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Abstract Our intention in this manuscript is to study the commutative structure of the semiprime
rings R on appropriate subsets of it. We observe several algebraic identities in the presence of
multiplicative generalized skew-derivation.

1 Introduction

Suppose R be a ring with associative properties. Z stands for the centre of R. The expression
[t1, t2] = t1t2 − t2t1 ( resp. t1 ◦ t2 = t1t2+ t2t1) is stand for commutator (resp. anti-commutator).
The ring R is known as prime ring if ∀ t1, t2 ∈ R, we have t1Rt2 = (0) =⇒ t1 = 0 or t2 = 0
and is called semiprime ring if for all t1 ∈ R, t1Rt1 = (0) implies t1 = 0. An additive maps
d is called derivation if d(t1t2) = d(t1)t2 + t1d(t2) ∀ t1, t2 ∈ R, and if d is not necessarily
additive then it is called multiplicative derivation, this concept was given by Daif [6]. The map
Ia from R to R defined by Ia(t1) = [a, t1] for a ∈ R is known as an inner derivation of
R. Let F : R → R be a map defined by F(t1t2) = F(t1)t2 + t1d(t2) ∀ t1, t2 ∈ R is called
generalized derivation associated with d, and if F is not necessarily additive then it is called
multiplicative generalized derivation. For a, b ∈ R, an additive mapping G from R to R is
known as generalized inner derivation if G(t1) = at1 + t1b. It is easy to notice that for such a
mapping G, G(t1t2) = G(t1)t2 + t1[t2, b] = G(t1)t2 + t1Ib(t2) ∀ t1, t2 ∈ R, generalized inner
derivations and derivations are two examples of generalized derivations.

An additive mapping d(t1t2) = d(t1)α(t2) + t1d(t2) is term as left skew-derivation and
d(t1t2) = d(t1)t2 + α(t1)d(t2) is known as right skew-derivation, where α is an associated
automorphism of d. If the derivation is both left as well as right skew-derivation, then d is
called as skew-derivation. Since, d is derivation if α = 1 (identity automorphism). Similarly,
we define generalized skew-derivation of R. An additive mapping F from R to R is said to
be generalized skew-derivation if it is both left as well as right generalized skew-derivation i.e.,
F(t1t2) = F(t1)α(t2) + t1d(t2) = F(t1)t2 + α(t1)d(t2) ∀ t1, t2 ∈ R, where α and d is associated
automorphism and skew-derivation of F. A map H of R of the form H(x) = ax+ α(x)b for all
a, b ∈ R and α ∈ Aut(R) is called inner generalized skew-derivation. In particular, if a = −b,
then H is called inner skew-derivation. In [4], Carini et al. studied that “when F (u)G(u) = 0
for all u ∈ f(R), where F and G are generalized skew-derivations of R associated to the same
automorphism and then describe all possible forms of F and G". In the same year, Carini et
al. [5] investigated the situation that “when generalized skew-derivations F and G of R are co-
commuting on f(R), that is, F (u)u − uG(u) = 0 for all u ∈ f(R) and then obtain all possible
forms of the maps F and G".
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In 2021, Sandhu et al. [8] has studied several algebraic identities on the presence of mul-
tiplicative generalized (α, α)-derivation of semiprime rings. They have proved “Let R be a
semiprime ring, I be a nonzero ideal of R and α be an automorphism of R. Let F and G be
multiplicative generalized (α, α)-derivation of R associated with nonzero (α, α)-derivation d
and g respectively. If G(xy) ± F(x)F(y) = 0 ∀ x, y ∈ I, then R contains a nonzero central
ideal and d and g maps R into Z(R)". In the present paper, we study the concept of multiplica-
tive generalized-skew derivation. A mapping F : R → R (not necessarily additive) is called a
multiplicative generalized skew-derivation of R associated with skew-derivation d from R to R,
if F(xy) = F(x)α(y) + xd(y) = F(x)y + α(x)d(y) ∀ x, y ∈ R, where α is an automorphism
of R. Motivated by the result of Sandhu et al., we studied those several algebraic identities
with multiplicative generalized skew-derivation on semiprime rings. Precisely, we have studied
the following identities: (i) G(x1x2) ± F(x1)F(x2) = 0, (ii) G(x1x2) ± F(x1)F(x2) ± x1x2 =
0, (iii) F(x1x2)±G(x1)G(x2)± x1x2 = 0 for all x, y ∈ R and many more.

2 PRELIMINARIES

Lemma 2.1. [1, Lemma 2.1] If R is a semiprime ring and I is an ideal of R, then I is a
semiprime ring.

Lemma 2.2. [2, Theorem 3] Let R be a semiprime ring and U be a nonzero left ideal of R. If R
admits a derivation D which is nonzero on U and centralizing on U, then R contains a nonzero
central ideal

Lemma 2.3. [7, Lemma 1.1.5] Let R be a semiprime ring and ρ be a right ideal of R. Then
Z(ρ) ⊂ Z(R).

Lemma 2.4. [3, Lemma 1] Let R be a semiprime ring, I be a nonzero ideal of R and a ∈ I and
b ∈ R. If aIb = (0), then ab = ba = 0.

Lemma 2.5. Let I be an ideal of a semiprime ring R and d be a skew-derivation of R such that
d(I) ⊂ Z(R), then d(R) ⊂ Z(R).

Proof. From the hypothesis, we get

[r1, d(x1)] = 0 ∀ r1 ∈ R and x1 ∈ I. (2.1)

Substituting x1 by x1r2 ∀ r2 ∈ R in (2.1), we obtain

[r1, d(x1)α(r2) + x1d(r2)] = 0 ∀ r1, r2 ∈ R and x1 ∈ I. (2.2)

On simplifying the above relation and using (2.1) in it, then we have

d(x1)[r1, α(r2)] + x1[r1, d(r2)] + [r1, x1]d(r2) = 0 (2.3)

for all r1, r2 ∈ R and x1 ∈ I. In (2.3), putting r1 = α(r2) then above relation yields that

x1[α(r2), d(r2)] + [α(r2), x1]d(r2) = 0 ∀ r2 ∈ R and x1 ∈ I. (2.4)

Replacing x1 by d(r2)x1 in (2.4) and using it, we find that

[α(r2), d(r2)]x1d(r2) = 0 ∀ r2 ∈ R and x1 ∈ I. (2.5)

Substituting x1 by x1α(r2) in (2.5), we have

[α(r2), d(r2)]x1α(r2)d(r2) = 0 ∀ r2 ∈ R and x1 ∈ I. (2.6)

Multiplying (2.5) by α(r2) from right, it yields that

[α(r2), d(r2)]x1d(r2)α(r2) = 0 ∀ r2 ∈ R and x1 ∈ I. (2.7)
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From (2.6) and (2.7), we obtain

[α(r2), d(r2)]x1[α(r2), d(r2)] = 0 ∀ r2 ∈ R and x1 ∈ I. (2.8)

Above relation implies that [α(r2), d(r2)]I[α(r2), d(r2)] = (0) ∀ r2 ∈ R. Using Lemma 2.1, we
find that

[α(r2), d(r2)] = 0 ∀ r2 ∈ R. (2.9)

Using (2.9) in (2.4), we obtain

[α(r2), x1]d(r2) = 0 ∀ r2 ∈ R and x1 ∈ I. (2.10)

Taking d(r1)x1 in place of x1 in (2.10) and using it, we arrive at

[α(r2), d(r1)]x1d(r2) = 0 ∀ r1, r2 ∈ R and x1 ∈ I. (2.11)

Linearizing (2.11), taking r2 + r1 for r2, then we have

[α(r2), d(r1)]x1d(r1) + [α(r1), d(r1)]x1d(r2) = 0 (2.12)

for all r1, r2 ∈ R and x1 ∈ I. Applying (2.9) in last relation, it yields that

[α(r2), d(r1)]x1d(r1) = 0 ∀ r1, r2 ∈ R and x1 ∈ I. (2.13)

Replacing x1 by x1α(r2) in (2.13), we see that

[α(r2), d(r1)]x1α(r2)d(r1) = 0 ∀ r1, r2 ∈ R and x1 ∈ I. (2.14)

Multiplying (2.13) from right by α(r2), we get

[α(r2), d(r1)]x1d(r1)α(r2) = 0 ∀ r1, r2 ∈ R and x1 ∈ I. (2.15)

On combining (2.14) and (2.15), we find that

[α(r2), d(r1)]x1[α(r2), d(r1)] = 0 ∀ r1, r2 ∈ R and x1 ∈ I. (2.16)

Using Lemma 2.1, this implies that [α(r2), d(r1)] = 0 ∀ r1, r2 ∈ R. Since, α is an automorphism
that means d(R) ⊂ Z(R), we get the result.

3 MAIN RESULTS

Theorem 3.1. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying G(x1x2)±F(x1)F(x2) = 0 ∀ x1, x2 ∈ I, then R contains a nonzero
central ideal and f and g maps R into Z(R).

Proof. From the hypothesis, first we consider that

G(x1x2) + F(x1)F(x2) = 0 ∀ x1, x2 ∈ I. (3.1)

Replacing x2 by x2r1 in (3.1) for all r1 ∈ R, we get

G(x1x2)α(r1) + x1x2g(r1) + F(x1)F(x2)α(r1) + F(x1)x2f(r1) = 0 (3.2)

for all x1, x2 ∈ I and r1 ∈ R. Using the hypothesis in the last relation, we obtain

x1x2g(r1) + F(x1)x2f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.3)

Substituting x1 by x1r1 in (3.3), we have

x1r1x2g(r1) + F(x1)r1x2f(r1) + α(x1)f(r1)x2f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.4)
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Again, substituting x2 by r1x2 in (3.3), we get

x1r1x2g(r1) + F(x1)r1x2f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.5)

On combining (3.4) and (3.5), we find that

α(x1)f(r1)x2f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.6)

Replacing x2 by x2α(x1) in (3.6), we see that

α(x1)f(r1)x2α(x1)f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.7)

Since, I is semiprime ring due to Lemma 2.1, we have

α(x1)f(r1) = 0 ∀ x1 ∈ I and r1 ∈ R. (3.8)

Putting x1x2 for x1 in (3.8), we obtain

α(x1)α(x2)f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.9)

Since, I is an ideal of R. So is α(I). In view of Lemma 2.4, we get α(x1)f(r1) = f(r1)α(x1) =
0 ∀ x1 ∈ I and r1 ∈ R. This implies that

[α(x1), f(r1)] = 0 ∀ x1 ∈ I and r1 ∈ R. (3.10)

Particularly, (3.10) implies that [x1, ϕ(x1)] = 0 ∀ x1 ∈ I, where ϕ = α−1f is an ordinary deriva-
tion of R. Due to Lemma 2.2, R have a nonzero central ideal of R. Moreover, from (3.10), we
get f(r1) ∈ Z(I) ∀ r1 ∈ R. Using Lemma 2.3, f maps R into Z(R).

Now, replacing x2 by x2α(x3) ∀ x3 ∈ I in (3.3), we have

x1x2α(x3)g(r1) + F(x1)x2α(x3)f(r1) = 0 (3.11)

for all x1, x2, x3 ∈ I and r1 ∈ R. Using α(x1)f(r1) = 0 in (3.11), we obtain

x1x2α(x3)g(r1) = 0 ∀ x1, x2, x3 ∈ I and r1 ∈ R. (3.12)

Substituting x1 by x2α(x3)g(r1)x1 in (3.12), it yields that

x2α(x3)g(r1)x1x2α(x3)g(r1) = 0 ∀ x1, x2, x3 ∈ I and r1 ∈ R. (3.13)

Since, for x1 ∈ I and by Lemma 2.1, I is semiprime ring. From the last relation we have
x2α(x3)g(r1) = 0 ∀ x2, x3 ∈ I and r1 ∈ R. Replacing x2 by α(x3)g(r1)x2 and by using the
previous argument we get α(x3)g(r1) = 0 ∀ x3 ∈ I and r1 ∈ R. This relation is same as (3.9)
but in place of f there is g. So, using similar argument we conclude the result.

Similarly, we will prove the case G(x1x2)− F(x1)F(x2) = 0 ∀ x1, x2 ∈ I.

Theorem 3.2. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying G(x1x2) ± F(x1)F(x2) ± x1x2 = 0 ∀ x1, x2 ∈ I, then R contains
a nonzero central ideal and f maps R into Z(R).

Proof. We consider that

G(x1x2) + F(x1)F(x2) + x1x2 = 0 ∀ x1, x2 ∈ I. (3.14)

Replacing x2 by x2r1 in (3.14), we obtain

G(x1x2)α(r1) + x1x2g(r1) + F(x1)F(x2)α(r1)

+ F(x1)x2f(r1) + x1x2r1 = 0 (3.15)
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for all x1, x2 ∈ I and r1 ∈ R. Using (3.14) in (3.15), we have

x1x2g(r1) + F(x1)x2f(r1) + x1x2r1 − x1x2α(r1) = 0 (3.16)

for all x1, x2 ∈ I and r1 ∈ R. Substituting x1 by x1r1 in (3.16), we get

x1r1x2g(r1) + F(x1)r1x2f(r1) + α(x1)f(r1)x2f(r1)

+ x1r1x2r1 − x1r1x2α(r1) = 0 (3.17)

for all x1, x2 ∈ I and r1 ∈ R. Putting r1x2 for x2 in (3.16), we find that

x1r1x2g(r1) + F(x1)r1x2f(r1) + x1r1x2r1 − x1r1x2α(r1) = 0 (3.18)

for all x1, x2 ∈ I and r1 ∈ R. Combining (3.17) and (3.18), its yields that

α(x1)f(r1)x2f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.19)

Replacing x2 by x2α(x1) in (3.19), we have α(x1)f(r1)x2α(x1)f(r1) = 0 ∀ x1, x2 ∈ I and r1 ∈
R. By Lemma 2.1, I is semiprime ring, so from previous equation we get α(x1)f(r1) = 0 ∀ x1 ∈
I and r1 ∈ R. Previous equation is same as (3.8), by using same technique we get the result.

Using similar argument, we arrives at G(x1x2)−F(x1)F(x2)−x1x2 = 0, G(x1x2)+F(x1)F(x2)−
x1x2 = 0 and G(x1x2)− F(x1)F(x2) + x1x2 = 0 ∀ x1, x2 ∈ I.

Theorem 3.3. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying F(x1x2)±G(x1)G(x2)± x1x2 = 0 ∀ x1, x2 ∈ I, then R contains
a nonzero central ideal and g maps R into Z(R).

Proof. By using similar argument as we have done in previous theorem, we get our conclusion.

Theorem 3.4. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying F(x1)x2 ± x2G(x1) = 0 ∀ x1, x2 ∈ I, then F and G maps I into
Z(R). Moreover, f = −g.

Proof. From the hypothesis, we have

F(x1)x2 + x2G(x1) = 0 ∀ x1, x2 ∈ I. (3.20)

Replacing x1 by x1x3 in (3.20), we obtain

F(x1)α(x3)x2 + x1f(x3)x2 + x2G(x1)α(x3)

+ x2x1g(x3) = 0 ∀ x1, x2, x3 ∈ I. (3.21)

Substituting x2 by α(x3)x2 in (3.20), we have

F(x1)α(x3)x2 + α(x3)x2G(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.22)

On combining (3.21) and (3.22), we get

x1f(x3)x2 + x2G(x1)α(x3) + x2x1g(x3)− α(x3)x2G(x1) = 0 (3.23)

for all x1, x2, x3 ∈ I. Using (3.20) in (3.23), we find that

x1f(x3)x2 − F(x1)x2α(x3) + x2x1g(x3)− α(x3)x2G(x1) = 0 (3.24)

for all x1, x2, x3 ∈ I. Subtracting (3.24) from (3.21), yields that

F(x1)α(x3)x2 + (F(x1)x2 + x2G(x1))α(x3) + α(x3)x2G(x1) (3.25)
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for all x1, x2, x3 ∈ I. Due to hypothesis, last relation yields that

F(x1)α(x3)x2 − α(x3)F(x1)x2 = 0 ∀ x1, x2, x3 ∈ I. (3.26)

This implies that
[F(x1), α(x3)]x2 = 0 ∀ x1, x2, x3 ∈ I. (3.27)

Since, I is semiprime ring by Lemma 2.1. So, from 3.27, we have [F(x1), α(x3)] = 0 for
all x1, x3 ∈ I. That is F(I) ⊂ Z(I), from Lemma 2.3 we have F(I) ⊂ Z(R).

Now, multiplying (3.20) by α(x3) from right, we have

F(x1)x2α(x3) + x2G(x1)α(x3) = 0 ∀ x1, x2, x3 ∈ I. (3.28)

Substituting x2 by x2α(x3) in (3.20), we obtain

F(x1)x2α(x3) + x2α(x3)G(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.29)

Subtracting (3.29) from (3.28), we get

x2(G(x1)α(x3)− α(x3)G(x1)) = 0 ∀ x1, x2, x3 ∈ I. (3.30)

That is
x2[G(x1), α(x3)] = 0 ∀ x1, x2, x3 ∈ I. (3.31)

Using the similar argument after (3.27), we get G(I) ⊂ Z(R).

Since, F(I) ⊂ Z(R), our hypothesis becomes

x2F(x1) + x2G(x1) = 0 ∀ x1, x2 ∈ I. (3.32)

This implies that

x2(F(x1) +G(x1)) = 0 (3.33)

or x2((F+G)(x1)) = 0 ∀ x1, x2 ∈ I.

Replacing x1 by x1r1 ∀ r1 ∈ R in (3.33) and using the hypothesis, we have

x2x1((f + g)(r1)) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.34)

Substituting x2 by x1((f + g)(r1))x2 in (3.34), we see that

x1((f + g)(r1))x2x1((f + g)(r1)) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.35)

Since, I is semiprime ring by Lemma 2.1, from last relation we obtain x1((f + g)(r1)) = 0.
Again, replacing x1 by ((f + g)(r1))x1 in previous equation and using similar argument we ob-
tain (f + g)(r1) = 0. That is, for all r1 ∈ R we get f = −g on R.

In a similar way we can prove the case F(x1)x2 − x2G(x1) = 0 ∀ x1, x2 ∈ I.

Theorem 3.5. I and α be an ideal and automorphism of a semiprime ring R, respectively. Let
F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying F(x1x2) ± G(x1x2) = 0 ∀ x1, x2 ∈ I, then f ± g maps R into
Z(R) and R contains a nonzero central ideal.

Proof. From the hypothesis F(x1x2) ± G(x1x2) = 0 can be written as (F ± G)(x1x2) =
0 ∀ x1, x2 ∈ I. Since sum(difference) of two multiplicative generalized skew-derivation of
R is again a multiplicative generalized skew-derivation of R. We assume F ±G = H, then our
hypothesis becomes H(x1x2) = 0 ∀ x1, x2 ∈ I which is a special case of Theorem 3.1 where we
consider F = 0. Hence, we arrives at the result.
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Theorem 3.6. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying F(x1x2) ±G(x2x1) = 0 ∀ x1, x2 ∈ I, then f and g is commuting
on I.

Proof. Assuming that
F(x1x2) +G(x2x1) = 0 ∀ x1, x2 ∈ I. (3.36)

Replacing x1 by x1r1 in (3.36) ∀ r1 ∈ R, we get

F(x1r1x2) +G(x2x1r1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.37)

Substituting x2 by r1x2 in (3.36), we have

F(x1r1x2) +G(r1x2x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.38)

On comparing (3.37) and (3.38), we find that

G(x2x1r1) = G(r1x2x1) ∀ x1, x2 ∈ I and r1 ∈ R. (3.39)

Putting x2x3 for x2 in (3.36) and on simplifying, we see that

F(x1x2)α(x3) + x1x2f(x3) +G(x2x3)α(x1)

+ x2x3g(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.40)

Using the hypothesis in (3.40), yields that

−G(x2x1)α(x3) + x1x2f(x3) +G(x2x3)α(x1)

+ x2x3g(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.41)

Replacing x1 by x1r2 for all r2 ∈ R in (3.41) and on solving, we arrives at

−G(x2x1r2)α(x3) + x1r2x2f(x3) +G(x2x3)α(x1r2)

+ x2x3g(x1r2) = 0 ∀ x1, x2, x3 ∈ I and r2 ∈ R. (3.42)

Substituting x2 by r2x2 ∀ r2 ∈ R in (3.41) and on solving, we get

−G(r2x2x1)α(x3) + x1r2x2f(x3) +G(r2x2x3)α(x1)

+ r2x2x3g(x1) = 0 ∀ x1, x2, x3 ∈ I and r2 ∈ R. (3.43)

On comparing (3.42) and (3.43) and by using (3.39), we obtain

G(x2x3)α(x1r2) + x2x3g(x1r2)−G(x2x3r2)α(x1)

− r2x2x3g(x1) = 0 ∀ x1, x2, x3 ∈ I and r2 ∈ R. (3.44)

This implies that

G(x2x3)α(x1)α(r2) + x2x3g(x1)α(r2) + x2x3x1g(r2)

−G(x2x3)α(r2)α(x1)− x2x3g(r2)α(x1)− r2x2x3g(x1) = 0 (3.45)

for all x1, x2, x3 ∈ I and r2 ∈ R. In particular, for r2 = x1 in (3.45), we get

x2x3x1g(x1)− x1x2x3g(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.46)

That is
[x2x3, x1]g(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.47)

Substituting x2 by r1x2 ∀ r1 ∈ R in (3.47) and using it, we have

[r1, x1]x2x3g(x1) = 0 ∀ x1, x2, x3 ∈ I and r1 ∈ R (3.48)
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for all x3 ∈ I and using Lemma 2.4, we obtain

[r1, x1]x2g(x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.49)

Taking r1 = g(x1) and x2 = x2x1 in (3.49), we find that

[g(x1), x1]x2x1g(x1) = 0 ∀ x1, x2 ∈ I. (3.50)

In (3.49), we replace r1 by g(x1) and post multiply by x1, we see that

[g(x1), x1]x2g(x1)x1 = 0 ∀ x1, x2 ∈ I. (3.51)

From (3.50) and (3.51), we arrives at [g(x1), x1]x2[g(x1), x1] = 0 ∀ x1, x2 ∈ I. By Lemma 2.1,
we conclude that [g(x1), x1] = 0 ∀ x1 ∈ I. This implies, g is commuting on I.

Replacing x2 by x2r1 for all r1 ∈ R in (3.36), we get

F(x1x2r1) +G(x2r1x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.52)

Substituting x1 by r1x1 in (3.36), we obtain

F(r1x1x2) +G(x2r1x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.53)

On combining (3.52) and (3.53), we have

F(r1x1x2) = F(x1x2r1) ∀ x1, x2 ∈ I and r1 ∈ R. (3.54)

This relation has already existed above in this prove for G after interchanging the role of x1 and
x2 in (3.39). So, by following same step we arrives at conclusion. That is, we get f is commuting
on I.

In the similar way we can prove the case F(x1x2) +G(x2x1) = 0 ∀ x1, x2 ∈ I.

Theorem 3.7. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying α(x1) ◦ F(x2) ± G(x2x1) = 0, then f maps I into Z(R) and R
contains a nonzero central ideal.

Proof. Let us assume that

α(x1)F(x2) + F(x2)α(x1) +G(x2x1) = 0 ∀ x1, x2 ∈ I. (3.55)

Replacing x2 by x2x1 in (3.55), we get

α(x1)F(x2)α(x1) + α(x1)x2f(x1) + F(x2)α(x1)α(x1)

+ x2f(x1)α(x1) +G(x2x1)α(x1) + x2x1g(x1) = 0 (3.56)

for all x1, x2 ∈ I. Using (3.55) in (3.56), we have

α(x1)x2f(x1) + x2f(x1)α(x1) + x2x1g(x1) = 0 ∀ x1, x2 ∈ I. (3.57)

Substituting x2 by r1x2 ∀ r1 ∈ R in (3.57), we obtain

α(x1)r1x2f(x1) + r1x2f(x1)α(x1) + r1x2x1g(x1) = 0 (3.58)

for all x1, x2 ∈ I and r1 ∈ R. Pre-multiplying (3.57) by r1, we find that

r1α(x1)x2f(x1) + r1x2f(x1)α(x1) + r1x2x1g(x1) = 0 ∀ x1, x2 ∈ I. (3.59)

Subtracting (3.59) from (3.58), we see that

[α(x1), r1]x2f(x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.60)
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Replacing x2 by r2x2 ∀ r2 ∈ R in (3.60), we find that

[α(x1), r1]r2x2f(x1) = 0 ∀ x1, x2 ∈ I and r1, r2 ∈ R. (3.61)

This implies that
[α(x1), r1]RIf(x1) = (0) ∀ x1 ∈ I. (3.62)

Since R contains a family of prime ideals say S such that ∩Pλ = (0). Let P be a member of
this family and for all x1 ∈ I, from (3.62), we have

[α(x1), r1] ⊂ P or If(x1) ⊂ P. (3.63)

Let A = {x1 ∈ I : [α(x1), r1] ⊂ P} and B = {x1 ∈ I : If(x1) ⊂ P}, where A and B are
additive subgroups of R and also A ∪B = I. Due to Brauer’s trick we arrives at

[α(I),R] ⊂ P or If(I) ⊂ P. (3.64)

Considering these cases together, we get [α(I),R]If(I) ⊂ ∩Pλ. That is

[α(x1), r1]x2f(x3) = 0 ∀ x1, x2, x3 ∈ I and r1 ∈ R. (3.65)

Taking r1 = f(x3) and x2 = x2α(x1) in (3.65), we find that

[α(x1), f(x3)]x2α(x1)f(x3) = 0 ∀ x1, x2, x3 ∈ I. (3.66)

In (3.65), we replace r1 by f(x3) and post-multiply by α(x1), we see that

[α(x1), f(x3)]x2f(x3)α(x1) = 0 ∀ x1, x2, x3 ∈ I. (3.67)

Subtracting (3.67) and (3.66), we arrives at [α(x1), f(x3)]x2[α(x1), f(x3)] = 0 ∀ x1, x2, x3 ∈ I.
By Lemma 2.1, we conclude that [α(x1), f(x3)] = 0 ∀ x1, x3 ∈ I. That is f(I) ⊂ Z(I), by
Lemma 2.3 we conclude that f(I) ⊂ Z(R) i.e., f map I into Z(R).

In particular, [α(x1), f(x3)] = 0 ∀ x1, x3 ∈ I implies that [x1, ϕ(x1)] = 0 ∀ x1 ∈ I, where
ϕ = α−1f is an ordinary derivation of R. Due to Lemma 2.2, R have a nonzero central ideal of
R.

In the similar way we can prove the case α(x1)F(x2)+F(x2)α(x1)−G(x2x1) = 0 ∀ x1, x2 ∈
I.

Theorem 3.8. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying [α(x1),F(x2)] ± G(x2x1) = 0, then f maps I into Z(R) and R
contains a nonzero central ideal.

Proof. Implications of similar steps as in above theorem with necessary changes, we get the
result.

Theorem 3.9. I and α be an ideal and automorphism of a semiprime ring R, respectively. Let
F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying α(x1) ◦ F(x2) ± α([x1, x2]) = 0, then f maps I into Z(R) and
R contains a nonzero central ideal.

Proof. First we assume that

α(x1)F(x2) + F(x2)α(x1) + α([x1, x2]) = 0 ∀ x1, x2 ∈ I. (3.68)

Replacing x2 by x2x1 in (3.68), we get

α(x1)F(x2)α(x1) + α(x1)x2f(x1) + F(x2)α(x1)α(x1)

+ x2f(x1)α(x1) + α([x1, x2])α(x1) = 0 (3.69)
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for all x1, x2 ∈ I. Using (3.68) in (3.69), we have

α(x1)x2f(x1) + x2f(x1)α(x1) = 0 ∀ x1, x2 ∈ I. (3.70)

Replacing x2 by r1x2 ∀ r1 ∈ R in (3.70), we find that

α(x1)r1x2f(x1) + r1x2f(x1)α(x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.71)

Pre-multiply (3.70) by r1, we see that

r1α(x1)x2f(x1) + r1x2f(x1)α(x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.72)

From (3.71) and (3.72), we obtain

[α(x1), r1]x2f(x1) = 0 ∀ x1, x2 ∈ I and r1 ∈ R. (3.73)

Above expression is same as (3.60), we get the conclusion by similar manner.

Theorem 3.10. I and α be an ideal and automorphism of a semiprime ring R, respectively.
Let F and G be multiplicative generalized skew-derivation of R associated with nonzero skew-
derivation f and g satisfying [α(x1),F(x2)] ± α(x1 ◦ x2) = 0, then f maps I into Z(R) and R
contains a nonzero central ideal.

Proof. We get the result by using similar argument as in Theorem 3.9 with necessary changes.
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