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AbstractIn this paper we prove the existence of solutions for fractional order functional and neutral functional differen-
tial equations with infinite delay principles combined with a technique based on vector-valued metrics and convergent to zero
matrices.

1 Introduction
Probabilistic functional analysis is an important mathematical area of research due to its applications to probabilistic mod-
els in applied problems. Random operator theory is needed for the study of various classes of random equations. Indeed,in
many cases, the mathematical models or equations used to describe phenomena in the biological, physical, engineering,
and systems sciences contain certain parameters or coefficients which have specific interpretations, but whose values are
unknown. Therefore, it is more realistic to consider such equations as random operator equations.Therefore, it is more real-
istic to consider such equations as random operator equations which are much more difficult to handle mathematically than
deterministic equations. Important contributions to the study of the mathematical aspects of such random equations have
been undertaken in [3, 11, 12, 13, 14] among others. The problem of fixed points for random mappings was initialed by the
Prague school of probabilities. The first results was studied in 1955-1956 by S̆pac̆ek and Hans̆ in the context of Fredholm
integral equations with random Kernel. In a separable metric space, random fixed point theorems for contraction mappings
were proved by Hans̆ [6, 7], S̆pac̆ek [15], Hans̆ and, S̆pac̆ek [8] and Mukherjee [9, 10].

Differential equations of fractional order have recently proved to be valuable tools in the modeling of many physical
phenomena [21, 22, 23] . There has also been a significant theoretical development in fractional differential equations in
recent years; see the monographs of Kilbas et al. [24], Miller and Ross [25], Podlubny [26], and for example, the paper of
Kilbas and Trujillo [2].
Very recently, some basic theory for initial value problems for fractional differential equations and inclusions involving the
Riemann-Liouville differential operator was discussed, see for examples, Benchohra et al. [27], B. Ahmad and J.J. Nieto [28].

This paper is concerned with the existence of solutions for initial value problems of fractional order functional differential
equations with infinite delay and random effects (random parameters) of the form:

Dα1x(t, w) = f1(t, xt(., w), yt(., w), w), a.e. for each t ∈ J = [0, b], 0 < α1 < 1,
Dα2y(t, w) = f2(t, xt(., w), yt(., w), w), a.e. for each t ∈ J = [0, b], 0 < α2 < 1,

x(t, w) = ϕ1(t, w), w ∈ Ω, t ∈ (−∞, 0],
y(t, w) = ϕ2(t, w), w ∈ Ω, t ∈ (−∞, 0],

(1.1)

where (Ω,F,P) is a complete probability space,w ∈ Ω andDαi is the standard Riemman-Liouville fractional derivative for
each i = 1, 2, fi : J ×B×B× Ω → R, is a given function satisfying some assumptions that will be specified later, ϕ1, ϕ2
are two random maps ϕi : Ω → B, ϕi(0, w) = 0, i = 1, 2 and B is called a phase space that will be defined later (see
Section 2). For any function x defined on (−∞, b] and any t ∈ J , we denote by xt(., w) the element of B× Ω defined by

xt(θ, w) = x(t + θ, w), θ ∈ (−∞, 0].

Here xt(·, w) represents the history of the state from time −∞ up to the present time, We assume that the histories xt(., w)
belong to the abstract phase B. To our knowledge, the literature on the existence of random equations with fractional order
and delay is very limited, so the present paper can be considered as a contribution to this question.
The paper is organized as follows. In Section 2 ,we introduce all the background material needed such as generalized metric
spaces, examples of phase spaces , some random fixed point theorems by some new random versions of Perov’s and Leray-
Schauder’s fixed point theorems in a vector Banach space. In Section 3, we prove some existence and compactness results for
problem (1.1).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.
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Let (Ω,F ,P) be a complete probability space with a filtration (F = Ft)t≥0 satisfying the usual conditions (i.e., right
continuous and F0 containing all P-null sets).

For a stochastic process x(·, ·) : [0, b]×Ω → X , we will write x(t) (or simply x when no confusion is possible) instead
of x(t, ω).

2.1 Vector metric space
If, x,y ∈ Rn x = (x1, . . . , xn), y = (y1, . . . , yn), by x ≤ y we mean xi ≤ yi for all i = 1, . . . , n. Also |x| =
(|x1|, . . . , |xn|),max(x, y) = max(max(x1, y1), . . . ,max(xn, yn)) and Rn

+ = {x ∈ Rn : xi > 0}. If c ∈ R, then x ≤ c
means xi ≤ c for each i = 1, . . . , n.

Definition 2.1. Let X be a nonempty set. By a vector-valued metric on X we mean a map d : X × X → Rn
+ with the

following properties:
(i) d(u, v) ≥ 0 for all u, v ∈ X; if d(u, v) then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X;

(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

We call the pair (X, d) a generalized metric space with d(x, y) :=

 d1(x, y)

· · ·
dn(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . , n are metrics on X.
For r = (r1, . . . , rn) ∈ Rn

+, we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r}

the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r}

the closed ball centered in x0 with radius r. We mention that for generalized metric space, the notation of open subset, closed
set, convergence, Cauchy sequence and completeness are similar to those in usual metric spaces.

Definition 2.2. A square matrix of real numbers is said to be convergent to zero if and only if its spectral radius ρ(M) is
strictly less than 1. In other words, this means that all the eigenvalues of M are in the open unit disc i.e. |λ| < 1, for every
λ ∈ C with det(M − λI) = 0, where I denote the unit matrix of Mn×n(R).

Theorem 2.3. [19] Let M ∈ Mn×n(R+). The following assertions are equivalent:

(i) M is convergent towards zero;

(ii) Mk → 0 as k → ∞;

(iii) The matrix (I −M) is nonsingular and

(I −M)−1 = I +M +M2 + . . . +Mk + . . . ,

(iv) The matrix (I −M) is nonsingular and (I −M)−1 has nonnegative elements.

Definition 2.4. Let (X, d) be a generalized metric space. An operator N : X → X is said to be contractive if there exists a
convergent to zero matrix M such that

d(N(x), N(y)) ≤Md(x, y) for all x, y ∈ X.

For n = 1 we recover the classical Banach’s contraction fixed point result.

In this paper, we will employ an axiomatic defnition of the phase space B introduced by Hale and Kato in [17] and follow
the terminology used in [18]. Thus, (B, ∥.∥B) will be a seminormed linear space of functions mapping (−∞, 0] into R, and
satisfying the following axioms :

(A1) There exist a positive constant H and functions K(·), M(·) : R+ → R+ with K continuous and M locally bounded,
such that for any a > 0, if x : (−∞, a] → R, x ∈ B , and x(·) is continuous on [0, a], then for every t ∈ [0, a] the
following conditions hold:

(i) xt is in B;

(ii) |x(t)| ≤ H∥xt∥B;

(iii) ∥xt∥B ≤ K(t) sup{|x(s)| : 0 ≤ s ≤ t} +M(t)∥x0∥B, and H,K and M are independent of x(·).

(A2) For the function x(.) in (A1), xt is a B−valued continuous function on [0, a].

(A3) The space B is complete.

Denote by
Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

Here after are some examples of phase spaces. For other details we refer, for instance to the book by Hino et al [18].

Example 2.5. The spaces BC, BUC, C∞ and C0. Let:
BC the space of bounded continuous functions defined from (−∞, 0] to R;

BUC the space of bounded uniformly continuous functions defined from (−∞, 0] to R;



234 Mohamed Ferhat and Tayeb Blouhi

C∞ := {ϕ ∈ BC : limθ→−∞ ϕ(θ) exist in E} ;

C0 := {ϕ ∈ BC : limθ→−∞ ϕ(θ) = 0} . Endowed with the uniform norm

∥ϕ∥ = sup{|ϕ(θ)| : θ ∈ (−∞, 0]}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1) − (A3). BC satisfies (A2), (A3) but (A1) is not
satisfied.

Example 2.6. The spaces Cg , UCg , C∞
g and C0

g .
Let g be a positive continuous function on (−∞, 0]. We define:

Cg :=
{
ϕ ∈ C((−∞, 0],R) : ϕ(θ)

g(θ)
is bounded on (−∞, 0]

}
;

C0
g :=

{
ϕ ∈ Cg : limθ→−∞

ϕ(θ)
g(θ)

= 0
}
, endowed with the uniform norm

∥ϕ∥ = sup
{
|ϕ(θ)|
g(θ)

: θ ∈ (−∞, 0]
}
.

We consider the following condition on the function g.

(g1) For all a > 0, sup0≤t≤a sup
{

g(t+θ)
g(θ)

: −∞ < θ ≤ −t
}
<∞.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). They satisfy conditions (A1) and (A3) if g1 holds.

Example 2.7. The space Cγ .

For any real constant γ, we define the functional space Cγ by

Cγ :=
{
ϕ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθϕ(θ) exist in E

}
endowed with the following norm

∥ϕ∥ = sup{eγθ|ϕ(θ)| : θ ≤ 0}.
Then in the space Cγ the axioms (A1)− (A3) are satisfied.

2.2 Random fractional derivative
Let (Ω,F) be a measurable space. We equip the metric space X with a σ−algebra B(X) of Borel subsets of X so that
(X,B(X)) becomes a measurable space. Let X and Y be two locally compact metric spaces. By C(X,Y ) we denote the
space of continuous functions from X into Y endowed with the compact-open topology.

Lemma 2.8. [20] Let X be a separable generalized metric space and G : Ω × X × X → X be a mapping such that
G(·, x, y) is measurable for all x, y ∈ X andG(w, ·, ·) is continuous for all w ∈ Ω. Then the map (w, x, y) → G(w, x, y)
is jointly measurable.

Definition 2.9. function fi : [0, b] × X × X × Ω → Y is called random Carathéodory if the following conditions are
satisfied:
(i) The map (t, w) 7−→ fi(t, x, y, w) is jointly measurable for all x, y ∈ X ,

(ii) The map (x, y) 7−→ fi(t, x, y, w) is continuous for all t ∈ [0, b] and w ∈ Ω.

We say that ϕ(·, ·) : [0, b] × Ω → R is sample path Lebesgue integrable on [0, b] if ϕ(·, w) : [0, b] → R is Lebesgue
integrable on [0, b] for a.e. w ∈ Ω.

Let α > 0. If ϕ : [0, b] × Ω → R is sample path Lebesgue integrable on [1, b], then we can consider the fractional
integral

Iα0 ϕ(t, w) =
1

Γ(α)

∫ t

0
(t− s)α−1ϕ(s, w)ds

which will be called the sample path fractional integral of ϕ.

Remark 2.10. If ϕ(·, w) : [1, b] → R is Lebesgue integrable on [0, b] for each w ∈ Ω , then t 7−→ Iα0 ϕ(t, w) is also
Lebesgue integrable on [0, b] for each w ∈ Ω.

Recall that ϕ : [0, b] × Ω → R is a Caratheodory function if t 7−→ ϕ(t, w) is continuous for a.e. w ∈ Ω and
w 7−→ ϕ(t, w) is measurable for each t ∈ [0, b]. Also, a Caratheodory function is a product measurable function.

Proposition 2.11. If ϕ : [0, b] × Ω → R is a Caratheodory function, then the function (t, w) 7−→ Iα0 ϕ(t, w) is also a
Caratheodory function

Proof. • It is clear that Iα0 : C([1, b],R) → R is a continuous operator.
• Let ψ : Ω → C([1, b],R) be defined

ψ(w)(·) = ϕ(·, w).
By Lemma 2.8, then ψ(·) is measurable, so the operator w → (Iα ◦ ψ)(w)(·) is measurable. Since the function
t→ Iα0 ϕ(t, w) is a continuous function, (t, w) → Iα0 ϕ(t, w) is a Caratheodory function
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Definition 2.12. A function ϕ : [0, b] × Ω → R is said to have a sample path derivative att ∈ [0, b] if the function
t 7−→ ϕ(t, w) has a derivative at t for a.e. w ∈ Ω.

Definition 2.13. The fractional derivative of order α > 0 of a continuous function ϕ : Ω × [0, b] → R is given by

dαϕ(t, w)

dtα
=

1
γ(1 − α)

d

dt

∫ t

0
(t− s)−αϕ(s, w)ds =

d

dt
I1−α

0 ϕ(t, w).

Proposition 2.14. [29] LetX be a separable Banach space, andD be a dense linear subspace ofX . LetL : Ω×D → X be
a closed linear random operator such that, for eachw ∈ Ω,L(w) is one to one and onto. Then the operator S : Ω×X → X
defined by S(w)x = L−1(w)x is random.

2.3 Random fixed point theory
Definition 2.15. Recall that a mapping F : Ω × X → X is said to be a random operator if, for any x ∈ X,F (·, x) is
measurable.

Definition 2.16. A random fixed point of F is a measurable function x : Ω → X such that

x(w) = F (w, x(w)) for all w ∈ Ω.

In this section, we give the random versions of Perov fixed point theorem in generalized metric space.

Theorem 2.17. [20] Let (Ω,F) be a measurable space,X be a real separable generalized Banach space and F : Ω×X →
X be a continuous random operator, and let M(ω) ∈ Mn×n(R+) be a random variable matric such that for every ω ∈ Ω

the matrix, M(ω) converge to 0 and

d(F (ω, x1), F (ω, x2)) ≤M(ω)d(x1, x2) for each x1, x2 ∈ X, ω ∈ Ω.

then there exists any random variable x : Ω → X which is the unique random fixed point of F.

By above result we present the following random nonlinear alternative.

Theorem 2.18. [20] Let X be a separable generalized Banach space and let F : Ω ×X → X be a completely continuous
random operator. Then, either

(i) the random equation F (ω, x) = x has a random solution, i.e., there is a measurable function x : Ω → X such that
F (ω, x(ω)) = x(ω) for all ω ∈ Ω, or

(ii) the set M = {x : Ω → X is measurable|λ(ω)F (ω, x) = x} is unbounded for some measurable λ : Ω → X with
0 < λ(ω) < 1 on Ω.

2.4 Existence and Uniqueness of a Solution

Let us start by defining what we mean by a solution of problem (1.1). Let the space

E = {x : (−∞, b] → R : x|(−∞,0] ∈ B and x|[0,b] is continuous}.

Definition 2.19. A function x, y ∈ E is said to be a solution of (1.1) if x satisfies the equation (Dα1x(t), Dα2y(t)) =
(f1(t, xt, yt), f2(t, xt, yt)) on J , and the condition (x(t), y(t)) = (ϕ1(t), ϕ2(t)) on (−∞, 0].

For the existence results on the problem (1.1) we need the following auxiliary lemma.

Lemma 2.20. [1] Let 0 < α < 1 and let hi : (0, b] → R be continuous and limt→0+ hi(t) = hi(0+) ∈ R for each
i = 1, 2. Then (x, y) is a solution of the fractional integral equation

x(t) = 1
Γ(α1)

∫ t
0 (t− s)α1−1h1(x(t), y(s))ds,

y(t) = 1
Γ(α2)

∫ t
0 (t− s)α2−1h2(x(t), y(s))ds,

if and only if, (x, y) is a solution of the initial value problem for the fractional differential equation

Dα1x(t) = h1(x(t), y(t)), t ∈ (0, b]
Dα2x(t) = h2(x(t), y(t)), t ∈ (0, b]
(x(0), y(0)) = (0, 0)

Our first main result is the existence and uniqueness of a random solution to the problem (1.1).

Theorem 2.21. Let fi : J × B × B × Ω → R be two Carathory functions. Assume that the following conditions hold:

(H1) There exist random variables ℓi, ℓ̄i : Ω → R+ such that

|fi(t, u, v, w)− fi(t, ū, v̄, w)| ≤ ℓi(w)∥u− ū∥B + ℓ̄i(w)∥v − v̄∥B.
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for all u, v, ū, v̄ ∈ B and w ∈ Ω.

If for every w ∈ Ω,

Mtrix(w) =

 bα1Kbℓ1(w)
Γ(α1+1)

bα1Kb ℓ̄1(w)
Γ(α1+1)

bα2Kbℓ2(w)
Γ(α2+1)

bα2Kb ℓ̄2(w)
Γ(α2+1)


converges to 0, then problem (1.1) has a unique random solution on the interval (−∞, b].

Proof. Transform the problem (1.1) into a fixed point problem. Consider the operatorN : E ×E ×Ω −→ E ×E defined by

(x, y) 7−→ (N1(x, y, w), N2(x, y, w)),

where

N1(x(t, w), y(t, w), w) =


ϕ1(t, w), t ∈ (−∞, 0],

1
Γ(α1)

∫ t
0 (t− s)α1−1f(s, xs, ys, w)ds, t ∈ [0, b],

and

N2(x(t, w), y(t, w), w) =


ϕ2(t, w), t ∈ (−∞, 0],

1
Γ(α2)

∫ t
0 (t− s)α2−1f(s, xs, ys, w)ds, t ∈ [0, b].

First we show that N is a random operator on E × E . Since f1 and f2 are Caratheodory functions, w 7−→ f1(t, x, y, w) and
w 7−→ f2(t, x, y, w) are measurable maps in view of Lemma 2.8 and Proposition2.11. Further, the integral is a limit of a
finite sum of measurable functions; therefore, the maps

w 7−→ N1(x(t, w), y(t, w), w), w 7−→ N2(x(t, w), y(t, w), w)

are measurable. As a result,N is a random operator on E ×E×Ω into E ×E . We next show that N satisfies all the conditions
of Theorem 2.17 on E × E . Let (x(·, w), y(·, w)) ∈ E × E ; then

Let xi(·, ·) : (−∞, b]× Ω → R be the function defined by

xi(t, w) =

 ϕ(0, w), if t ∈ [0, b],

ϕi(t, w), if t ∈ (−∞, 0].

Then (x1(0, w), x2(0, w)) = (ϕ1(w), ϕ2(w)). For each zi ∈ C([0, b] × Ω,R) with zi(0, w) = 0, we denote by z̄i the
function defined by

z̄i(t, w) =

 zi(t, w), if t ∈ [0, b],

0, if t ∈ (−∞, 0].

If (x(·, w), y(·, w)) satisfies the integral equation,

x(t, w) =
1

Γ(α1)

∫ t

0
(t− s)α1−1f1(s, xs, ys, w)ds,

and

y(t, w) =
1

Γ(α2)

∫ t

0
(t− s)α2−1f2(s, xs, ys, w)ds,

we can decompose (x(·, w), y(·, w)) as (x(t, w), y(t, w)) = (z̄1(t, w) + x1(t, w), z̄2(t, w) + x2(t, w)), 0 ≤ t ≤ b, which
implies (xt(., w), yt(., w)) = (z̄1

t (., w)+x
1
t(., w), z̄

2
t (., w)+x

2
t(., w)) for every 0 ≤ t ≤ b, and the function zi(·) satisfies

z1(t, w) =
1

Γ(α1)

∫ t

0
(t− s)α1−1f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)ds.

and

z2(t, w) =
1

Γ(α2)

∫ t

0
(t− s)α2−1f2(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)ds.

Set
C0 = {zi ∈ C([0, b],R) : z(0, w) = z0(w) = 0, w ∈ Ω},

and let ∥ · ∥D be the seminorm in C0 defined by

∥zi∥D = ∥zi0∥B + sup{|zi(t)| : 0 ≤ t ≤ b} = sup{|zi(t)| : 0 ≤ t ≤ b}, zi ∈ C0.

C0 is a Banach space with norm ∥ · ∥D.
Consider the operator P : C0 × C0 × Ω → C0 × C0 defined by

(z1, z2) 7−→ (P1(z
1, z2, w), P2(z

1, z2, w)),

P1(z
1(t, w), z2(t, w), w) =

1
Γ(α1)

∫ t

0
(t− s)α1−1f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)ds, t ∈ [0, b]. (2.1)

and

P2(z
1(t, w), z2(t, w), w) =

1
Γ(α2)

∫ t

0
(t− s)α2−1f2(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)ds, t ∈ [0, b]. (2.2)
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That the operatorN has a fixed point is equivalent toP has a fixed point, and so we turn to proving thatP has a fixed point. We
shall show thatP : C0×C0×Ω → C0×C0 is a contraction map. Indeed, consider (z1(., w), z2(., w)), (z1,∗(., w), z2,∗(., w)) ∈
C0 × C0. Then we have for each t ∈ [0, b]

|P1(z
1(t), z2(t), w)− P1(z

1,∗(t), z2,∗(t), w)|

≤
1

Γ(α1)

∫ t

0
(t− s)α1−1|f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)− f1(s, z̄
1,∗
s + x1

s, z̄
2,∗
s + x2

s, w)|ds

≤
1

Γ(α1)

∫ t

0
(t− s)α1−1

(
ℓ1(w)∥z̄1

s − z̄1,∗
s ∥B + ℓ̄1(w)∥z̄2

s − z̄2,∗
s ∥B

)
ds

≤
1

Γ(α1)

∫ t

0
(t− s)α1−1Kb sup

s∈[0,t]

(
ℓ1(w)∥z(s)1 − z1,∗(s)∥ + ℓ̄1(w)∥z(s)2 − z2,∗(s)∥

)
ds

≤
Kb

Γ(α1)

∫ t

0
(t− s)α1−1ℓ1ds∥z1 − z1,∗∥D +

Kb

Γ(α1)

∫ t

0
(t− s)α1−1ℓ̄1ds∥z2 − z2,∗∥D.

Therefore

∥P1(z
1, z2, w)− P1(z̄

1,∗, z̄2,∗, w)∥D ≤
bα1Kbℓ1(w)

Γ(α1 + 1)
∥z1 − z1,∗∥D +

bα1Kbℓ̄1(w)

Γ(α1 + 1)
∥z2 − z2,∗∥D.

Similarly, we obtain

∥P2(z
1, z2, w)− P2(z̄

1,∗, z̄2,∗, w)∥D ≤
bα2Kbℓ2(w)

Γ(α2 + 1)
∥z1 − z1,∗∥D +

bα2Kbℓ̄2(w)

Γ(α2 + 1)
∥z2 − z2,∗∥D,

Hence
d(P (z1, z2, w), P (z̄1,∗, z̄2,∗, w)) ≤Mtrix(w)d((z

1, z2), (z̄1,∗, z̄2,∗)),

where

d(z1, z2) =

(
∥z1 − z2∥D
∥z1 − z2∥D

)
and

Mtrix(w) =

 bα1Kbℓ1(w)
Γ(α1+1)

bα1Kb ℓ̄1(w)
Γ(α1+1)

bα2Kbℓ2(w)
Γ(α2+1)

bα2Kb ℓ̄2(w)
Γ(α2+1)


It is clear that the radius spectral ρ(Mtrix(w)) < 1 . By Lemma 2.3 Mtrix(w) converges to zero. From Theorem 2.17

there exists a unique random solution of problem (1.1)

We recall Gronwalls lemma for singular kernels, whose proof can be found in ([30], Lemma 7.1.1), which will be essential
for the main result of this section.

Lemma 2.22. Let v : [0, b] → [0,∞) be a real function and W (·) is a nonnegative, locally integrable function on [0, b] and
there are constants a > 0 and 0 < α < 1 such that

v(t) ≤W (t) + a

∫ t

0

v(s)

(t− s)α
ds,

then,there exists a constant K = K(α) such that

v(t) ≤W (t) +Ka

∫ t

0

W (s)

(t− s)α
ds,

for every t ∈ [0, b].

Next, we present an existence result that does not assume Lipschitz conditions. We need the following conditions:

(H2) For every w ∈ Ω , the functions fi(·, ·, w) are continuous for each i = 1, 2, and w → fi(·, ·, w)) are measurable

(H3) There exist measurable and bounded functions pi, qi, γi : J × Ω → R+ such that

|fi(t, x, y, w)| ≤ pi(t, w) + qi(t, w)∥x∥B + γi(t, w)∥y∥B

for t ∈ J and each x, y ∈ B, and ∥Iαpi∥∞ < +∞, i = 1, 2

We prove an existence result for problem (1.1) by using a Leray-Schauder type random fixed point theorem in generalized
Banach spaces.

Theorem 2.23. Assume that (H2) and (H3) hold. Then the problem (1.1) has a random solution defined on (−∞, b].

Proof. Let P : C0 × C0 × Ω → C0 × C0 be the random operator defined in 2.21.
Clearly, the random fixed points of P are solutions to (1.1). In order to apply theorem 2.18. we first show that N is completely
continuous. The proof will be given in several steps.
Step 1: P (·, ·, w) = (P1(·, ·, w), P2(·, ·, w)) is continuous.
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Let {(z1
n, z

2
n)} be a sequence such that (z1

n, z
2
n) → (z1, z2) ∈ C0 × C0 as n→ ∞. Then

|(P1(z
1
n(t, w), z

2
n(t, w), w))− P1(z

1(t, w), z2(t, w), w))|

≤
1

Γ(α1)

∫ b

0
(t− s)α1−1|f1(s, z̄

1
ns

+ x1
s, z̄

2
ns

+ x2
s, w)− f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)|ds.

Since fi is a continuous function, we have

∥P1(z
1
n(·, w), z2

n(·, w), w))− P1(z
1(·, w), z2(·, w), w))∥D

≤
bα1

Γ(α1 + 1)
∥f1(·, z̄1

n· + x1
· , z̄

2
n· + x2

· , w)− f1(·, z̄1
· + x1

· , z̄
2
· + x2

· , w)∥∞ → 0 as n→ ∞.

Similarly

∥P2(z
1
n(·, w), z2

n(·, w), w))− P2(z
1(·, w), z2(·, w), w))∥D

≤
bα1

Γ(α1 + 1)
∥f2(·, z̄1

n· + x1
· , z̄

2
n· + x2

· , w)− f2(·, z̄1
· + x1

· , z̄
2
· + x2

· , w)∥∞ → 0 as n→ ∞.

Thus P is continous.
Step 2: P maps bounded sets into bounded sets in C0.

Indeed, it is enough to show that for any η1, η2 > 0, there exists a positive constant ℓ = (ℓ1, ℓ2) such that for each
z1, z2 ∈ Bη = {z1, z2 ∈ C0 : ∥z1∥D ≤ η1, |z2∥D ≤ η2} one has ∥P (z1, z2)∥∞ ≤ (ℓ1, ℓ2). Let zi ∈ Bηi . Since fi is a
continuous function,Then for each t ∈ [0, b], we get

|P1(z
1(t, w), z2(t, w), w))|

≤
1

Γ(α1)

∫ b

0
(t− s)α1−1|f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)|ds

≤
1

Γ(α1)

∫ b

0
(t− s)α1−1

(
p1(s, w) + q1(s, w)∥z̄s + xs∥B + γ1(s, w)∥z̄s + xs∥B

)
ds

≤
bα1
∫ b

0 p1(s, w)ds

Γ(α1 + 1)
+
bα1
∫ b

0 q1(s, w)ds

Γ(α1 + 1)
η∗1 +

bα1
∫ b

0 γ1(s, w)ds

Γ(α1 + 1)
η∗2 =: ℓ1,

where
∥z̄is + xis∥B ≤ ∥z̄is∥B + ∥xis∥B ≤ Kbη

i +Kb∥ϕi(0)∥ +Mb∥ϕi∥B := η∗i ,

and
Mb = sup{|M(t)| : t ∈ [0, b]}.

Similarly, we have

|P2(z
1(t, w), z2(t, w), w))|

≤
bα2
∫ b

0 p2(s, w)ds

Γ(α2 + 1)
+
bα2
∫ b

0 q2(s, w)ds

Γ(α2 + 1)
η∗1 +

bα2
∫ b

0 γ2(s, w)ds

Γ(α2 + 1)
η∗2 =: ℓ2.

Step 3: P maps bounded sets into equicontinuous sets of C0.

Let t1, t2 ∈ [0, b], t1 < t2 and let Bη be a bounded set of C0 as in Step 2. Let z ∈ Bη . Then for each t ∈ [0, b], we
have

|P1(z
1(t2, w), z

2(t2, w), w))− P1(z
1(t1, w), z

2(t1, w), w))|
= 1

Γ(α1)

∣∣∣∫ t1
0 ((t2 − s)α1−1 − (t1 − s)α1−1)f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)ds

+ 1
Γ(α1)

∫ t2
t1

(t2 − s)α1−1f1(s, z̄
1
s + x1

s, z̄
2
s + x2

s, w)ds
∣∣∣

≤ ∥p1(w)∥∞+∥q1(w)∥∞η∗
1 +∥γ1(w)∥∞η∗

2
Γ(α1)

∫ t1
0 [(t1 − s)α−1 − (t2 − s)α1−1]ds

+
∥p1(w)∥∞+∥q1(w)∥∞η∗

1 +∥γ1(w)∥∞η∗
2

Γ(α1)

∫ t2
t1

(t2 − s)α1−1ds

≤ ∥p1(w)∥∞+∥q1(w)∥∞η∗
1 +∥γ1(w)∥∞η∗

2
Γ(α1+1)

(
t2 − t1)

α1 + t
α1
1 − t

α1
2

)
+

∥p1(w)∥∞+∥q1(w)∥∞η∗
1 +∥γ1(w)∥∞η∗

2
Γ(α1+1) (t2 − t1)

α1 .

Hence,
|P1(z

1(t2, w), z
2(t2, w), w))− P1(z

1(t1, w), z
2(t1, w), w))|

≤ ∥p1(w)∥∞+∥q1(w)∥∞η∗
1 +∥γ1(w)∥∞η∗

2
Γ(α1+1) (t2 − t1)

α1 ,

and
|P2(z

1(t2, w), z
2(t2, w), w))− P2(z

1(t1, w), z
2(t1, w), w))|

≤ ∥p2(w)∥∞+∥q2(w)∥∞η∗
1 +∥γ2(w)∥∞η∗

2
Γ(α2+1) (t2 − t1)

α2 .

The right-hand term tends to zero as |t2 − t1| → 0.
As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can conclude that P : C0 ×C0 −→ C0 ×C0
is continuous and completely continuous.

Step 4: (A priori bounds).

A(w) = {(z1, z2) ∈ C0 × C0 : (z1, z2) = λ(w)P1(z
1, z2), λ(w) ∈ (0, 1)},
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is bounded.

Let (z1, z2) ∈ C0 × C0 . Then z1 = λP1(z
1, z2) and z2 = λP2(z

1, z2) for some 0 < λ(w) < 1. Then for each
t ∈ [0, b] we have

z1(t, w) = λ(w)
( 1

Γ(α1)

∫ t

0
(t− s)α1−1f1(s, z̄

1
s + x1

s, z̄
2
s + x2

s, w)ds
)
.

Hence

|z1(t, w)| ≤
1

Γ(α1)

∫ t

0
(t− s)α1−1

(
q1(s, w)∥z̄1

s + x1
s∥B + γ1(s, w)∥z̄2

s + x2
s∥B

)
ds

+
bα∥p1(w)∥∞

Γ(α1 + 1)
. t ∈ [0, b].

But ∑2
i=1 ∥z̄is + xis∥B ≤

∑2
i=1

(
∥z̄is∥B + ∥xis∥B

)
≤
∑2

i=1

(
K(t) sup{|zi(s)| : 0 ≤ s ≤ t} +M(t)∥zi0∥B

+K(t) sup{|xi(s)| : 0 ≤ s ≤ t} +M(t)∥xi0∥B
)

≤
∑2

i=1

(
Kb sup{|zi(s)| : 0 ≤ s ≤ t} +Mb∥ϕi∥B +Kb|ϕi(0)|

)
≤
(
Kb sup{|z1(s, w)| + |z2(s, w)| : 0 ≤ s ≤ t}

+Mb(∥ϕ1(w)∥B + ∥ϕ2(w)∥B)
)
.

(2.3)

If we name W∗(t, w) the right hand side of (2.3), then we have

2∑
i=1

∥z̄is + xis∥B ≤
2∑

i=1

Wi(t, w) =W∗(t, w).

Therefore

|z1(t, w)| + |z2(t, w)| ≤
1

Γ(α∗)

∫ t

0
(t− s)α∗−1(q1(s, w) + q2(s, w))W1(s, w)ds

+
1

Γ(α∗)

∫ t

0
(t− s)α∗−1(γ1(s, w) + γ2(s, w))W2(s, w)ds

+
bα∗ (∥p1(w)∥∞ + ∥p2(w)∥∞)

Γ(α∗ + 1)

≤
2

Γ(α∗)

∫ t

0
(t− s)α∗−1q∗(s, w)W∗(s, w)ds +

bα∗∥p∗(w)∥∞
Γ(α∗ + 1)

, t ∈ [0, b],

where
∥p∗(w)∥∞ = max{∥p1(w)∥∞, ∥p2(w)∥∞}

and
∥q∗(w)∥∞ = max{∥q1(w)∥∞ + ∥q2(w)∥∞ , ∥γ1(w)∥∞ + ∥γ2(w)∥∞},
α∗ = max{α1, α2}, ∥γ∗(w)∥∞ = max{∥γ1(w)∥∞, ∥γ2(w)∥∞}.

Using the above inequality and the definition of W∗ we have that

W∗(t, w) ≤ Λ +
2Kb∥q∗(w)∥∞

Γ(α∗)

∫ t

0
(t− s)α∗−1W∗(s, w)ds, t ∈ [0, b],

where

Λ =Mb(∥ϕ1∥B + ∥ϕ2∥B) +
Kbb

α∗∥p∗(w)∥∞
Γ(α∗ + 1)

.

Then from Lemma 2.22, there exists K = K(α∗) such that we have

|W∗(t, w)| ≤ Λ +K(α∗)
2Kb∥q∗(w)∥∞

Γ(α∗)

∫ t

0
(t− s)α∗−1

Λds.

Therefore

∥W∗(w)∥∞ ≤ Λ +
2ΛK(α∗)bα∗Kb

Γ(α∗ + 1)
:= M̃.

Consequently

∥z1∥∞ ≤ M̃∥Iα∗q∗(w)∥∞ +
bα∗∥p∗(w)∥∞

Γ(α∗) + 1
:=M∗ and ∥z2∥∞ ≤M∗.

This shows that A is bounded.
As a consequence of Theorem 2.18 we conclude that N has a random fixed point w → ((x(·, w), y(·, w)) that is a solution
to (1.1).
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