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Abstract In this paper, we study a contact problem between a viscoelastic body with long
memory and an obstacle. The contact is modelled with a normal compliance condition with
unilateral penetration. Also, we assume that the contact is frictional and we model the friction
with a time-dependent Coulomb’s friction law. We provide a variational formulation to the
model and we prove the existence of a unique weak solution. The proof is based on results
concerning quasivariational inequalities and fixed point. Finally, we consider a penalization of
the variational problem in order to study the dependence of the solution with respect to the data
and to prove a convergence result.

1 Introduction

Situations of contact between a deformable body and a rigid or deformable foundation appear in
many systems in structure mechanics. General mathematical models in contact mechanics can
be found in [1, 2, 6, 7, 8, 9, 10, 11, 15, 17, 18, 19, 21, 23, 24, 25]. In particular, processes of
frictional contact are important in many industrial settings and everyday life. For this reason,
considerable effort has been made in their modelling and analysis. Frictional contact problems
have been considered in [3, 13, 14, 15], and more recently in [4, 19].
This paper aims to study within the variational framework a frictional contact problem for vis-
coelastic materials with long memory. We model the material’s behavior with a constitutive law
of the form

σ = A ε(u) +

t∫
0

R(t− s) ε(u(s)) ds, (1.1)

where u denotes the displacement field, σ represents the stress tensor and ε(u) is the linearized
strain. Moreover, A is the elasticity operator, allowed to be nonlinear and R represents the re-
laxation operator, assumed to be linear. For more details on the study of variational inequalities
with memory operators, see, e.g. [20, 22, 26].
The current paper has four traits of novelties which make the difference from previous papers
dealing with contact processes. First, we describe the material’s behavior with a viscoelastic
constitutive law with long memory. Second, we model the contact with a normal compliance
condition with unilateral penetration. This condition was introduced in [5] to model the contact
with an elastic-rigid foundation. It represents a combination of both Signorini’s condition intro-
duced in [16] to describe the contact with a perfectly rigid foundation and normal compliance
condition introduced in [12] modelling the contact with a deformable obstacle. The third novelty
arises in the fact that the friction between contact surfaces is taken into account and is modelled
with a time-dependent Coulomb’s friction law. The latter was used in [21] modelling the fric-
tion in the study of a quasistatic contact problem with normal compliance. Finally, in contrast
with a large number of references, the viscoelastic contact problem considered in this paper is
formulated on a bounded interval of time [0, T ] , T > 0. This implies the use of the framework
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of Banach spaces of continuous functions defined on a bounded interval of time.
The rest of the paper is structured as follows. In section 2 we present the notation as well as
some preliminary material. In section 3 we describe the model, list assumptions on the data and
derive the variational formulation of the problem. Then, in section 4, we state and prove our
main existence and uniqueness result, Theorem 4.1. The proof is based on arguments of quasi-
variational inequalities and fixed point. Finally, in section 5, we state and prove a convergence
result, Theorem 5.1, on the continuous dependence of the solution with respect to the data.

2 Notations and preliminaries

Let Ω be a bounded domain of Rd, d = 1, 2, 3 with a Lipschitz continuous boundary Γ divided
into three disjoint measurable parts Γ1, Γ2, Γ3 such that meas (Γ1) > 0. We use the notation
x = (xi) for a generic point in Ω ∪ Γ and we denote by ν = (νi) the outward unit normal
vector on Γ. Here and below the indices i, j, k, l run between 1 and d and an index that follows
a comma represents the partial derivative with respect to the corresponding component of the

spatial variable, e.g. ui,j =
∂ui

∂xj
.

We denote by Sd the space of second-order symmetric tensors on Rd. The inner product and
norm on Rd and Sd are given by
u.v = uivi , ∥v∥ = (v,v)1/2, ∀u,v ∈ Rd,
σ.τ = σijτij , ∥τ∥ = (τ , τ )1/2, ∀σ, τ ∈ Sd.
Moreover, for a vector u in Rd, we denote by uν and uτ its normal and tangential components
on Γ respectively given by

uν = u.ν , uτ = u− uν .ν. (2.1)

In addition, we have

|u1ν − u2ν | ≤ ∥u1 − u2∥ , | ∥u1τ∥ − ∥u2τ∥ | ≤ ∥u1 − u2∥. (2.2)

Also, for a regular function σ : Ω ∪ Γ → Sd, we denote by σν and στ the normal and tangential
components of the vector σν on Γ, respectively, and we recall that

σν = (σν).ν , στ = σν − σν .ν. (2.3)

We use standard notations for the Lebesgue and Sobolev spaces associated to Ω and Γ and,
moreover, we use the spaces

H =
{
u = (ui)/ui ∈ L2(Ω)

}
,

H =
{
σ = (σij)/σij = σji ∈ L2(Ω)

}
,

H1 =
{
u = (ui)/ui ∈ H1(Ω)

}
,

H1 = {σ ∈ H/Divσ ∈ H} ,
H∞ = {E = (Eijkl) : Eijkl = Ejiklj = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d} .

The spaces H,H, H1 and H1 are real Hilbert spaces endowed with the inner products
(u,v)H =

∫
Ω
uivi dx,

(σ, τ )H =
∫

Ω
σijτij dx,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H,

(σ, τ )H1 = (σ, τ )H + (Div σ, Div τ )H ,

respectively, where ε : H1 −→ H and Div : H1 −→ H are the deformation and the divergence
operators given by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i) , Divσ = (σij,j).

We denote by ∥.∥H , ∥.∥H, ∥.∥H1 and ∥.∥H1 the associated norms on the spaces H,H, H1 and H1,
respectively. Furthermore, we note that H∞ is a real Banach space with the norm

∥E∥H∞ = max
1≤i,j,k,l≤d

∥Eijkl∥L∞(Ω). (2.4)
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In addition, a simple calculation shows that

∥Eτ∥H ≤ d ∥E∥H∞ ∥τ∥H ∀E ∈ H∞, τ ∈ H. (2.5)

For the displacement field, we introduce the closed subspace of H1 defined by

V = {v ∈ H1/v = 0 on Γ1}.

We note that for an element v ∈ V we still write v for the trace of v on the boundary Γ. Also,
we note that V is a real Hilbert space endowed with the inner product

(u,v)V = (ε(u), ε(v))H ∀u,v ∈ V,

and the associated norm
∥v∥V = ∥ε(v)∥H ∀v ∈ V. (2.6)

Compliteness of the space (V, ∥.∥V ) follows from the assumption meas (Γ1) > 0, which allows
the use of Korn’s inequality. Moreover, by the Sobolev trace theorem, there exists a positive
constant c0 > 0 which depends on Ω,Γ1 and Γ3 such that

∥v∥L2(Γ3)d ≤ c0 ∥v∥V . (2.7)

Also, we note that for a sufficiently regular function σ (say C1), the following Green’s formula
holds

(σ, ε(v))H + (Divσ,v)H =

∫
Γ

σν v da ∀v ∈ H1. (2.8)

Now, for a normed space (X, ∥.∥X), we use the notation C (0, T ;X) for the space of the X-
valued continuous functions defined on [0, T ] with values in X . Also, for a subset K ⊂ X we
still use the symbol C (0, T ;K) for the set of continuous functions defined on [0, T ] with values
in K. The norm on the space C (0, T ;X) is given by

∥v∥C(0,T ;X) = max
t∈[0,T ]

∥v (t)∥X .

Moreover, we recall that the convergence of a sequence (vk)k to an element v in the space
C(0, T ;X) can be described as follows:{

vk → v inC(0, T ;X) as k → 0 if and only if
maxt∈[0,T ] ∥vk(t)− v(t)∥X → 0 as k → 0.

(2.9)

We end this section with the following results that we will use in section 4 of this paper.

Theorem 2.1. Let (X, ∥.∥X) be a Hilbert space and let K be a non empty closed subset of X .
Let Λ : C(0, T ;K) −→ C(0, T ;K) be a nonlinear operator. Assume that there exists h ∈ N with
the following property: there exists k ∈ [0, 1) and c ≥ 0 such that

∥Λη1(t)− Λη2(t)∥hX ≤ k∥η1(t)− η2(t)∥hX + c
∫ t

0 ∥η1(s)− η2(s)∥hX ds,

∀η1, η2 ∈ C(0, T ;K), ∀t ∈ [0, T ]. Then the operator Λ has a unique fixed point η∗ ∈ C(0, T ;K).

Theorem 2.2. Let X be a Hilbert space. Let K be a subset of X and consider the operator
A : K → X , the function j : K ×K → R and the element f ∈ X such that

Kis a nonempty closed convex subset of X. (2.10){
A is strongly monotone with a constant mA ,
A is Lipschitz continuous with a constant LA.

(2.11)


(a) ∀ u ∈ K, j (u, .) : K → R is convex and lower semicontinuous.
(b) ∃ α > 0 such that
j (u1, v2)− j (u1, v1) + j (u2, v1)− j (u2, v2) ≤ α ∥u1 − u2∥X ∥v1 − v2∥X
∀u1, u2, v1, v2 ∈ K.

(2.12)
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MA > α. (2.13)

Then, there exits a unique solution u ∈ K of the following quasivariational inequality

(Au, v − u)X + j (u, v)− j (u, u) ≥ (f, v − u)X ∀v ∈ K. (2.14)

The proof of Theorem 2.2 can be found in [21].

3 Problem statement and variational formulation

The mathematical formulation of the mechanical model is given in the following problem.
Problem P . Find a displacement field u : Ω × [0, T ] → Rd and a stress field
σ : Ω × [0, T ] → Sd such that

σ(t) = A ε(u(t)) +

t∫
0

R(t− s) ε(u(s)) ds in Ω × [0, T ] , (3.1)

Div σ(t) + f0(t) = 0 in Ω × [0, T ] , (3.2)

u(t) = 0 on Γ1 × [0, T ] , (3.3)

σν(t) = f2(t) on Γ2 × [0, T ] , (3.4){
uν(t) ≤ g , σν(t) + pν(uν(t)) ≤ 0 on Γ3 × [0, T ] ,
(uν(t)− g)

(
σν(t) + pν(uν(t))

)
= 0

(3.5)

 ∥στ (t)∥ ≤ pτ (uν(t))

στ (t) = −pτ (uν(t))
uτ (t)

∥uτ (t)∥
if uτ (t) ̸= 0

on Γ3 × [ 0, T ] . (3.6)

Let us describe the problem (3.1)− (3.6). First, equation (3.1) represents the viscoelastic consti-
tutive law with long memory. The equation (3.2) is the equilibrium equation which governs the
mechanical process. Conditions (3.3) and (3.4) are displacement-traction boundary conditions,
while (3.6) constitutes the time dependant Coulomb’s friction law.
We now turn to the description of condition (3.5) which represents the contact condition with
unilateral constraint. First, we assume that the penetration of the body into the foundation is
bounded by g > 0 and, therefore, at any time t ∈ [0, T ], the normal displacement satisfies the
inequality

uν(t) ≤ g on Γ3 × [0, T ] , (3.7)

where g is a positive constant that represents the maximum penetration value.
Next, we assume that the normal stress has an additive decomposition of the form

σν(t) = σD
ν (t) + σR

ν (t) on Γ3 × [0, T ] , (3.8)

where the functions σD
ν (t) and σR

ν (t) describe respectively the deformability and the rigidity of
the foundation.
We assume that σD

ν (t) satisfies the normal compliance contact condition

−σD
ν (t) = pν(uν(t)) on Γ3 × [0, T ] , (3.9)

where pν is a given nonnegative function that vanishes for negative arguments.
The part σR

ν (t) of the normal stress satisfies the Signorini condition given as a deflection func-
tion; namely,

σR
ν (t) ≤ 0 , σR

ν (t)(uν(t)− g) = 0 on Γ3 × [0, T ] . (3.10)

Details on the Signorini condition and the normal compliance function can be found in [7, 15].
We recall that the normal compliance condition describes the contact with a deformable founda-
tion and that the Signorini condition describes the contact with a perfectly rigid foundation.
We combine (3.8) and (3.9) to see that

σR
ν (t) = σν(t) + pν(uν(t)) on Γ3 × [0, T ] . (3.11)
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Next, we substitute the equality (3.11) in (3.10) and we use (3.7) to obtain the contact condition
(3.5).
Finally, we comment on the contact condition (3.5) which represents originality in this study.
Firstly, we recall that (3.5) describes a condition with unilateral stress as the inequality (3.7) is
verified at all times t ∈ [0, T ]. Secondly, we assume that at some point t, there is a penetration
that does not reach the boundary g; i.e.
0 < uν < g. Then, (3.5) yields

−σν(t) = pν(uν(t)).

This equality indicates that at the time t, the foundation’s reaction depends on the current pen-
etration value (represented by the term pν(uν(t)). In conclusion, the condition (3.5) shows that
when there is penetration, the contact follows a normal compliance condition but up to the limit
g and then, when that limit is reached, the contact follows a unilateral condition of Signorini type
with a gap g.
Moreover, condition (3.5) can be physically interpreted as follows. The foundation is assumed
to be constructed of a hard material which is covered by a thin layer composed of a soft material
of penetration depth g. This soft material has a rigid-elastic behavior; i.e. it is deformable and
allows any penetration. Because hard material is completely rigid, it does not allow for any pen-
etration.
To conclude, the foundation has rigid-elastic behavior; its deformation behavior is due to the
layer of soft material, whereas its rigid behavior is due to the hard material.
Now, we are interested in finding a variational formulation for the suggested mathematical
model. before that and in order to solve problem P , we need to assume some hypothesis on
the data.
First, we assume that the elasticity operator A and the relaxation tensor R satisfy

(a) A : Ω × Sd −→ Sd.

(b) There exists LA > 0 such that
∥A(x, ε1)−A(x, ε2)∥ ≤ LA ∥ε1 − ε2∥

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(c) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥2

∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7−→ A(x, ε) is measurable on Ω,

for all ε ∈ Sd.

(e) The mapping x 7→ A(x,0) ∈ H .

(3.12)

R ∈ C(0, T ;H∞). (3.13)

The function pν : Γ3 ×R −→ R+ satisfies

(a) ∃ Lν > 0 such that
|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ Rd, a.e .x ∈ Γ3.

(c) The mapping x 7−→ pν(x, r) is measurable on Γ3,

for all r ∈ R.
(d) pν(x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

(3.14)

The function pτ satisfies

(a) pτ : Γ3 ×R −→ R+.

(b) ∃ Lτ > 0 such that
|pτ (x, r1)− pτ (x, r2)| ≤ Lτ |r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 7−→ pτ (x, r) is measurable on Γ3,

for all r ∈ R.
(d) pτ (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

(3.15)
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Finally, the densities of volume forces and surface tractions have the regularities

f0 ∈ C (0, T ;H), f2 ∈ C (0, T ;L2(Γ2)
d). (3.16)

We now turn to the variational formulation of Problem P . To this end, we assume that (u,σ) rep-
resents a couple of regular functions that satisfy (3.1)-(3.6). We introduce the set of admissible
displacements defined by

U = {v ∈ V : vν ≤ g a.e on Γ3} . (3.17)

On U , we still use the inner product (., .)V of V . We note that assumption g > 0 implies that U
is a closed, convex nonempty subset of the space V .
Then we apply the Green formula (2.8) and we use (3.2) to have

(σ(t), ε(v − u(t)))H + (−f0(t),v − u(t))H
=

∫
Γ1

σν(t)(v − u(t)) da+
∫
Γ2

σν(t)(v − u(t)) da+
∫
Γ3

σν(t)(v − u(t)) da ∀v ∈ U. (3.18)

We note that the Green formula (2.8) is satisfied for all v ∈ H1. Moreover, we know that
U ⊂ V ⊂ H1; so, (2.8) is satisfied for all v ∈ U . By taking into account (3.3)-(3.4) in (3.18) we
obtain

(σ(t), ε(v−u(t)))H+(−f0(t),v−u(t))H =

∫
Γ2

f2(v−u(t)) da+

∫
Γ3

σν(t)(v−u(t)) da. (3.19)

Furthermore, we know that

σν(t)(v − u(t)) = σν(t)(vν − uν(t)) + στ (t)(vτ − uτ (t)).

We substitute the last equality in (3.19) to see that

(σ(t), ε(v − u(t)))H

=
∫
Ω

f0(t) (v − u(t)) dx+
∫
Γ2

f2(t) (v − u(t)) da

+
∫
Γ3

σν(t)(vν − uν(t)) da+
∫
Γ3

στ (t)(vτ − uτ (t)) da.

(3.20)

Now, we write

σν(t)(vν − uν(t))

= [σν(t) + pν(uν(t))] (vν − g) + [σν(t) + pν(uν(t))] (g − uν(t))− pν(uν(t)) (vν − uν(t)).

Next, we use (3.17) to see that vν − g ≤ 0; in addition, we use the contact condition (3.5) to
obtain

σν(t)(vν − uν(t)) ≥ −pν(uν(t))(vν − uν(t)) on Γ3.

Now, we integrate the last inequality on Γ3 to find that∫
Γ3

σν(t)(vν − uν(t)) da ≥ −
∫
Γ3

pν(uν(t))(vν − uν(t)) da on Γ3. (3.21)

Moreover, we use the friction law (3.6) to see that for uτ (t) ̸= 0,

στ (t)(vτ − uτ (t)) = −pτ (uν(t))
uτ (t)vτ

∥uτ (t)∥
+ pτ (uν(t)) ∥uτ (t)∥ . (3.22)

It is clear that the Cauchy-Schwartz inequality yields

−pτ (uν(t))
uτ (t)vτ

∥uτ (t)∥
+ pτ (uν(t)) ∥uτ (t)∥ ≥ −pτ (uν(t)) ∥vτ∥+ pτ (uν(t)) ∥uτ (t)∥ . (3.23)
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From (3.22)-(3.23), we obtain

στ (t)(vτ − uτ (t)) ≥ pτ (uν(t))(∥uτ (t)∥ − ∥vτ∥) if uτ (t) ̸= 0. (3.24)

On the other hand, if uτ (t) = 0, then

στ (t)(vτ − uτ (t)) = στ (t)vτ .

From the Cauchy-Schwartz inequality and (3.6), we obtain

στ (t)vτ ≥ −∥στ (t)∥ ∥vτ∥
≥ −pτ (uν(t)) ∥vτ∥ .

Since uτ (t) = 0, the last inequality can be written as follows

στ (t).vτ − στ (t).uτ (t) ≥ −pτ (uν(t)) ∥vτ∥+ pτ (uν(t)) ∥uτ (t)∥ ,

which yields

στ (t)(vτ − uτ (t)) ≥ −pτ (uν(t)) (∥vτ∥ − ∥uτ (t)∥) if uτ (t) = 0. (3.25)

We conclude from (3.24) and (3.25) that∫
Γ3
στ (t)(vτ − uτ (t)) da ≥

∫
Γ3

−pτ (uν(t)) (∥vτ∥ − ∥uτ (t)∥) da. (3.26)

We combine (3.20), (3.21) and (3.26) to find

(σ(t), ε(v − u(t)))H

≥
∫
Ω

f0(t)(v − u(t)) dx+
∫
Γ2

f2(t)(v − u(t))da

−
∫
Γ3

pν(uν(t))(vν − uν(t)) da−
∫

Γ3
pτ (uν(t))(∥vτ∥ − ∥uτ (t)∥) da.

(3.27)

Now, we use Riesz’s theorem to define the element f(t) ∈ V by

(f(t),v)V =

∫
Ω

f0(t) v dx+

∫
Γ2

f2(t) v da. (3.28)

From regularities (3.16), we find
f ∈ C (0, T ;V ). (3.29)

To complete the variational formulation of our problem, we use again Riesz’s theorem to define
the operator P : V → V such that

(Pu,v)V =

∫
Γ3

pν(uν) vν da ∀u, v ∈ V. (3.30)

It follows from (2.7) and hypothesis (3.14) that

(Pu− Pv,u− v)V ≥ 0, ∥Pu− Pv∥V ≤ c2
0Lν∥u− v∥V ∀u,v ∈ V, (3.31)

which means that P : V → V is a monotone and Lipschitz continuous operator.
Finally, we define the function j : V × V → R+ by

j(u,v) =

∫
Γ3

pτ (uν) ∥vτ∥ da. (3.32)

Now, we substitute (3.28), (3.30) and (3.32) in (3.27) to obtain

(σ(t), ε(v − u(t)))H + (Pu(t),v − u(t))V + j(u(t),v)− j(u(t),u(t))

≥ (f(t),v − u(t))V ∀v ∈ U.
(3.33)
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We combine (3.1) and (3.33) to find the following variational formulation of P .
Problem PV . Find a displacement field u : [0, T ] −→ U and a stress field
σ : [0, T ] −→ H such that

σ(t) = A ε(u(t)) +

t∫
0

R(t− s) ε(u(s)) ds, (3.34)

(σ(t), ε(v − u(t)))H + (Pu(t),v − u(t))V + j(u(t),v)− j(u(t),u(t))

≥ (f(t),v − u(t))V ∀v ∈ U.
(3.35)

4 Existence and uniqueness result

The existence and uniqueness of the solution of the variational problem PV is given in the
following result.

Theorem 4.1. Assume that hypothesis (3.12)-(3.16) are satisfied. Then, there exists a constant
L0 > 0 such that if Lτ < L0 , then problem PV has a unique solution (u,σ). Moreover, the
solution satisfies

u ∈ C(0, T ;U),

σ ∈ C(0, T ;H1).
(4.1)

Now, let us move on to the proof of Theorem 4.1 which will be carried out in several steps. We
assume in what follows that assumptions (3.12) -(3.16) are satisfied and, in what follows, we
denote by c a generic positive constant which may change from one place to another.
Step 1. For all η ∈ C(0, T ;H), we consider the following intermediate variational problem.
Problem PVη. Find a displacement field uη : [0, T ] → U and a stress field
ση : [0, T ] → H such that

ση = Aε(uη(t)) + η(t), (4.2)

(Aε(uη(t)), ε(v)− ε(uη(t)))H + (η(t), ε(v)− ε(uη(t)))H
+(Puη(t),v − uη(t))V + j(uη(t),v)− j(uη(t),uη(t)) ≥ (f(t),v − uη(t))V ∀v ∈ U.

(4.3)
We have the following existence and uniqueness result.

Lemma 4.2. There exists a unique solution (uη,ση) to problem PVη such that uη ∈ C(0, T ;U)
and ση ∈ C(0, T ;H1). Moreover, if ui = uηi

are two solutions of problem PVη corresponding
to ηi ∈ C(0, T ;H), i = 1, 2, then there exists a constant c > 0 such that

||u1(t)− u2(t)||V ≤ c ||η1(t)− η2(t)||H ∀t ∈ [0, T ]. (4.4)

Proof. We apply Theorem 2.2 on the space X = V with K = U . For this purpose, we recall that
U given in (3.17) is a nonempty closed convex subset of V , which means that it satisfies (2.10).
Next, we use Riez’s theorem to define the operator A : V → V and the function fη : [0, T ] → V
by equalities

(Au,v)V = (Aε(u), ε(v))H + (Pu,v)V , (4.5)

(fη (t) ,v)V = (f (t) ,v)V − (η (t) , ε(v))H, (4.6)

for all u,v ∈ V and t ∈ [0, T ].
First, we show that the operator A is strongly monotone and Lipschitz-continous. Let u1,u2 ∈ V .
We have

(Au1 −Au2,u1 − u2)V = (Aε(u1)−Aε(u2), ε(u1)− ε(u2))H + (Pu1 − Pu2,u1 − u2)V .

From the monotonicity of the operator P expressed in (3.31), we obtain

(Au1 −Au2,u1 − u2)V ≥ (Aε(u1)−Aε(u2), ε(u1)− ε(u2))H.
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We use now (3.12)(c) to see that

(Au1 −Au2,u1 − u2)V ≥ mA||ε(u1)− ε(u2)||2H.

Thus, (2.6) yields

(Au1 −Au2,u1 − u2)V ≥ mA||u1 − u2||2V . ∀u1,u2 ∈ V,

which shows that A is strongly monotone with constant mA.
Now, for u1,u2,v ∈ V , we have

(Au1 −Au2,v)V = (Aε(u1)−Aε(u2), ε(v))H + (Pu1 − Pu2,v)V ,

which implies

(Au1 −Au2,v)V ≤ ||Aε(u1)−Aε(u2)||H ||ε(v)||H + ||Pu1 − Pu2||V ||v||V .

The last inequality combined with the Lipschitz continuity of P expressed in (3.31) as well as
(3.12)(b) yields

(Au1 −Au2,v)V ≤ LA ||ε(u1)− ε(u2)||H ||ε(v)||H + Lνc
2
0 ||u1 − u2||V ||v||V .

We use now (2.6) to find that

(Au1 −Au2,v)V ≤ c ||u1 − u2||V ||v||V .

By choosing v = Au1 −Au2 in the previous inequality, we obtain

∥Au1 −Au2∥2
V ≤ c ||u1 − u2||V ||Au1 −Au2||V .

Hence,
||Au1 −Au2||V ≤ c ||u1 − u2||V ,

which shows that A is a Lipschitz continuous operator and then A satisfies conditions (2.11).
Next, we show conditions (2.12) on the function j. First it is easy to show that j(u, .) is a semi-
norm on V , for all u ∈ V . Moreover, we recall that ∥vτ∥ ≤ ∥v∥ to see that, for all u ∈ V , we
have

j(u,v) ≤
∫
Γ3

pτ (uν) ∥v∥ da.

Then, from (3.15), we deduce that

j(u,v) ≤ c ∥v∥L2(Γ3)d .

Hence, (2.7) yields
j(u,v) ≤ c ∥v∥V .

We can then deduce that j(u, .) is a continuous semi-norm on V ; therefore it is convex and lower
semi-continuous.
Now, for all u1,u2,v1,v2 ∈ V , we have

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)

=
∫

Γ3
pτ (u1ν) ∥v2τ∥ da−

∫
Γ3
pτ (u1ν) ∥v1τ∥ da

+
∫

Γ3
pτ (u2ν) ∥v1τ∥ da−

∫
Γ3
pτ (u2ν) ∥v2τ∥ da.

Therefore,
j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)

≤
∫

Γ3
|pτ (u1ν)− pτ (u2ν) | | ∥v2τ∥ − ∥v1ν∥ | da .

Condition (3.15) (b) yields

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2) ≤ Lτ

∫
Γ3

|u1ν − u2ν | | ∥v1τ∥ − ∥v2τ∥ | da ,
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Next, using inequalities (2.2), we have

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2) ≤ Lτ

∫
Γ3

∥u1 − u2∥ ∥v1 − v2∥ da .

Therefore,

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2) ≤ Lτ ∥u1 − u2∥L2(Γ3)d
∥v1 − v2∥L2(Γ3)d

.

Thus, inequality (2.7) yields

j(u1,v2)− j(u1,v1) + j(u2,v1)− j(u2,v2)

≤ α ∥u1 − u2∥V ∥v1 − v2∥V ,
(4.7)

for all u1,u2,v1,v2 ∈ V , with α = c2
0 Lτ . Note that (4.7) shows that condition (2.12) (b) is

satisfied for α = c2
0 Lτ .

Finally, for the condition (2.13) to be satisfied, we must have

mA > c2
0 Lτ .

Therefore,
Lτ <

mA

c2
0
.

Thus, we take L0 =
mA

c2
0

. Hence, if Lτ < L0, this implies mA > c2
0 Lτ , which means that

condition (2.13) of Theorem 2.2 is actually satisfied.
Consequently, it follows from Theorem 2.2 that there exists a unique solution uη(t) ∈ U of the
variational inequality

(Auη(t),v − uη(t))V + j(uη(t),v)− j(uη(t),uη(t)) ≥ (fη(t),v − uη(t))V ∀v ∈ U. (4.8)

In the end, we combine (4.5), (4.6) and (4.8) to see that uη(t) ∈ U is the unique solution of
Problem PVη.
Let us now prove the regularity of the solution uη. To this end, let t1, t2 ∈ [0, T ] and let use the
notations uη(ti) = ui, η(ti) = ηi, f(ti) = fi, for i=1,2. We write (4.3) by replacing t with t1
and by taking v = u2 and then by replacing t with t2 and by taking v = u1; after an elementary
calculation we obtain

(Aε(u1)−Aε(u2), ε(u1 − u2))H + (Pu1 − Pu2,u1 − u2)V ≤ (η1 − η2, ε(u2 − u1))H

+j(u1,u2)− j(u1,u1) + j(u2,u1)− j(u2,u2) + (f1 − f2,u1 − u2)V ,

By tacking into account (3.12)(c) and the monotonicity of P expressed in (3.31), we obtain

mA||ε(u1 − u2)||2H ≤ (η1 − η2, ε(u2 − u1))H + (f1 − f2,u1 − u2)V

+j(u1,u2)− j(u1,u1) + j(u2,u1)− j(u2,u2)

≤ ||η1 − η2||H ||ε(u2 − u1)||H + ||f1 − f2||V ||u1 − u2||V
+j(u1,u2)− j(u1,u1) + j(u2,u1)− j(u2,u2).

We recall (2.6) and (4.7) to find

mA||u1 − u2||2V ≤ ||η1 − η2||H ||u2 − u1||V + ||f1 − f2||V ||u1 − u2||V

+c2
0 Lτ ∥u1 − u2∥2

V .

Since mA > c2
0 Lτ , we deduce that

||u1 − u2||V ≤ c (||η1 − η2||H + ||f1 − f2||V ).

We combine the last inequality with (3.29) and the regularity η ∈ C(0, T ;H) to obtain uη ∈
C(0, T ;U).
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Now, let ση be the function defined by (4.2), then, uη(t) ∈ U ⊂ V et η(t) ∈ H imply ση(t) ∈ H.
Also, for all t1, t2 ∈ [0, T ],

||ση(t1)− ση(t2)||H ≤ ||Aε(uη(t1))−Aε(uη(t2))||H + ||η(t1)− η(t2)||H,

From (3.12)(b) and (2.6), we obtain

||ση(t1)− ση(t2)||H ≤ LA ||uη(t1)− uη(t2)||V + ||η(t1)− η(t2)||H,

and by taking into account the regularities uη ∈ C(0, T ;U) and η ∈ C(0, T ;H), we deduce that
ση ∈ C(0, T ;H).
In order to have the regularity ση ∈ C(0, T ;H1) of the stress field, we test (4.3) with v =
uη(t) +φ then with v = uη(t)−φ, where φ ∈ C∞

0 (Ω)d, we obtain
(Aε(uη(t)), ε(φ))H + (η(t), ε(φ))H + (Puη(t),φ)V

+j(uη(t),φ)− j(uη(t),uη(t)) ≥ (f(t),φ)V ,

(Aε(uη(t)), ε(−φ))H + (η(t), ε(−φ))H + (Puη(t),−φ)V

+j(uη(t),−φ)− j(uη(t),uη(t)) ≥ (f(t),−φ)V ,

which is equivalent to

(ση(t), ε(φ))H + (Puη(t),φ)V + j(uη(t),φ)− j(uη(t),uη(t)) ≥ (f(t),φ)V ,
(ση(t), ε(−φ))H + (Puη(t),−φ)V + j(uη(t),−φ)− j(uη(t),uη(t)) ≥ (f(t),−φ)V .

We recall that j(uη(t),uη(t)) ≥ 0, so we obtain

(ση(t), ε(φ))H + (Puη(t),φ)V + j(uη(t),φ) ≥ (f(t),φ)V ,
(ση(t), ε(−φ))H + (Puη(t),−φ)V + j(uη(t),−φ) ≥ (f(t),−φ)V .

Since φ ∈ C∞
0 (Ω)d, it follows that

(ση(t), ε(φ))H ≥ (f(t),φ)V ,

(ση(t), ε(−φ))H ≥ (f(t),−φ)V .

which yields
(ση(t), ε(φ))H = (f(t),φ)V ∀t ∈ [0, T ].

Therefore, by using (3.28) and the definition of the weak divergence, we obtain

(Div ση(t),φ)L2(Ω)d = (−f0(t),φ)L2(Ω)d ∀φ ∈ C∞
0 (Ω)d.

Since the space C∞
0 (Ω)d is dense in L2(Ω)d, we conclude that

Div ση(t) = −f0(t) ∀t ∈ [0, T ]. (4.9)

The last equality combined with the hypothesis (3.16) on f0 implies Div ση(t) ∈ H and, conse-
quently, ση ∈ H1. Finally, we note that the induced norm of the scalar product on H1 which has
been defined in section 2, allows us to write

∥ση (t1)− ση (t2)∥2
H1

= ∥ση (t1)− ση (t2)∥2
H + ∥Div (ση (t1))−Div (ση (t2))∥

2
H .

Therefore, (4.9), (3.16) and the regularity ση ∈ C(0, T ;H) show that ση ∈ C(0, T ;H1). Thus,
we complete the demonstration of the existence of the solution (uη,ση) to Problem PVη. The
uniqueness of the latter comes from the unique solvability of the equality (4.3).
Let us move on to the demonstration of the estimate (4.4). For that purpose, let η1 and η2 be of
C(0, T ;H). Let us use the notations ui = uηi

, for i = 1, 2. Next, we write (4.3) for η = η1 by
taking v = u2 and then for η = η2 by taking v = u1, after an elementary calculation we obtain

(Aε(u1)−Aε(u2), ε(u1 − u2))H + (Pu1 − Pu2,u1 − u2)V

≤ (η2 − η1, ε(u1 − u2))H + j(u1,u2)− j(u1,u1) + j(u2,u1)− j(u2,u2).
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From the monotonicity of P expressed in (3.31), while using (3.12)(c) and (4.7), we obtain

mA ||ε(u1)− ε(u2)||2H ≤ ||η2 − η1||H ||ε(u1)− ε(u2)||H + c2
0 Lτ ∥u1 − u2∥2

V .

We know that mA > c2
0 Lτ and we use (2.6) to find

||u1 − u2||V ≤ c ||η1 − η2||H,

which completes the proof of the estimate (4.4).

Step 2. We use the solution uη ∈ C(0, T ;U) of problem PVη and we consider the operator
Λ which associates to any element η ∈ C(0, T ;H), the element

Λη(t) =

t∫
0

R(t− s) ε(uη(s)) ds, (4.10)

for all t ∈ [0, T ]. We get the following result.

Lemma 4.3. The operator Λ takes its values in the set C(0, T ;H). Moreover, it has only one
fixed point η∗ ∈ C(0, T ;H).

Proof. For η ∈ C(0, T ;H), we use (4.10), (2.5), (2.6), (3.13) and the regularity uη ∈ C(0, T ;V )
to conclude that Λη(t) ∈ H. Also, it is easy to see that t 7→ Λη(t) is continuous from [0, T ] to
the space H.
Let us move on to the proof of the second part of Lemma 4.3. For this purpose, we consider η1,
η2 ∈ C(0, T ;H) and, for simplicity, we use the notations uηi = ui, i = 1, 2. We use (2.5) to
deduce that

||Λη1(t)− Λη2(t)||H ≤
t∫

0

||R(t− s) (ε(u1(s))− ε(u2(s)))||H ds

≤ d max
s∈[0,T ]

||R(s) ||H∞

t∫
0

||ε(u1(s))− ε(u2(s)))||H ds.

Thus, (2.6), (3.13) and the last inequality provide

||Λη1(t)− Λη2(t)||H ≤ c

t∫
0

||u1(s)− u2(s)||V ds. (4.11)

We now combine (4.11) and (4.4) to deduce that

||Λη1(t)− Λη2(t)||H ≤ c

t∫
0

||η1(s)− η2(s)||H ds.

Finally, the application of Theorem 2.1 allows us to conclude the proof.

We now have all necessary to proof the Theorem 4.1.

Proof. Let η∗ ∈ C(0, T ;H) be the fixed point of the operator Λ and let u∗ and σ∗ be the
functions defined by

u∗(t) = uη∗(t), (4.12)

σ∗(t) = A ε(u∗(t)) +

t∫
0

R(t− s) ε(u∗(s)) ds, (4.13)
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For all t ∈ [0, T ]. We recall that η∗ = Λη∗ and we use (4.10) and (4.12) to obtain

η∗(t) =

t∫
0

R(t− s) ε(u∗(s))ds. (4.14)

Now, we show that the couple (u∗,σ∗) satisfies the system (3.34)-(3.35). Firstly, we note that
(3.34) is an immediate consequence of (4.13). Next, we write (4.3) for η = η∗ and we use
(4.12)-(4.14) to see that (3.35) is verified. This means that the couple (u∗,σ∗) is a solution of
the problem PV . The regularity of the latter expressed in (4.1) is a direct consequence of the
Lemma 4.2.
Uniqueness. The uniqueness of the solution arises from the uniqueness of the fixed point of the
operator Λ defined by (4.10) combined with the unique solvability of the Problem PVη. In fact,
let (u,σ) be a solution of Problem PV satisfying (4.1) and let η ∈ C(0, T ;H) be given by

η(t) =

t∫
0

R(t− s) ε(u(s)) ds ∀t ∈ [0, T ]. (4.15)

We substitute the equality (3.34) in (3.35) and we use (4.15) to deduce that u satisfies the in-
equality (4.3), for all t ∈ [0, T ]. On the other hand, it follows from Lemma 4.2 that the Problem
PVη has a unique solution denoted uη having the regularity uη ∈ C(0, T ;U). So we conclude
that

u = uη. (4.16)

We use (4.16) to see that

t∫
0

R(t− s) ε(uη(s)) ds =

t∫
0

R(t− s) ε(u(s)) ds ∀t ∈ [0, T ].

Consequently, (4.10) and (4.15) show that Λη = η and, using the uniqueness of the fixed point
of the operator Λ, it comes that

η = η∗. (4.17)

Now, we use (4.16), (4.17) and (4.12) to see that

u = uη = uη∗ = u∗. (4.18)

Next, we use (3.34), (4.18) and (4.13) to deduce that

σ(t) = A ε(u(t)) +
t∫

0
R(t− s) ε(u(s)) ds,

= A ε(u∗(t)) +
t∫

0
R(t− s) ε(u∗(s)) ds,

= σ∗(t),

(4.19)

for all t ∈ [0, T ]. The uniqueness of the solution (u,σ) is a consequence of equalities (4.18) and
(4.19).

5 A convergence result

In this section, we study the dependence of the solution of the Problem PV with respect to data
perturbations. To this end, we assume in what follows that (3.12)-(3.16) are satisfied. In addition,
we assume that

Lτ < L0 where L0 =
mA

c2
0
, (5.1)

and we note by u the solution of the Problem PV obtained in Theorem 4.1.
for all ρ > 0, f0ρ and f2ρ represent perturbations of f0 and f2 and pνρ, pτρ are the perturbations of
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pν et pτ , respectively. Let us assume that f0ρ and f2ρ satisfy (3.16) and that pνρ, pτρ satisfy (3.14)
and (3.15) with Lipschitz’s constants Lνρ and Lτρ respectively. In addition, we assume that

Lτρ < L0 ∀ρ > 0, (5.2)

where L0 =
mA

c2
0

. By using these new data, we define the operator Pρ : V −→ V and the

functions fρ : [0, T ] −→ V and jρ : V × V −→ R+ by the equalities

(Pρ u,v)V =

∫
Γ3

pνρ(uν) vν da ∀u,v ∈ V, (5.3)

(fρ(t),v)V =

∫
Ω

f0ρ(t)v dx+

∫
Γ2

f2ρ(t)v da ∀u,v ∈ V, t ∈ [0, T ], (5.4)

jρ(u,v) =

∫
Γ3

pτρ(uν) ∥ vτ ∥ da ∀u,v ∈ V. (5.5)

It is clear that the assumptions (3.14) on pνρ show that the operator Pρ satisfies (3.31); i.e. that it
is a monotone and Lipschitz-continuous operator. Also, the assumptions (3.15) on pτρ show that
the function jρ satisfies (4.7) for α = c2

0 Lτρ. We consider the following variational problem.
Problem PVρ. Find a displacement field uρ : [0, T ] → U such that, for all t ∈ [0, T ],

(Aε(uρ(t)), ε(v)− ε(uρ(t)))H + (
t∫

0
R(t− s) ε(uρ(s)) ds, ε(v)− ε(uρ(t)))H

+(Pρuρ(t),v − uρ(t))V + jρ(uρ,v)− jρ(uρ(t),uρ(t)) ≥ (fρ(t),v − uρ(t))V ∀v ∈ U.
(5.6)

Since the problem’s data satisfy the assumptions (3.12)-(3.16) and (5.2), then it follows from
Theorem 4.1 that for all ρ > 0, the Problem PVρ has a unique solution uρ such that

uρ ∈ C(0, T ;U). (5.7)

We now introduce some supplementary assumptions on the functions pνρ, pτρ, f0ρ and f2ρ which
are given by 

For e = ν, τ :
(a)There exists Ge : R+ −→ R and q ∈ R+ such that
|peρ(x, r)− pe(x, r)| ≤ Ge(ρ) (|r|+ q)

∀r ∈ R+, a.e. x ∈ Γ3, for all ρ > 0.
(b)Ge(ρ) −→ 0 when ρ −→ 0.

(5.8)

f0ρ −→ f0 in C(0, T ;H) when ρ −→ 0. (5.9)

f2ρ −→ f2 in C(0, T ;L2(Γ2)
d) when ρ −→ 0. (5.10)

We have the following convergence result.

Theorem 5.1. Under the assumptions (5.8) − (5.10), the solution uρ of Problem PVρ converges
to the solution u of Problem PV ; that is to say

uρ −→ u in C(0, T ;V ) when ρ −→ 0. (5.11)

Proof. Let ρ > 0 and t ∈ [0, T ]. We take v = u(t) in (5.6) and v = uρ(t) in (3.35); after an
elementary calculation we obtain

(Aε(uρ(t))−Aε(u(t)), ε(uρ(t))− ε(u(t)))H ≤

(
t∫

0
R(t− s) (ε(uρ(s))− ε(u(s)) ds, ε(u(t))− ε(uρ(t)))H

+(Pρuρ(t)− Pu(t),u(t)− uρ(t))V + jρ(uρ(t),u(t))− jρ(uρ(t),uρ(t))

+j(u(t),uρ(t))− j(u(t),u(t)) + (fρ(t)− f(t),uρ(t)− u(t))V ,

(5.12)
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First, from assumptions (3.12) (c) and (2.6), it follows that

(Aε(uρ(t))−Aε(u(t)), ε(uρ(t))− ε(u(t)))H ≥ mA ∥ uρ(t)− u(t) ∥2
V . (5.13)

Also,

(
t∫

0
R(t− s) (ε(uρ(s))− ε(u(s))) ds, ε(u(t))− ε(uρ(t)))H

≤ (
t∫

0
∥ R(t− s) (ε(uρ(s))− ε(u(s))) ∥H ds) ∥ ε(u(t))− ε(uρ(t)) ∥H .

Therefore, (2.5) and (2.6) yield

(
t∫

0
R(t− s) (ε(uρ(s))− ε(u(s))) ds, ε(u(t))− ε(uρ(t)))H

≤ d (
t∫

0
∥ R(t− s) ∥H∞ ∥ uρ(s)− u(s) ∥V ds) ∥ u(t)− uρ(t) ∥V .

Hence,

(
t∫

0
R(t− s) (ε(uρ(s))− ε(u(s))) ds, ε(u(t))− ε(uρ(t)))H

≤ d maxz∈[0,T ] ∥ R(z) ∥H∞ (
t∫

0
∥ uρ(s)− u(s) ∥V ds) ∥ u(t)− uρ(t) ∥V .

(5.14)

Next, we use (5.3) and (3.30) to see that

(Pρuρ(t)− Pu(t),u(t)− uρ(t))V =
∫

Γ3
(pνρ(uρν(t))− pν(uν(t))) (uν(t)− uρν(t)) da

=
∫

Γ3
(pνρ(uρν(t))− pνρ(uν(t)) + pνρ(uν(t))− pν(uν(t))) (uν(t)− uρν(t)) da.

(5.15)
We write,

(pνρ(uρν(t))− pνρ(uν(t)) + pνρ(uν(t))− pν(uν(t))) (uν(t)− uρν(t))

= (pνρ(uρν(t))− pνρ(uν(t))) (uν(t)− uρν(t)) + (pνρ(uν(t))− pν(uν(t))) (uν(t)− uρν(t)).

From (3.14)(b), the first term of this sum is non positive; hence

(pνρ(uρν(t))− pνρ(uν(t)) + pνρ(uν(t))− pν(uν(t))) (uν(t)− uρν(t))

≤ (pνρ(uν(t))− pν(uν(t))) (uν(t)− uρν(t)).
(5.16)

From (5.15)-(5.16), we deduce that

(Pρuρ(t)− Pu(t),u(t)− uρ(t))V ≤
∫

Γ3
(pνρ(uν(t))− pν(uν(t))) (uν(t)− uρν(t)) da

≤
∫

Γ3
|pνρ(uν(t))− pν(uν(t))| |uν(t)− uρν(t)| da.

(5.17)
Now we use (5.8) (a) and (5.17) to obtain

(Pρuρ(t)− Pu(t),u(t)− uρ(t))V ≤
∫

Γ3

Gν(ρ)(|uν(t)|+ q) |uν(t)− uρν(t)| da,

and by using (2.7), after an elementary computation, we find that

(Pρuρ(t)− Pu(t),u(t)− uρ(t))V
≤ Gν(ρ) c2

0 ∥ u(t) ∥V ∥ uρ(t)− u(t) ∥V +Gν(ρ) q mes(Γ3)1/2 c0 ∥ uρ(t)− u(t) ∥V ,

which yields

(Pρuρ(t)− Pu(t),u(t)− uρ(t))V
≤ Gν(ρ)(c2

0 ∥ u(t) ∥V +c0 q mes(Γ3)1/2) ∥ uρ(t)− u(t) ∥V .
(5.18)
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On the other hand, definitions (5.5) and (3.32) imply

jρ(uρ(t),u(t))− jρ(uρ(t),uρ(t)) + j(u(t),uρ(t))− j(u(t),u(t))

=
∫

Γ3
(pτρ(uρν(t))− pτ (uν(t)))(∥ uτ (t) ∥ − ∥ uρτ (t) ∥) da

≤
∫

Γ3
|pτρ(uρν(t))− pτ (uν(t))| | ∥ uτ (t) ∥ − ∥ uρτ (t) ∥ | da,

which yields by using (2.2),

jρ(uρ(t),u(t))− jρ(uρ(t),uρ(t)) + j(u(t),uρ(t))− j(u(t),u(t))

≤
∫

Γ3
|pτρ(uρν(t))− pτ (uν(t))| ∥ u(t)− uρ(t) ∥ da.

(5.19)

We now use (5.8)(a) and (3.15)(b) to see that

|pτρ(uρν(t))− pτ (uν(t))| = |pτρ(uρν(t))− pτ (uρν(t)) + pτ (uρν(t))− pτ (uν(t))|
≤ |pτρ(uρν(t))− pτ (uρν(t))|+ |pτ (uρν(t))− pτ (uν(t))|
≤ Gτ (ρ)(|uρν(t)|+ q) + Lτ |uρν(t)− uν(t)|.

(5.20)

Thus, (5.20) and (2.2) yield

∫
Γ3

|pτρ(uρν(t))− pτ (uν(t))| ∥ u(t)− uρ(t) ∥ da

≤
∫

Γ3
Gτ (ρ)(∥ uρν(t) ∥ +q) ∥ u(t)− uρ(t) ∥ da+

∫
Γ3

Lτ ∥ uρ(t)− u(t) ∥2 da.

By an elementary calculation, we find from the last inequality,

∫
Γ3
|pτρ(uρν(t))− pτ (uν(t))| ∥ u(t)− uρ(t) ∥ da

≤ Gτ (ρ) c2
0 ∥ uρ(t) ∥V ∥ u(t)− uρ(t) ∥V +Gτ (ρ) c0 q mes(Γ3)1/2 ∥ u(t)− uρ(t) ∥V

+Lτ c
2
0 ∥ uρ(t)− u(t) ∥2

V .
(5.21)

We deduce from (5.19) and (5.21) that

jρ(uρ(t),u(t))− jρ(uρ(t),uρ(t)) + j(u(t),uρ(t))− j(u(t),u(t))

≤ Gτ (ρ) (c2
0 ∥ uρ(t) ∥V +c0 q mes(Γ3)1/2) ∥ u(t)− uρ(t) ∥V +Lτ c

2
0 ∥ uρ(t)− u(t) ∥2

V .
(5.22)

Finally, we note that

(fρ(t)− f(t),uρ(t)− u(t))V ≤∥ fρ(t)− f(t) ∥V ∥ uρ(t)− u(t) ∥V
≤ δρ ∥ uρ(t)− u(t) ∥V ,

where

δρ = max
z∈[0,T ]

∥ fρ(z)− f(z) ∥V (5.23)

We combine (5.12), (5.13), (5.14), (5.18), (5.22) and (5.23) to deduce that

mA ∥ uρ(t)− u(t) ∥2
V

≤ d maxz∈[0,T ] ∥ R(z) ∥H∞ (
t∫

0
∥ uρ(s)− u(s) ∥V ds) ∥ (u(t)− uρ(t)) ∥V

+Gν(ρ) (c2
0 ∥ u(t) ∥V +c0 q mes(Γ3)1/2) ∥ uρ(t)− u(t) ∥V

+Gτ (ρ) (c2
0 ∥ uρ(t) ∥V +c0 q mes(Γ3)1/2) ∥ u(t)− uρ(t) ∥V +Lτ c

2
0∥uρ(t)− u(t)∥2

V

+δρ ∥ uρ(t)− u(t) ∥V .
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Since mA > Lτ c
2
0 , we obtain

∥ uρ(t)− u(t) ∥V

≤
d maxz∈[0,T ] ∥ R(z) ∥H∞

mA − Lτ c2
0

t∫
0

∥ uρ(s)− u(s) ∥V ds

+
Gν(ρ)

mA − Lτ c2
0
(c2

0 ∥ u(t) ∥V +c0 q mes(Γ3)1/2)

+
Gτ (ρ)

mA − Lτ c2
0
(c2

0 ∥ uρ(t) ∥V +c0 q mes(Γ3)1/2)

+
δρ

mA − Lτ c2
0
.

(5.24)

Let ξ = max(ξu, ξuρ ,
1

mA − Lτ c2
0
) where

ξu =
1

mA − Lτ c2
0
(c2

0 max
z∈[0,T ]

∥ u(z) ∥V +c0 q mes(Γ3)
1/2 ),

ξuρ
=

1
mA − Lτ c2

0
(c2

0 max
z∈[0,T ]

∥ uρ(z) ∥V +c0 q mes(Γ3)
1/2 ).

Then, (5.24) implies

∥ uρ(t)−u(t) ∥V ≤ (Gν(ρ)+Gτ (ρ)+δρ)ξ+
d maxz∈[0,T ] ∥ R(z) ∥H∞

mA − Lτ c2
0

t∫
0

∥ uρ(s)−u(s) ∥V ds.

Using Gronwell’s inequality, we obtain

∥ uρ(t)− u(t) ∥V ≤ (Gν(ρ) +Gτ (ρ) + δρ) ξ e

d ∥ R ∥C(0,T ;H∞)

mA − Lτ c2
0

t

,

and, by using the inequality ect ≤ ecT where t ∈ [0, T ], we infer that

max
t∈[0,T ]

∥ uρ(t)− u(t) ∥V ≤ (Gν(ρ) +Gτ (ρ) + δρ) ξ e

d ∥ R ∥C(0,T ;H∞)

mA − Lτ c2
0

T

. (5.25)

From assumptions (5.8)(b), (5.9), (5.10) and the definition (5.23), we have

Gν(ρ) −→ 0 , Gτ (ρ) −→ 0 , δρ −→ 0 when ρ −→ 0. (5.26)

By combining the convergence (5.26) with the inequality (5.25), we obtain

max
t∈[0,T ]

∥ uρ(t)− u(t) ∥V −→ 0 when ρ −→ 0. (5.27)

Finally, from (5.27) and the definition (2.9), we conclude that the convergence (5.11) is satisfied.
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