Multiplicative generalized skew-derivations on ideals in semiprime rings

Wasim Ahmed and Muzibur Rahman Mozumder*
Communicated by Ayman Badawi
MSC 2010 Classifications: Primary 16N60; Secondary 16U80, 16W25.
Keywords and phrases: Semiprime ring, skew-derivation, multiplicative generalized skew-derivation, automorphism.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Muzibur Rahman Mozumder was very thankful to the DST-SERB (project MATRICS, File No. MTR/2022/000153) for their necessary support and facility.

Abstract

Our intention in this manuscript is to study the commutative structure of the semiprime rings \mathfrak{R} on appropriate subsets of it. We observe several algebraic identities in the presence of multiplicative generalized skew-derivation.

1 Introduction

Suppose \mathfrak{R} be a ring with associative properties. \mathfrak{Z} stands for the centre of \mathfrak{R}. The expression $\left[t_{1}, t_{2}\right]=t_{1} t_{2}-t_{2} t_{1}$ (resp. $t_{1} \circ t_{2}=t_{1} t_{2}+t_{2} t_{1}$) is stand for commutator (resp. anti-commutator). The ring \mathfrak{R} is known as prime ring if $\forall t_{1}, t_{2} \in \mathfrak{R}$, we have $t_{1} \Re t_{2}=(0) \Longrightarrow t_{1}=0$ or $t_{2}=0$ and is called semiprime ring if for all $t_{1} \in \mathfrak{R}, t_{1} \mathfrak{R} t_{1}=(0)$ implies $t_{1}=0$. An additive maps d is called derivation if $d\left(t_{1} t_{2}\right)=d\left(t_{1}\right) t_{2}+t_{1} d\left(t_{2}\right) \forall t_{1}, t_{2} \in \mathfrak{R}$, and if d is not necessarily additive then it is called multiplicative derivation, this concept was given by Daif [6]. The map \mathfrak{I}_{a} from \mathfrak{R} to \mathfrak{R} defined by $\mathfrak{I}_{a}\left(t_{1}\right)=\left[a, t_{1}\right]$ for $a \in \mathfrak{R}$ is known as an inner derivation of \mathfrak{R}. Let $\mathfrak{F}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a map defined by $\mathfrak{F}\left(t_{1} t_{2}\right)=\mathfrak{F}\left(t_{1}\right) t_{2}+t_{1} d\left(t_{2}\right) \forall t_{1}, t_{2} \in \mathfrak{R}$ is called generalized derivation associated with d, and if \mathfrak{F} is not necessarily additive then it is called multiplicative generalized derivation. For $a, b \in \mathfrak{R}$, an additive mapping \mathfrak{G} from \mathfrak{R} to \mathfrak{R} is known as generalized inner derivation if $\mathfrak{G}\left(t_{1}\right)=a t_{1}+t_{1} b$. It is easy to notice that for such a mapping $\mathfrak{G}, \mathfrak{G}\left(t_{1} t_{2}\right)=\mathfrak{G}\left(t_{1}\right) t_{2}+t_{1}\left[t_{2}, b\right]=\mathfrak{G}\left(t_{1}\right) t_{2}+t_{1} I_{b}\left(t_{2}\right) \forall t_{1}, t_{2} \in \mathfrak{R}$, generalized inner derivations and derivations are two examples of generalized derivations.

An additive mapping $d\left(t_{1} t_{2}\right)=d\left(t_{1}\right) \alpha\left(t_{2}\right)+t_{1} d\left(t_{2}\right)$ is term as left skew-derivation and $d\left(t_{1} t_{2}\right)=d\left(t_{1}\right) t_{2}+\alpha\left(t_{1}\right) d\left(t_{2}\right)$ is known as right skew-derivation, where α is an associated automorphism of d. If the derivation is both left as well as right skew-derivation, then d is called as skew-derivation. Since, d is derivation if $\alpha=1$ (identity automorphism). Similarly, we define generalized skew-derivation of \mathfrak{R}. An additive mapping \mathfrak{F} from \mathfrak{R} to \mathfrak{R} is said to be generalized skew-derivation if it is both left as well as right generalized skew-derivation i.e., $\mathfrak{F}\left(t_{1} t_{2}\right)=\mathfrak{F}\left(t_{1}\right) \alpha\left(t_{2}\right)+t_{1} d\left(t_{2}\right)=\mathfrak{F}\left(t_{1}\right) t_{2}+\alpha\left(t_{1}\right) d\left(t_{2}\right) \forall t_{1}, t_{2} \in \mathfrak{R}$, where α and d is associated automorphism and skew-derivation of \mathfrak{F}. A map \mathfrak{H} of \mathfrak{R} of the form $\mathfrak{H}(x)=a x+\alpha(x) b$ for all $a, b \in \Re$ and $\alpha \in \operatorname{Aut}(\Re)$ is called inner generalized skew-derivation. In particular, if $a=-b$, then \mathfrak{H} is called inner skew-derivation. In [4], Carini et al. studied that "when $F(u) G(u)=0$ for all $u \in f(R)$, where F and G are generalized skew-derivations of \mathfrak{R} associated to the same automorphism and then describe all possible forms of F and $G^{\prime \prime}$. In the same year, Carini et al. [5] investigated the situation that "when generalized skew-derivations F and G of \Re are cocommuting on $f(R)$, that is, $F(u) u-u G(u)=0$ for all $u \in f(R)$ and then obtain all possible forms of the maps F and $G^{\prime \prime}$.

In 2021, Sandhu et al. [8] has studied several algebraic identities on the presence of multiplicative generalized (α, α)-derivation of semiprime rings. They have proved "Let \mathfrak{R} be a semiprime ring, \mathfrak{I} be a nonzero ideal of \mathfrak{R} and α be an automorphism of \mathfrak{R}. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized (α, α)-derivation of \mathfrak{R} associated with nonzero (α, α)-derivation d and g respectively. If $\mathfrak{G}(x y) \pm \mathfrak{F}(x) \mathfrak{F}(y)=0 \forall x, y \in \mathfrak{I}$, then \mathfrak{R} contains a nonzero central ideal and d and g maps \mathfrak{R} into $\mathfrak{Z}(\mathfrak{R})^{\prime}$. In the present paper, we study the concept of multiplicative generalized-skew derivation. A mapping $\mathfrak{F}: \mathfrak{R} \rightarrow \mathfrak{R}$ (not necessarily additive) is called a multiplicative generalized skew-derivation of \mathfrak{R} associated with skew-derivation d from \mathfrak{R} to \mathfrak{R}, if $\mathfrak{F}(x y)=\mathfrak{F}(x) \alpha(y)+x d(y)=\mathfrak{F}(x) y+\alpha(x) d(y) \forall x, y \in \mathfrak{R}$, where α is an automorphism of \mathfrak{R}. Motivated by the result of Sandhu et al., we studied those several algebraic identities with multiplicative generalized skew-derivation on semiprime rings. Precisely, we have studied the following identities: $(i) \mathfrak{G}\left(x_{1} x_{2}\right) \pm \mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)=0,(i i) \mathfrak{G}\left(x_{1} x_{2}\right) \pm \mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right) \pm x_{1} x_{2}=$ $0,($ iii $) \mathfrak{F}\left(x_{1} x_{2}\right) \pm \mathfrak{G}\left(x_{1}\right) \mathfrak{G}\left(x_{2}\right) \pm x_{1} x_{2}=0$ for all $x, y \in \mathfrak{R}$ and many more.

2 PRELIMINARIES

Lemma 2.1. [1, Lemma 2.1] If \mathfrak{R} is a semiprime ring and \mathfrak{I} is an ideal of \mathfrak{R}, then \mathfrak{I} is a semiprime ring.

Lemma 2.2. [2, Theorem 3] Let $\mathfrak{\Re}$ be a semiprime ring and \mathfrak{U} be a nonzero left ideal of \mathfrak{R}. If \mathfrak{R} admits a derivation \mathfrak{D} which is nonzero on \mathfrak{U} and centralizing on \mathfrak{U}, then \mathfrak{R} contains a nonzero central ideal

Lemma 2.3. [7, Lemma 1.1.5] Let \mathfrak{R} be a semiprime ring and ρ be a right ideal of \mathfrak{R}. Then $\mathfrak{Z}(\rho) \subset \mathfrak{Z}(\mathfrak{R})$.

Lemma 2.4. [3, Lemma 1] Let \Re be a semiprime ring, \mathfrak{I} be a nonzero ideal of \Re and $a \in \mathfrak{I}$ and $b \in \mathfrak{R}$. If $a \mathfrak{I} b=(0)$, then $a b=b a=0$.

Lemma 2.5. Let \mathfrak{I} be an ideal of a semiprime ring \mathfrak{R} and d be a skew-derivation of \mathfrak{R} such that $d(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{R})$, then $d(\mathfrak{R}) \subset \mathfrak{Z}(\mathfrak{R})$.

Proof. From the hypothesis, we get

$$
\begin{equation*}
\left[r_{1}, d\left(x_{1}\right)\right]=0 \forall r_{1} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.1}
\end{equation*}
$$

Substituting x_{1} by $x_{1} r_{2} \forall r_{2} \in \mathfrak{R}$ in (2.1), we obtain

$$
\begin{equation*}
\left[r_{1}, d\left(x_{1}\right) \alpha\left(r_{2}\right)+x_{1} d\left(r_{2}\right)\right]=0 \forall r_{1}, r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.2}
\end{equation*}
$$

On simplifying the above relation and using (2.1) in it, then we have

$$
\begin{equation*}
d\left(x_{1}\right)\left[r_{1}, \alpha\left(r_{2}\right)\right]+x_{1}\left[r_{1}, d\left(r_{2}\right)\right]+\left[r_{1}, x_{1}\right] d\left(r_{2}\right)=0 \tag{2.3}
\end{equation*}
$$

for all $r_{1}, r_{2} \in \mathfrak{R}$ and $x_{1} \in \mathfrak{I}$. In (2.3), putting $r_{1}=\alpha\left(r_{2}\right)$ then above relation yields that

$$
\begin{equation*}
x_{1}\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right]+\left[\alpha\left(r_{2}\right), x_{1}\right] d\left(r_{2}\right)=0 \forall r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} . \tag{2.4}
\end{equation*}
$$

Replacing x_{1} by $d\left(r_{2}\right) x_{1}$ in (2.4) and using it, we find that

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right] x_{1} d\left(r_{2}\right)=0 \forall r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.5}
\end{equation*}
$$

Substituting x_{1} by $x_{1} \alpha\left(r_{2}\right)$ in (2.5), we have

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right] x_{1} \alpha\left(r_{2}\right) d\left(r_{2}\right)=0 \forall r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.6}
\end{equation*}
$$

Multiplying (2.5) by $\alpha\left(r_{2}\right)$ from right, it yields that

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right] x_{1} d\left(r_{2}\right) \alpha\left(r_{2}\right)=0 \forall r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), we obtain

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right] x_{1}\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right]=0 \forall r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} . \tag{2.8}
\end{equation*}
$$

Above relation implies that $\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right] \mathfrak{J}\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right]=(0) \forall r_{2} \in \mathfrak{R}$. Using Lemma 2.1, we find that

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{2}\right)\right]=0 \forall r_{2} \in \mathfrak{R} . \tag{2.9}
\end{equation*}
$$

Using (2.9) in (2.4), we obtain

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), x_{1}\right] d\left(r_{2}\right)=0 \forall r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.10}
\end{equation*}
$$

Taking $d\left(r_{1}\right) x_{1}$ in place of x_{1} in (2.10) and using it, we arrive at

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right] x_{1} d\left(r_{2}\right)=0 \forall r_{1}, r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.11}
\end{equation*}
$$

Linearizing (2.11), taking $r_{2}+r_{1}$ for r_{2}, then we have

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right] x_{1} d\left(r_{1}\right)+\left[\alpha\left(r_{1}\right), d\left(r_{1}\right)\right] x_{1} d\left(r_{2}\right)=0 \tag{2.12}
\end{equation*}
$$

for all $r_{1}, r_{2} \in \mathfrak{R}$ and $x_{1} \in \mathfrak{I}$. Applying (2.9) in last relation, it yields that

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right] x_{1} d\left(r_{1}\right)=0 \forall r_{1}, r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.13}
\end{equation*}
$$

Replacing x_{1} by $x_{1} \alpha\left(r_{2}\right)$ in (2.13), we see that

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right] x_{1} \alpha\left(r_{2}\right) d\left(r_{1}\right)=0 \forall r_{1}, r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} . \tag{2.14}
\end{equation*}
$$

Multiplying (2.13) from right by $\alpha\left(r_{2}\right)$, we get

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right] x_{1} d\left(r_{1}\right) \alpha\left(r_{2}\right)=0 \forall r_{1}, r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} . \tag{2.15}
\end{equation*}
$$

On combining (2.14) and (2.15), we find that

$$
\begin{equation*}
\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right] x_{1}\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right]=0 \forall r_{1}, r_{2} \in \mathfrak{R} \text { and } x_{1} \in \mathfrak{I} \tag{2.16}
\end{equation*}
$$

Using Lemma 2.1, this implies that $\left[\alpha\left(r_{2}\right), d\left(r_{1}\right)\right]=0 \forall r_{1}, r_{2} \in \Re$. Since, α is an automorphism that means $d(\mathfrak{R}) \subset \mathfrak{J}(\mathfrak{R})$, we get the result.

3 MAIN RESULTS

Theorem 3.1. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\mathfrak{G}\left(x_{1} x_{2}\right) \pm \mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$, then \mathfrak{R} contains a nonzero central ideal and f and g maps \mathfrak{R} into $\mathfrak{Z}(\mathfrak{R})$.

Proof. From the hypothesis, first we consider that

$$
\begin{equation*}
\mathfrak{G}\left(x_{1} x_{2}\right)+\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.1}
\end{equation*}
$$

Replacing x_{2} by $x_{2} r_{1}$ in (3.1) for all $r_{1} \in \mathfrak{R}$, we get

$$
\begin{equation*}
\mathfrak{G}\left(x_{1} x_{2}\right) \alpha\left(r_{1}\right)+x_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right) \alpha\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) x_{2} f\left(r_{1}\right)=0 \tag{3.2}
\end{equation*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Using the hypothesis in the last relation, we obtain

$$
\begin{equation*}
x_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) x_{2} f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.3}
\end{equation*}
$$

Substituting x_{1} by $x_{1} r_{1}$ in (3.3), we have

$$
\begin{equation*}
x_{1} r_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) r_{1} x_{2} f\left(r_{1}\right)+\alpha\left(x_{1}\right) f\left(r_{1}\right) x_{2} f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.4}
\end{equation*}
$$

Again, substituting x_{2} by $r_{1} x_{2}$ in (3.3), we get

$$
\begin{equation*}
x_{1} r_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) r_{1} x_{2} f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.5}
\end{equation*}
$$

On combining (3.4) and (3.5), we find that

$$
\begin{equation*}
\alpha\left(x_{1}\right) f\left(r_{1}\right) x_{2} f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.6}
\end{equation*}
$$

Replacing x_{2} by $x_{2} \alpha\left(x_{1}\right)$ in (3.6), we see that

$$
\begin{equation*}
\alpha\left(x_{1}\right) f\left(r_{1}\right) x_{2} \alpha\left(x_{1}\right) f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.7}
\end{equation*}
$$

Since, \mathfrak{I} is semiprime ring due to Lemma 2.1, we have

$$
\begin{equation*}
\alpha\left(x_{1}\right) f\left(r_{1}\right)=0 \forall x_{1} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.8}
\end{equation*}
$$

Putting $x_{1} x_{2}$ for x_{1} in (3.8), we obtain

$$
\begin{equation*}
\alpha\left(x_{1}\right) \alpha\left(x_{2}\right) f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.9}
\end{equation*}
$$

Since, \mathfrak{I} is an ideal of \mathfrak{R}. So is $\alpha(\mathfrak{I})$. In view of Lemma 2.4, we get $\alpha\left(x_{1}\right) f\left(r_{1}\right)=f\left(r_{1}\right) \alpha\left(x_{1}\right)=$ $0 \forall x_{1} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. This implies that

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), f\left(r_{1}\right)\right]=0 \forall x_{1} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} \tag{3.10}
\end{equation*}
$$

Particularly, (3.10) implies that $\left[x_{1}, \phi\left(x_{1}\right)\right]=0 \forall x_{1} \in \mathfrak{I}$, where $\phi=\alpha^{-1} f$ is an ordinary derivation of \mathfrak{R}. Due to Lemma 2.2, \Re have a nonzero central ideal of \mathfrak{R}. Moreover, from (3.10), we get $f\left(r_{1}\right) \in \mathfrak{Z}(\mathfrak{I}) \forall r_{1} \in \mathfrak{R}$. Using Lemma 2.3, f maps \mathfrak{R} into $\mathfrak{Z}(\mathfrak{R})$.

Now, replacing x_{2} by $x_{2} \alpha\left(x_{3}\right) \forall x_{3} \in \mathfrak{I}$ in (3.3), we have

$$
\begin{equation*}
x_{1} x_{2} \alpha\left(x_{3}\right) g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) x_{2} \alpha\left(x_{3}\right) f\left(r_{1}\right)=0 \tag{3.11}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Using $\alpha\left(x_{1}\right) f\left(r_{1}\right)=0$ in (3.11), we obtain

$$
\begin{equation*}
x_{1} x_{2} \alpha\left(x_{3}\right) g\left(r_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} \tag{3.12}
\end{equation*}
$$

Substituting x_{1} by $x_{2} \alpha\left(x_{3}\right) g\left(r_{1}\right) x_{1}$ in (3.12), it yields that

$$
\begin{equation*}
x_{2} \alpha\left(x_{3}\right) g\left(r_{1}\right) x_{1} x_{2} \alpha\left(x_{3}\right) g\left(r_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.13}
\end{equation*}
$$

Since, for $x_{1} \in \mathfrak{I}$ and by Lemma 2.1, \mathfrak{I} is semiprime ring. From the last relation we have $x_{2} \alpha\left(x_{3}\right) g\left(r_{1}\right)=0 \forall x_{2}, x_{3} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Replacing x_{2} by $\alpha\left(x_{3}\right) g\left(r_{1}\right) x_{2}$ and by using the previous argument we get $\alpha\left(x_{3}\right) g\left(r_{1}\right)=0 \forall x_{3} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. This relation is same as (3.9) but in place of f there is g. So, using similar argument we conclude the result.

Similarly, we will prove the case $\mathfrak{G}\left(x_{1} x_{2}\right)-\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$.
Theorem 3.2. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\mathfrak{G}\left(x_{1} x_{2}\right) \pm \mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right) \pm x_{1} x_{2}=0 \forall x_{1}, x_{2} \in \mathfrak{I}$, then \mathfrak{R} contains a nonzero central ideal and f maps \mathfrak{R} into $\mathfrak{Z}(\mathfrak{R})$.

Proof. We consider that

$$
\begin{equation*}
\mathfrak{G}\left(x_{1} x_{2}\right)+\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)+x_{1} x_{2}=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.14}
\end{equation*}
$$

Replacing x_{2} by $x_{2} r_{1}$ in (3.14), we obtain

$$
\begin{align*}
& \mathfrak{G}\left(x_{1} x_{2}\right) \alpha\left(r_{1}\right)+x_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right) \alpha\left(r_{1}\right) \\
& \quad+\mathfrak{F}\left(x_{1}\right) x_{2} f\left(r_{1}\right)+x_{1} x_{2} r_{1}=0 \tag{3.15}
\end{align*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Using (3.14) in (3.15), we have

$$
\begin{equation*}
x_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) x_{2} f\left(r_{1}\right)+x_{1} x_{2} r_{1}-x_{1} x_{2} \alpha\left(r_{1}\right)=0 \tag{3.16}
\end{equation*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Substituting x_{1} by $x_{1} r_{1}$ in (3.16), we get

$$
\begin{align*}
& x_{1} r_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) r_{1} x_{2} f\left(r_{1}\right)+\alpha\left(x_{1}\right) f\left(r_{1}\right) x_{2} f\left(r_{1}\right) \\
& \quad+x_{1} r_{1} x_{2} r_{1}-x_{1} r_{1} x_{2} \alpha\left(r_{1}\right)=0 \tag{3.17}
\end{align*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Putting $r_{1} x_{2}$ for x_{2} in (3.16), we find that

$$
\begin{equation*}
x_{1} r_{1} x_{2} g\left(r_{1}\right)+\mathfrak{F}\left(x_{1}\right) r_{1} x_{2} f\left(r_{1}\right)+x_{1} r_{1} x_{2} r_{1}-x_{1} r_{1} x_{2} \alpha\left(r_{1}\right)=0 \tag{3.18}
\end{equation*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in \mathfrak{R}$. Combining (3.17) and (3.18), its yields that

$$
\begin{equation*}
\alpha\left(x_{1}\right) f\left(r_{1}\right) x_{2} f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.19}
\end{equation*}
$$

Replacing x_{2} by $x_{2} \alpha\left(x_{1}\right)$ in (3.19), we have $\alpha\left(x_{1}\right) f\left(r_{1}\right) x_{2} \alpha\left(x_{1}\right) f\left(r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in$ \mathfrak{R}. By Lemma 2.1, \mathfrak{I} is semiprime ring, so from previous equation we get $\alpha\left(x_{1}\right) f\left(r_{1}\right)=0 \forall x_{1} \in$ \mathfrak{I} and $r_{1} \in \mathfrak{R}$. Previous equation is same as (3.8), by using same technique we get the result.

Using similar argument, we arrives at $\mathfrak{G}\left(x_{1} x_{2}\right)-\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)-x_{1} x_{2}=0, \mathfrak{G}\left(x_{1} x_{2}\right)+\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)-$ $x_{1} x_{2}=0$ and $\mathfrak{G}\left(x_{1} x_{2}\right)-\mathfrak{F}\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)+x_{1} x_{2}=0 \forall x_{1}, x_{2} \in \mathfrak{I}$.

Theorem 3.3. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\mathfrak{F}\left(x_{1} x_{2}\right) \pm \mathfrak{G}\left(x_{1}\right) \mathfrak{G}\left(x_{2}\right) \pm x_{1} x_{2}=0 \forall x_{1}, x_{2} \in \mathfrak{I}$, then \mathfrak{R} contains a nonzero central ideal and g maps \mathfrak{R} into $\mathfrak{Z}(\mathfrak{R})$.

Proof. By using similar argument as we have done in previous theorem, we get our conclusion.

Theorem 3.4. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\mathfrak{F}\left(x_{1}\right) x_{2} \pm x_{2} \mathfrak{G}\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$, then \mathfrak{F} and \mathfrak{G} maps \mathfrak{I} into $\mathfrak{Z}(\mathfrak{R})$. Moreover, $f=-g$.

Proof. From the hypothesis, we have

$$
\begin{equation*}
\mathfrak{F}\left(x_{1}\right) x_{2}+x_{2} \mathfrak{G}\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.20}
\end{equation*}
$$

Replacing x_{1} by $x_{1} x_{3}$ in (3.20), we obtain

$$
\begin{gather*}
\mathfrak{F}\left(x_{1}\right) \alpha\left(x_{3}\right) x_{2}+x_{1} f\left(x_{3}\right) x_{2}+x_{2} \mathfrak{G}\left(x_{1}\right) \alpha\left(x_{3}\right) \\
+x_{2} x_{1} g\left(x_{3}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.21}
\end{gather*}
$$

Substituting x_{2} by $\alpha\left(x_{3}\right) x_{2}$ in (3.20), we have

$$
\begin{equation*}
\mathfrak{F}\left(x_{1}\right) \alpha\left(x_{3}\right) x_{2}+\alpha\left(x_{3}\right) x_{2} \mathfrak{G}\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.22}
\end{equation*}
$$

On combining (3.21) and (3.22), we get

$$
\begin{equation*}
x_{1} f\left(x_{3}\right) x_{2}+x_{2} \mathfrak{G}\left(x_{1}\right) \alpha\left(x_{3}\right)+x_{2} x_{1} g\left(x_{3}\right)-\alpha\left(x_{3}\right) x_{2} \mathfrak{G}\left(x_{1}\right)=0 \tag{3.23}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. Using (3.20) in (3.23), we find that

$$
\begin{equation*}
x_{1} f\left(x_{3}\right) x_{2}-\mathfrak{F}\left(x_{1}\right) x_{2} \alpha\left(x_{3}\right)+x_{2} x_{1} g\left(x_{3}\right)-\alpha\left(x_{3}\right) x_{2} \mathfrak{G}\left(x_{1}\right)=0 \tag{3.24}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. Subtracting (3.24) from (3.21), yields that

$$
\begin{equation*}
\mathfrak{F}\left(x_{1}\right) \alpha\left(x_{3}\right) x_{2}+\left(\mathfrak{F}\left(x_{1}\right) x_{2}+x_{2} \mathfrak{G}\left(x_{1}\right)\right) \alpha\left(x_{3}\right)+\alpha\left(x_{3}\right) x_{2} \mathfrak{G}\left(x_{1}\right) \tag{3.25}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. Due to hypothesis, last relation yields that

$$
\begin{equation*}
\mathfrak{F}\left(x_{1}\right) \alpha\left(x_{3}\right) x_{2}-\alpha\left(x_{3}\right) \mathfrak{F}\left(x_{1}\right) x_{2}=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.26}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left[\mathfrak{F}\left(x_{1}\right), \alpha\left(x_{3}\right)\right] x_{2}=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.27}
\end{equation*}
$$

Since, \mathfrak{I} is semiprime ring by Lemma 2.1. So, from 3.27, we have $\left[\mathfrak{F}\left(x_{1}\right), \alpha\left(x_{3}\right)\right]=0$ for all $x_{1}, x_{3} \in \mathfrak{I}$. That is $\mathfrak{F}(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{I})$, from Lemma 2.3 we have $\mathfrak{F}(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{R})$.

Now, multiplying (3.20) by $\alpha\left(x_{3}\right)$ from right, we have

$$
\begin{equation*}
\mathfrak{F}\left(x_{1}\right) x_{2} \alpha\left(x_{3}\right)+x_{2} \mathfrak{G}\left(x_{1}\right) \alpha\left(x_{3}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.28}
\end{equation*}
$$

Substituting x_{2} by $x_{2} \alpha\left(x_{3}\right)$ in (3.20), we obtain

$$
\begin{equation*}
\mathfrak{F}\left(x_{1}\right) x_{2} \alpha\left(x_{3}\right)+x_{2} \alpha\left(x_{3}\right) \mathfrak{G}\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.29}
\end{equation*}
$$

Subtracting (3.29) from (3.28), we get

$$
\begin{equation*}
x_{2}\left(\mathfrak{G}\left(x_{1}\right) \alpha\left(x_{3}\right)-\alpha\left(x_{3}\right) \mathfrak{G}\left(x_{1}\right)\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.30}
\end{equation*}
$$

That is

$$
\begin{equation*}
x_{2}\left[\mathfrak{G}\left(x_{1}\right), \alpha\left(x_{3}\right)\right]=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.31}
\end{equation*}
$$

Using the similar argument after (3.27), we get $\mathfrak{G}(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{R})$.
Since, $\mathfrak{F}(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{R})$, our hypothesis becomes

$$
\begin{equation*}
x_{2} \mathfrak{F}\left(x_{1}\right)+x_{2} \mathfrak{G}\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.32}
\end{equation*}
$$

This implies that

$$
\begin{gather*}
x_{2}\left(\mathfrak{F}\left(x_{1}\right)+\mathfrak{G}\left(x_{1}\right)\right)=0 \tag{3.33}\\
\text { or } x_{2}\left((\mathfrak{F}+\mathfrak{G})\left(x_{1}\right)\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} .
\end{gather*}
$$

Replacing x_{1} by $x_{1} r_{1} \forall r_{1} \in \mathfrak{R}$ in (3.33) and using the hypothesis, we have

$$
\begin{equation*}
x_{2} x_{1}\left((f+g)\left(r_{1}\right)\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} \tag{3.34}
\end{equation*}
$$

Substituting x_{2} by $x_{1}\left((f+g)\left(r_{1}\right)\right) x_{2}$ in (3.34), we see that

$$
\begin{equation*}
x_{1}\left((f+g)\left(r_{1}\right)\right) x_{2} x_{1}\left((f+g)\left(r_{1}\right)\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.35}
\end{equation*}
$$

Since, \mathfrak{I} is semiprime ring by Lemma 2.1, from last relation we obtain $x_{1}\left((f+g)\left(r_{1}\right)\right)=0$. Again, replacing x_{1} by $\left((f+g)\left(r_{1}\right)\right) x_{1}$ in previous equation and using similar argument we obtain $(f+g)\left(r_{1}\right)=0$. That is, for all $r_{1} \in \mathfrak{R}$ we get $f=-g$ on \mathfrak{R}.

In a similar way we can prove the case $\mathfrak{F}\left(x_{1}\right) x_{2}-x_{2} \mathfrak{G}\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$.
Theorem 3.5. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\mathfrak{F}\left(x_{1} x_{2}\right) \pm \mathfrak{G}\left(x_{1} x_{2}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$, then $f \pm g$ maps \mathfrak{R} into $\mathfrak{Z}(\mathfrak{R})$ and \mathfrak{R} contains a nonzero central ideal.

Proof. From the hypothesis $\mathfrak{F}\left(x_{1} x_{2}\right) \pm \mathfrak{G}\left(x_{1} x_{2}\right)=0$ can be written as $(\mathfrak{F} \pm \mathfrak{G})\left(x_{1} x_{2}\right)=$ $0 \forall x_{1}, x_{2} \in \mathfrak{I}$. Since sum(difference) of two multiplicative generalized skew-derivation of \mathfrak{R} is again a multiplicative generalized skew-derivation of \mathfrak{R}. We assume $\mathfrak{F} \pm \mathfrak{G}=\mathfrak{H}$, then our hypothesis becomes $\mathfrak{H}\left(x_{1} x_{2}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$ which is a special case of Theorem 3.1 where we consider $\mathfrak{F}=0$. Hence, we arrives at the result.

Theorem 3.6. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\mathfrak{F}\left(x_{1} x_{2}\right) \pm \mathfrak{G}\left(x_{2} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$, then f and g is commuting on \mathfrak{I}.

Proof. Assuming that

$$
\begin{equation*}
\mathfrak{F}\left(x_{1} x_{2}\right)+\mathfrak{G}\left(x_{2} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.36}
\end{equation*}
$$

Replacing x_{1} by $x_{1} r_{1}$ in (3.36) $\forall r_{1} \in \mathfrak{R}$, we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{1} r_{1} x_{2}\right)+\mathfrak{G}\left(x_{2} x_{1} r_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.37}
\end{equation*}
$$

Substituting x_{2} by $r_{1} x_{2}$ in (3.36), we have

$$
\begin{equation*}
\mathfrak{F}\left(x_{1} r_{1} x_{2}\right)+\mathfrak{G}\left(r_{1} x_{2} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.38}
\end{equation*}
$$

On comparing (3.37) and (3.38), we find that

$$
\begin{equation*}
\mathfrak{G}\left(x_{2} x_{1} r_{1}\right)=\mathfrak{G}\left(r_{1} x_{2} x_{1}\right) \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.39}
\end{equation*}
$$

Putting $x_{2} x_{3}$ for x_{2} in (3.36) and on simplifying, we see that

$$
\begin{align*}
& \mathfrak{F}\left(x_{1} x_{2}\right) \alpha\left(x_{3}\right)+x_{1} x_{2} f\left(x_{3}\right)+\mathfrak{G}\left(x_{2} x_{3}\right) \alpha\left(x_{1}\right) \\
& \quad+x_{2} x_{3} g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.40}
\end{align*}
$$

Using the hypothesis in (3.40), yields that

$$
\begin{align*}
& -\mathfrak{G}\left(x_{2} x_{1}\right) \alpha\left(x_{3}\right)+x_{1} x_{2} f\left(x_{3}\right)+\mathfrak{G}\left(x_{2} x_{3}\right) \alpha\left(x_{1}\right) \\
& \quad+x_{2} x_{3} g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.41}
\end{align*}
$$

Replacing x_{1} by $x_{1} r_{2}$ for all $r_{2} \in \mathfrak{R}$ in (3.41) and on solving, we arrives at

$$
\begin{align*}
& -\mathfrak{G}\left(x_{2} x_{1} r_{2}\right) \alpha\left(x_{3}\right)+x_{1} r_{2} x_{2} f\left(x_{3}\right)+\mathfrak{G}\left(x_{2} x_{3}\right) \alpha\left(x_{1} r_{2}\right) \\
& \quad+x_{2} x_{3} g\left(x_{1} r_{2}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{2} \in \mathfrak{R} . \tag{3.42}
\end{align*}
$$

Substituting x_{2} by $r_{2} x_{2} \forall r_{2} \in \mathfrak{R}$ in (3.41) and on solving, we get

$$
\begin{align*}
& -\mathfrak{G}\left(r_{2} x_{2} x_{1}\right) \alpha\left(x_{3}\right)+x_{1} r_{2} x_{2} f\left(x_{3}\right)+\mathfrak{G}\left(r_{2} x_{2} x_{3}\right) \alpha\left(x_{1}\right) \\
& \quad+r_{2} x_{2} x_{3} g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{2} \in \mathfrak{R} . \tag{3.43}
\end{align*}
$$

On comparing (3.42) and (3.43) and by using (3.39), we obtain

$$
\begin{align*}
& \mathfrak{G}\left(x_{2} x_{3}\right) \alpha\left(x_{1} r_{2}\right)+x_{2} x_{3} g\left(x_{1} r_{2}\right)-\mathfrak{G}\left(x_{2} x_{3} r_{2}\right) \alpha\left(x_{1}\right) \\
& -r_{2} x_{2} x_{3} g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{2} \in \mathfrak{R} . \tag{3.44}
\end{align*}
$$

This implies that

$$
\begin{align*}
& \mathfrak{G}\left(x_{2} x_{3}\right) \alpha\left(x_{1}\right) \alpha\left(r_{2}\right)+x_{2} x_{3} g\left(x_{1}\right) \alpha\left(r_{2}\right)+x_{2} x_{3} x_{1} g\left(r_{2}\right) \\
- & \mathfrak{G}\left(x_{2} x_{3}\right) \alpha\left(r_{2}\right) \alpha\left(x_{1}\right)-x_{2} x_{3} g\left(r_{2}\right) \alpha\left(x_{1}\right)-r_{2} x_{2} x_{3} g\left(x_{1}\right)=0 \tag{3.45}
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3} \in \mathfrak{I}$ and $r_{2} \in \mathfrak{R}$. In particular, for $r_{2}=x_{1}$ in (3.45), we get

$$
\begin{equation*}
x_{2} x_{3} x_{1} g\left(x_{1}\right)-x_{1} x_{2} x_{3} g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.46}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left[x_{2} x_{3}, x_{1}\right] g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \tag{3.47}
\end{equation*}
$$

Substituting x_{2} by $r_{1} x_{2} \forall r_{1} \in \mathfrak{R}$ in (3.47) and using it, we have

$$
\begin{equation*}
\left[r_{1}, x_{1}\right] x_{2} x_{3} g\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} \tag{3.48}
\end{equation*}
$$

for all $x_{3} \in \mathfrak{I}$ and using Lemma 2.4, we obtain

$$
\begin{equation*}
\left[r_{1}, x_{1}\right] x_{2} g\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.49}
\end{equation*}
$$

Taking $r_{1}=g\left(x_{1}\right)$ and $x_{2}=x_{2} x_{1}$ in (3.49), we find that

$$
\begin{equation*}
\left[g\left(x_{1}\right), x_{1}\right] x_{2} x_{1} g\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.50}
\end{equation*}
$$

In (3.49), we replace r_{1} by $g\left(x_{1}\right)$ and post multiply by x_{1}, we see that

$$
\begin{equation*}
\left[g\left(x_{1}\right), x_{1}\right] x_{2} g\left(x_{1}\right) x_{1}=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.51}
\end{equation*}
$$

From (3.50) and (3.51), we arrives at $\left[g\left(x_{1}\right), x_{1}\right] x_{2}\left[g\left(x_{1}\right), x_{1}\right]=0 \forall x_{1}, x_{2} \in \mathfrak{I}$. By Lemma 2.1, we conclude that $\left[g\left(x_{1}\right), x_{1}\right]=0 \forall x_{1} \in \mathfrak{I}$. This implies, g is commuting on \mathfrak{I}.

Replacing x_{2} by $x_{2} r_{1}$ for all $r_{1} \in \mathfrak{R}$ in (3.36), we get

$$
\begin{equation*}
\mathfrak{F}\left(x_{1} x_{2} r_{1}\right)+\mathfrak{G}\left(x_{2} r_{1} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.52}
\end{equation*}
$$

Substituting x_{1} by $r_{1} x_{1}$ in (3.36), we obtain

$$
\begin{equation*}
\mathfrak{F}\left(r_{1} x_{1} x_{2}\right)+\mathfrak{G}\left(x_{2} r_{1} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.53}
\end{equation*}
$$

On combining (3.52) and (3.53), we have

$$
\begin{equation*}
\mathfrak{F}\left(r_{1} x_{1} x_{2}\right)=\mathfrak{F}\left(x_{1} x_{2} r_{1}\right) \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.54}
\end{equation*}
$$

This relation has already existed above in this prove for \mathfrak{G} after interchanging the role of x_{1} and x_{2} in (3.39). So, by following same step we arrives at conclusion. That is, we get f is commuting on \mathfrak{I}.

In the similar way we can prove the case $\mathfrak{F}\left(x_{1} x_{2}\right)+\mathfrak{G}\left(x_{2} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I}$.
Theorem 3.7. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\alpha\left(x_{1}\right) \circ \mathfrak{F}\left(x_{2}\right) \pm \mathfrak{G}\left(x_{2} x_{1}\right)=0$, then f maps \mathfrak{I} into $\mathfrak{Z}(\mathfrak{R})$ and \mathfrak{R} contains a nonzero central ideal.

Proof. Let us assume that

$$
\begin{equation*}
\alpha\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)+\mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right)+\mathfrak{G}\left(x_{2} x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.55}
\end{equation*}
$$

Replacing x_{2} by $x_{2} x_{1}$ in (3.55), we get

$$
\begin{align*}
& \alpha\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right)+\alpha\left(x_{1}\right) x_{2} f\left(x_{1}\right)+\mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right) \alpha\left(x_{1}\right) \\
& +x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)+\mathfrak{G}\left(x_{2} x_{1}\right) \alpha\left(x_{1}\right)+x_{2} x_{1} g\left(x_{1}\right)=0 \tag{3.56}
\end{align*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$. Using (3.55) in (3.56), we have

$$
\begin{equation*}
\alpha\left(x_{1}\right) x_{2} f\left(x_{1}\right)+x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)+x_{2} x_{1} g\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.57}
\end{equation*}
$$

Substituting x_{2} by $r_{1} x_{2} \forall r_{1} \in \mathfrak{R}$ in (3.57), we obtain

$$
\begin{equation*}
\alpha\left(x_{1}\right) r_{1} x_{2} f\left(x_{1}\right)+r_{1} x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)+r_{1} x_{2} x_{1} g\left(x_{1}\right)=0 \tag{3.58}
\end{equation*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$ and $r_{1} \in \Re$. Pre-multiplying (3.57) by r_{1}, we find that

$$
\begin{equation*}
r_{1} \alpha\left(x_{1}\right) x_{2} f\left(x_{1}\right)+r_{1} x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)+r_{1} x_{2} x_{1} g\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \Im . \tag{3.59}
\end{equation*}
$$

Subtracting (3.59) from (3.58), we see that

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), r_{1}\right] x_{2} f\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.60}
\end{equation*}
$$

Replacing x_{2} by $r_{2} x_{2} \forall r_{2} \in \mathfrak{R}$ in (3.60), we find that

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), r_{1}\right] r_{2} x_{2} f\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1}, r_{2} \in \mathfrak{R} . \tag{3.61}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), r_{1}\right] \Re \Im f\left(x_{1}\right)=(0) \forall x_{1} \in \mathfrak{I} . \tag{3.62}
\end{equation*}
$$

Since \mathfrak{R} contains a family of prime ideals say \mathfrak{S} such that $\cap \mathfrak{P}_{\lambda}=(0)$. Let \mathfrak{P} be a member of this family and for all $x_{1} \in \mathfrak{I}$, from (3.62), we have

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), r_{1}\right] \subset \mathfrak{P} \text { or } \mathfrak{I} f\left(x_{1}\right) \subset \mathfrak{P} . \tag{3.63}
\end{equation*}
$$

Let $\mathfrak{A}=\left\{x_{1} \in \mathfrak{I}:\left[\alpha\left(x_{1}\right), r_{1}\right] \subset \mathfrak{P}\right\}$ and $\mathfrak{B}=\left\{x_{1} \in \mathfrak{I}: \mathfrak{I} f\left(x_{1}\right) \subset \mathfrak{P}\right\}$, where \mathfrak{A} and \mathfrak{B} are additive subgroups of \mathfrak{R} and also $\mathfrak{A} \cup \mathfrak{B}=\mathfrak{I}$. Due to Brauer's trick we arrives at

$$
\begin{equation*}
[\alpha(\mathfrak{I}), \mathfrak{R}] \subset \mathfrak{P} \text { or } \mathfrak{I} f(\mathfrak{I}) \subset \mathfrak{P} . \tag{3.64}
\end{equation*}
$$

Considering these cases together, we get $[\alpha(\mathfrak{I}), \mathfrak{R}] \mathfrak{I} f(\mathfrak{I}) \subset \cap \mathfrak{P}_{\lambda}$. That is

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), r_{1}\right] x_{2} f\left(x_{3}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} \tag{3.65}
\end{equation*}
$$

Taking $r_{1}=f\left(x_{3}\right)$ and $x_{2}=x_{2} \alpha\left(x_{1}\right)$ in (3.65), we find that

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), f\left(x_{3}\right)\right] x_{2} \alpha\left(x_{1}\right) f\left(x_{3}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} \tag{3.66}
\end{equation*}
$$

In (3.65), we replace r_{1} by $f\left(x_{3}\right)$ and post-multiply by $\alpha\left(x_{1}\right)$, we see that

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), f\left(x_{3}\right)\right] x_{2} f\left(x_{3}\right) \alpha\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I} . \tag{3.67}
\end{equation*}
$$

Subtracting (3.67) and (3.66), we arrives at $\left[\alpha\left(x_{1}\right), f\left(x_{3}\right)\right] x_{2}\left[\alpha\left(x_{1}\right), f\left(x_{3}\right)\right]=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{I}$. By Lemma 2.1, we conclude that $\left[\alpha\left(x_{1}\right), f\left(x_{3}\right)\right]=0 \forall x_{1}, x_{3} \in \mathfrak{I}$. That is $f(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{I})$, by Lemma 2.3 we conclude that $f(\mathfrak{I}) \subset \mathfrak{Z}(\mathfrak{R})$ i.e., f map \mathfrak{I} into $\mathfrak{Z}(\mathfrak{R})$.

In particular, $\left[\alpha\left(x_{1}\right), f\left(x_{3}\right)\right]=0 \forall x_{1}, x_{3} \in \mathfrak{I}$ implies that $\left[x_{1}, \phi\left(x_{1}\right)\right]=0 \forall x_{1} \in \mathfrak{I}$, where $\phi=\alpha^{-1} f$ is an ordinary derivation of \mathfrak{R}. Due to Lemma $2.2, \mathfrak{R}$ have a nonzero central ideal of \mathfrak{R}.

In the similar way we can prove the case $\alpha\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)+\mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right)-\mathfrak{G}\left(x_{2} x_{1}\right)=0 \forall x_{1}, x_{2} \in$ I.

Theorem 3.8. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\left[\alpha\left(x_{1}\right), \mathfrak{F}\left(x_{2}\right)\right] \pm \mathfrak{G}\left(x_{2} x_{1}\right)=0$, then f maps \mathfrak{I} into $\mathfrak{Z}(\mathfrak{R})$ and \mathfrak{R} contains a nonzero central ideal.

Proof. Implications of similar steps as in above theorem with necessary changes, we get the result.

Theorem 3.9. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\alpha\left(x_{1}\right) \circ \mathfrak{F}\left(x_{2}\right) \pm \alpha\left(\left[x_{1}, x_{2}\right]\right)=0$, then f maps \mathfrak{I} into $\mathfrak{Z}(\mathfrak{R})$ and \mathfrak{R} contains a nonzero central ideal.

Proof. First we assume that

$$
\begin{equation*}
\alpha\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right)+\mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right)+\alpha\left(\left[x_{1}, x_{2}\right]\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.68}
\end{equation*}
$$

Replacing x_{2} by $x_{2} x_{1}$ in (3.68), we get

$$
\begin{align*}
& \alpha\left(x_{1}\right) \mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right)+\alpha\left(x_{1}\right) x_{2} f\left(x_{1}\right)+\mathfrak{F}\left(x_{2}\right) \alpha\left(x_{1}\right) \alpha\left(x_{1}\right) \\
& \quad+x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)+\alpha\left(\left[x_{1}, x_{2}\right]\right) \alpha\left(x_{1}\right)=0 \tag{3.69}
\end{align*}
$$

for all $x_{1}, x_{2} \in \mathfrak{I}$. Using (3.68) in (3.69), we have

$$
\begin{equation*}
\alpha\left(x_{1}\right) x_{2} f\left(x_{1}\right)+x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} . \tag{3.70}
\end{equation*}
$$

Replacing x_{2} by $r_{1} x_{2} \forall r_{1} \in \mathfrak{R}$ in (3.70), we find that

$$
\begin{equation*}
\alpha\left(x_{1}\right) r_{1} x_{2} f\left(x_{1}\right)+r_{1} x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.71}
\end{equation*}
$$

Pre-multiply (3.70) by r_{1}, we see that

$$
\begin{equation*}
r_{1} \alpha\left(x_{1}\right) x_{2} f\left(x_{1}\right)+r_{1} x_{2} f\left(x_{1}\right) \alpha\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.72}
\end{equation*}
$$

From (3.71) and (3.72), we obtain

$$
\begin{equation*}
\left[\alpha\left(x_{1}\right), r_{1}\right] x_{2} f\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{I} \text { and } r_{1} \in \mathfrak{R} . \tag{3.73}
\end{equation*}
$$

Above expression is same as (3.60), we get the conclusion by similar manner.
Theorem 3.10. \mathfrak{I} and α be an ideal and automorphism of a semiprime ring \mathfrak{R}, respectively. Let \mathfrak{F} and \mathfrak{G} be multiplicative generalized skew-derivation of \mathfrak{R} associated with nonzero skewderivation f and g satisfying $\left[\alpha\left(x_{1}\right), \mathfrak{F}\left(x_{2}\right)\right] \pm \alpha\left(x_{1} \circ x_{2}\right)=0$, then f maps \mathfrak{I} into $\mathfrak{Z}(\mathfrak{R})$ and \mathfrak{R} contains a nonzero central ideal.

Proof. We get the result by using similar argument as in Theorem 3.9 with necessary changes.

Conflict of interest

There is no conflict of interest among the authors.

References

[1] S. Ali, B. Dhara, N. A. Dar and A. N. Khan: On Lie ideals with multiplicative (generalized) derivations in prime and semiprime rings, Beitr. Algebra. Geom., 56, 325-337, (2015).
[2] H. E. Bell and W. S. Martindale: Centralizing mappings of semiprime rings, Canad. Math. Bull., 30(1), 92-101, (1987).
[3] M. Brešar and J. Vukman: Orthogonal derivations and extension of a theorem of Posner, Rad. Mat., 5, 237-246, (1989).
[4] L. Carini, V. De Filippis and G. Scudo: Identities with product of generalized skew derivations on multilinear polynomials, Comm. Algebra, 44, 3122-3138, (2016).
[5] L. Carini, V. De Filippis and F. Wei: Generalized skew derivations co-centralizing multilinear polynomials, Mediterr. J. Math., 13, 2397-2424, (2016).
[6] M. N. Daif: When is a multiplicative derivation additive, Internat. J. Math. and Math. Sci., 14(3), 615-618, (1991).
[7] I. N. Herstein: Rings with Involution, University of Chicago Press, 1976.
[8] G. S. Sandhu, A. Ayran and N. Aydin: Identities with multiplicative generalized (α, α)-derivation of semiprime rings, Kragujevac J. Math., 48(3), 365-382, (2021).

Author information

Wasim Ahmed, Department of Mathematics, Aligarh Muslim University, India.
E-mail: wasim10041994@gmail.com
Muzibur Rahman Mozumder*, Department of Mathematics, Aligarh Muslim University, India.
E-mail: muzibamu81@gmail.com
Received: 2022-11-10
Accepted: 2023-08-23

