pseudosymmetric energy momentum tensor.
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