weakly 1 -absorbing δ-primary ideal

M. Chhiti and K. Kaiba

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13A99; Secondary 13C13.
Keywords and phrases: weakly 1 -absorbing δ-primary ideal, weakly 1 -absorbing primary ideal, 1 -absorbing δ-primary ideal, trivial ring extension.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract

Throughout this study, we present a new class of δ-primary ideals, called weakly 1 -absorbing δ-primary ideal. Let R be a commutative ring with a non-zero identity. Let $\mathcal{I}(R)$ be the set of all ideals of R and let $\delta: \mathcal{I}(R) \rightarrow \mathcal{I}(R)$ be a function. δ is called an expansion function of ideals of R if $I \subseteq \delta(I)$ and if $L \subseteq J$, then $\delta(L) \subseteq \delta(J)$, for each I, L and J are ideals of R. A proper ideal I of R is said to be a weakly 1-absorbing δ-primary ideal if $0 \neq a b c \in I$, then $a b \in I$ or $c \in \delta(I)$ for each a, b, c non-unit elements of R. We investigate some basic properties of this class of ideals and we study the weakly 1-absorbing δ-primary ideals of the localization of rings, the direct product of rings, and the trivial ring extensions.

1 Introduction

Let R be a commutative ring with a non-zero identity. We called I a proper ideal of R if $I \neq R$. Suppose that I is an ideal of R. We mean by \sqrt{I} the radical of I defined by $\sqrt{I}=\left\{a \in R: a^{n} \in I\right.$ for some $n \in \mathbb{N}\}$. In particular, $\sqrt{0}$ is the set of all nilpotents in R; i.e, $\left\{a \in R: a^{n}=0\right.$ for some $n \in \mathbb{N}\}$. Let S be a nonempty subset of R. Then the ideal $\{a \in R: a S \subseteq I\}$, which contains I, will be designated by $(I: S)$.

The prime ideal, which is an important subject of ideal theory, has been widely studied by various authors. Among the many generalizations of the notion of prime ideals in the literature, we find the following, due to Anderson and Smith [1]. A proper ideal I of R is called a weakly prime ideal of R if whenever $a, b \in R$ and $0 \neq a b \in I$, then $a \in I$ or $b \in I$. Then Atani and Farzalipour introduced the concept of weakly primary ideals which is a generalization of primary ideals in [3]. A proper ideal I of R is called a weakly primary ideal of R if whenever $a, b \in R$ and $0 \neq a b \in I$, then $a \in I$ or $b \in \sqrt{I}$. In recent studies [4] and [5] A. Badawi and Y. Celikel introduced the concept of 1-absorbing primary ideal and weakly 1-absorbing primary ideal. A proper ideal I of R is called a 1-absorbing primary ideal (weakly 1-absorbing primary ideal) if whenever non-unit elements $a, b, c \in R$ and $(0 \neq a b c) a b c \in I$, then $a b \in I$ or $c \in \sqrt{I}$.

Zhao in [16] introduced the concept of expansions of ideals, a function δ from $\mathcal{I}(R)$ to $\mathcal{I}(R)$ is an ideal expansion if it has the following properties: $I \subseteq \delta(I)$ and if $I \subseteq J$ for some ideals I, J of R, then $\delta(I) \subseteq \delta(J)$. For example, δ_{0} is the identity function, where $\delta_{0}(I)=I$ for all ideals I of R, and δ_{1} is defined by $\delta_{1}(I)=\sqrt{I}$. For other examples, consider the functions δ_{+}and δ_{*} of $\mathcal{I}(R)$ defined with $\delta_{+}(I)=I+J$, where $J \in \mathcal{I}(R)$ and $\delta_{*}(I)=(I: P)$, where $P \in \mathcal{I}(R)$ for all $I \in \mathcal{I}(R)$, respectively. Also in [16] introduced the concept of δ-primary ideal. A proper ideal I of R is said to be a δ-primary ideal of R if whenever $a, b \in R$ with $a b \in I$, we have $a \in I$ or $b \in \delta(I)$, where δ is an expansion function of ideals of R. As a generalization of 1-absorbing primary ideal the authors of [13] introduce the notion of 1-absorbing δ-primary ideal. A proper ideal I of R is called 1-absorbing δ-primary ideal if whenever non-unit elements $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $c \in \delta(I)$.
In this paper, we introduce and investigate a new concept of ideals that is closely related to the
class of δ-primary ideals. A proper ideal I of R is said to be a weakly 1-absorbing δ-primary ideal if whenever non-unit elements $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $c \in \delta(I)$. For example, let $\delta: \mathcal{I}(R) \longrightarrow \mathcal{I}(R)$ such that $\delta(I)=\sqrt{I}$ for each ideal I of R. Then δ is an expansion function of ideals of R, and hence a proper ideal I of R is a weakly 1-absorbing δ-primary ideal of R if and only if I is a weakly 1-absorbing primary ideal of R. Among many results in this paper are given to disclose the relations between this new class and others that already exist. The reader may find it helpful to keep in mind the implications noted in the following figures where all arrows are irreversible.

```
primary \longrightarrowweakly primary \longrightarrow weakly 1-absorbing \delta-primary
    \downarrow
\delta primary \longrightarrow 1-absorbing \delta-primary \longrightarrow weakly 1-absorbing \delta-primary
```

Let E be an A-module. the set $A \propto E=\{(a, e): r \in A, e \in E\}$ is called the trivial (ring) extension of A by E; is a commutative ring with coordinate-wise addition and the multiplication $(a, e)(b, f):=(a b, a f+b e)$ for each $a ; b \in A$ and all $e ; f \in E$. (This construction is also known by other terminology and other notation, such as the idealization $A(+) E$.$) see [14, 15, 2, 12]$

2 Main Results

We start this section with the following definition.
Definition 2.1. Let R be a commutative ring and I a proper ideal of R. We call I a weakly 1 -absorbing δ-primary ideal of R if whenever non-unit elements $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $c \in \delta(I)$.

We can easily see that every weakly 1-absorbing δ-prime is weakly 1-absorbing δ-primary. Now we give an example that shows that the converse is not always true.

Example 2.2. Let $R:=K\left[\left[X_{1}, X_{2}, X_{3}\right]\right]$ be a ring of formal power series where K is a field. Consider the expansion function $\delta: \mathcal{I}(\mathcal{R}) \longrightarrow \mathcal{I}(\mathcal{R})$ defined by $\delta(I)=I+M$ where $M=$ $\left(X_{1}, X_{2}, X_{3}\right)$ is the maximal ideal of R. Let $I=\left(X_{1} X_{2} X_{3}\right)$ be an ideal of R. Thus, I is not a 1 -absorbing prime ideal of R since $0 \neq X_{1} X_{2} X_{3} \in I$ but neither $X_{1} X_{2} \in I$ nor $X_{3} \in I$. Now, let x, y, z be non-unit elements of R such that $0 \neq x y z \in I$. Clearly I is a weakly 1 -absorbing δ-primary because $z \in \delta(I)=M$.

It is clear that every 1-absorbing δ-primary ideal of a ring R is a weakly 1-absorbing primary ideal of R, and $I=\{0\}$ is a weakly 1-absorbing δ-primary ideal of R. The following example shows that the converse is not true.

Example 2.3. (i) Let $R=\mathbb{Z}_{6}$ and $\delta_{+}(P)=P+J$ where $J=2 \mathbb{Z}_{6}$. It's clear that $I=\{0\}$ is a weakly 1 -absorbing δ-primary ideal of R. But is not 1 -absorbing δ primary of R . Indeed, 2.2.3 $\in I$ but neither $2.2 \in I$ nor $3 \in \delta_{+}(I)=J$.
(ii) Let $R=\mathbb{Z}_{12} \propto J$ with $J=6 \mathbb{Z}_{12}$, we consider $\delta(K)=\sqrt{K}$. Let $I=0 \propto J$ be ideal of R . Observe that $a b c \in I$ for some $a, b, c \in R \backslash I$ if and only if $a b c=(0,0)$. which implies I is a weakly 1 -absorbing δ-primary ideal of R. However, it is not a 1 -absorbing primary ideal of R. Indeed; $(2,0)(2,0)(3,0) \in I$, but neither $(2,0)(2,0) \in I$ nor $(3,0) \in \delta(I)$.

Proposition 2.4. If R / I is an integral domain, then I is a weakly 1-absorbing δ-primary ideal if and only if I is a 1 -absorbing δ-primary ideal of R.

Proof. Suppose that R / I is an integral domain and I is a weakly 1 -absorbing δ-primary ideal. Let $a b c \in I$ for some $a, b, c \in R$. If $a b c \neq 0$ it's clear. Now let $a b c=0$, suppose that $a b \notin I$ and $c \notin \delta(I)$ then $c \notin I$. That implies $\overline{a b c}=\overline{0}$ in R / I with $\overline{a b} \neq \overline{0}$ and $\bar{c} \neq \overline{0}$, and that contradicts the fact that R / I is an integral domain. For the converse, it's clear.

Theorem 2.5. Assume that R is not a quasilocal ring. Let I be a proper ideal of R such that for all $i \in I$ we have $(0: i)$ is not a maximal ideal of R. Then, I is a weakly 1-absorbing δ-primary ideal of R if and only if I is a weakly δ-primary ideal of R.

Proof. Suppose that I is a weakly 1 -absorbing δ-primary ideal of R and suppose that $0 \neq a b \in I$ for some elements $a, b \in R$. We may assume that a, b are non-unit elements of R. Let $K=(0$: $a b)$. Since $a b \neq 0, K$ is a proper ideal of R. Since K is not a maximal ideal, Then there exists L a maximal ideal of R such that $K \subset L$. since R is a non-quasilocal ring. Then there is a maximal ideal M of R such that $M \neq L$. Let $m \in M \backslash L$. Hence $m \notin K$ and $0 \neq m a b \in I$. Since I is a weakly 1 -absorbing δ-primary ideal of R, we have $m a \in I$ or $b \in \delta(I)$. If $b \in \delta(I)$, then we are done. Hence assume that $b \notin \delta(I)$. Hence $m a \in I$. Since $m \notin L$ and L is a maximal ideal of R, we conclude that $m \notin J(R)$. Hence there exists an $r \in R$ such that $1+r m$ is a non-unit element of R. Suppose that $1+r m \notin K$. Hence $0 \neq(1+r m) a b \in I$. Since I is a weakly 1 -absorbing δ-primary ideal of R and $b \notin \delta(I)$, we conclude that $(1+r m) a=a+r m a \in I$. Since $r m a \in I$, we have $a \in I$ and we are done. Suppose that $1+r m \in K$. Since K is not a maximal ideal of R and $K \subset L$, there is a $w \in L \backslash K$. Hence $0 \neq w a b \in I$. Since I is a weakly 1 -absorbing δ-primary ideal of R and $b \notin \delta(I)$, we conclude that $w a \in I$. Since $1+r m \in K \subset L$ and $w \in L \backslash K$, we have $1+r m+w$ is a non-zero non-unit element of L. Hence $0 \neq(1+r m+w) a b \in I$. Since I is a weakly 1 -absorbing δ-primary ideal of R and $b \notin \delta(I)$, we conclude that $(1+r m+w) a=a+r m a+w a \in I$. Since $r m a, w a \in I$, we get that $a \in I$. For the converse it's clear.

Theorem 2.6. Let I be a weakly 1-absorbing δ-primary ideal of R such that for every non-zero element $i \in I$, there exists a non-unit $w \in R$ such that $w i \neq 0$ and $w+u$ is a non-unit element of R for some unit $u \in R$. Then, I is a weakly δ-primary ideal of R.

Proof. Suppose that $0 \neq a b \in I$ and $b \notin \delta(I)$ for some $a, b \in R$. We may assume that a, b are non-unit elements of R. Hence, there is a non-unit $w \in R$ such that $w a b \neq 0$ and $w+u$ is a non-unit element of R for some unit $u \in R$. Since $0 \neq w a b \in I$ and $b \notin \delta(I)$ and I is a weakly 1absorbing δ-primary ideal of R, we conclude that $w a \in I$. Since $(w+u) a b \in I$ and I is a weakly 1 -absorbing δ-primary ideal of R and $b \notin \delta(I)$, we conclude that $(w+u) a=w a+u a \in I$. Since $w a \in I$ and $w a+u a \in I$, we conclude that $u a \in I$. Since u is a unit, we have $a \in I$.

Theorem 2.7. Let I be a weakly 1-absorbing δ-primary ideal of a ring R and let $d \in R \backslash I$ be a non-unit element of R. Then $(I: d)=\{x \in R \mid d x \in I\}$ is a weakly δ-primary ideal of R.

Proof. Suppose that $0 \neq a b \in(I: d)$ for some elements $a, b \in R$. Without loss of generality, we may assume that a and b are non-unit elements of R. Suppose that $a \notin(I: d)$. Since $d a b$ in I and I is a 1-absorbing δ-primary ideal of R, we conclude that $b \in \delta(I)$. So, $b \in \delta((I: d))$ and this completes the proof.

Proposition 2.8. Let R be a ring, I a proper ideal of R and δ be an ideal expansion. Then I is a weakly 1-absorbing δ-primary ideal if and only if whenever $0 \neq I_{1} I_{2} I_{3} \subseteq I$ for some proper ideals I_{1}, I_{2} and I_{3} of R, then $I_{1} I_{2} \subseteq I$ or $I_{3} \subseteq \delta(I)$

Proof. It suffices to prove the "if" assertion. Suppose that I is a weakly 1 -absorbing δ-primary ideal and let I_{1}, I_{2} and I_{3} be proper ideals of R such that $0 \neq I_{1} I_{2} I_{3} \subseteq I$ and $I_{3} \not \subset \delta(I)$. Thus $a b c \in I$ for every $a \in I_{1}, b \in I_{2}$ and $c \in I_{3} \backslash \delta(I)$. Since I is a weakly 1 -absorbing δ-primary ideal, we then have $I_{1} I_{2} \subseteq I$, as desired.

Definition 2.9. Let I be a weakly 1 -absorbing δ-primary ideal of R and a, b, c be non-unit elements of R. We call (a, b, c) a 1- δ-triple-zero of I if $a b c=0, a b \notin I$, and $c \notin \delta(I)$.

Observe that if I is a weakly 1-absorbing δ-primary ideal of R that is not 1 -absorbing δ primary, then there exists a 1- δ-triple-zero (a, b, c) of I for some non-unit elements $a, b, c \in R$.

Theorem 2.10. Let I be a weakly 1-absorbing δ-primary ideal of R, and (a, b, c) be a 1- δ-triplezero of I. Then
(i) $a b I=0$.
(ii) If $a, b \notin(I: c)$, then $a b I=a c I=a I^{2}=b I^{2}=c I^{2}=0$.
(iii) If $a, b \notin(I: c)$, then $I^{3}=0$.

Proof. (1) Suppose that $a b I \neq 0$. Then $a b x \neq 0$ for some non-unit $x \in I$. Hence $0 \neq a b(c+x) \in$ I. Since $a b \notin I,(c+x)$ is a non-unit element of R. Since I is a weakly 1 -absorbing δ-primary ideal of R and $a b \notin I$, we conclude that $(c+x) \in \delta(I)$. Since $x \in I$, we have $c \in \delta(I)$, a contradiction. Thus $a b I=0$.
(2) Suppose that $b c I \neq 0$. Then $b c y \neq 0$ for some non-unit element $y \in I$. Hence $0 \neq b c y=$ $b(a+y) c \in I$. Since $b \notin(I: c)$, we conclude that $a+y$ is a non-unit element of R. Since I is a weakly 1 -absorbing δ-primary ideal of R and $a b \notin I$ and $b y \in I$, we conclude that $b(a+y) \notin I$, and hence $c \in \delta(I)$, a contradiction. Thus $b c I=0$. We show that $a c I=0$. Suppose that $a c I \neq 0$. Then $a c y \neq 0$ for some non-unit element $y \in I$. Hence $0 \neq a c y=a(b+y) c \in I$. Since $a \notin(I: c)$, we conclude that $b+y$ is a non-unit element of R. Since I is a weakly $1-$ absorbing δ-primary ideal of R and $a b \notin I$ and $a y \in I$, we conclude that $a(b+y) \notin I$, and hence $c \in \delta(I)$, a contradiction. Thus $a c I=0$. Now we prove that $a I^{2}=0$. Suppose that $a x y \neq 0$ for some $x, y \in I$. Since $a b I=0$ by (1) and $a c I=0$ by $(2), 0 \neq a x y=a(b+x)(c+y) \in I$. Since $a b \notin I$, we conclude that $c+y$ is a non-unit element of R. Since $a \notin(I: c)$, we conclude that $b+x$ is a non-unit element of R. Since I is a weakly 1 -absorbing δ-primary ideal of R, we have $a(b+x) \in I$ or $(c+y) \in \delta(I)$. Since $x, y \in I$, we conclude that $a b \in I$ or $c \in \delta(I)$, is a contradiction. Thus $a I^{2}=0$. We show $b I^{2}=0$. Suppose that $b x y \neq 0$ for some $x, y \in I$. Since $a b I=0$ by (1) and $b c I=0$ by (2), $0 \neq b x y=b(a+x)(c+y) \in I$. Since $a b \notin I$, we conclude that $c+y$ is a non-unit element of R. Since $b \notin(I: c)$, we conclude that $a+x$ is a non-unit element of R. Since I is a weakly 1 -absorbing δ-primary ideal of R, we have $b(a+x) \in I$ or $(c+y) \in \delta(I)$. Since $x, y \in I$, we conclude that $a b \in I$ or $c \in \delta(I)$, is a contradiction. Thus $b I^{2}=0$. We show $c I^{2}=0$. Suppose that $c x y \neq 0$ for some $x, y \in I$. Since $a c I=b c I=0$ by $(2), 0 \neq c x y=(a+x)(b+y) c \in I$. Since $a, b \notin(I: c)$, we conclude that $a+x$ and $\mathrm{b}+\mathrm{y}$ are non-unit elements of R. Since I is a weakly 1 -absorbing δ-primary ideal of R, we have $(a+x)(b+y) \in I$ or $c \in \delta(I)$. Since $x, y \in I$, we conclude that $a b \in I$ or $c \in \delta(I)$, is a contradiction. Thus $c I^{2}=0$.
(3) Assume that $x y z \neq 0$ for some $x, y, z \in I$. Then $0 \neq x y z=(a+x)(b+y)(c+z) \in I$ by (1) and (2). Since $a b \notin I$, we conclude that $c+z$ is a non-unit element of R. Since $a, b \notin(I: c)$, we conclude that $a+x$ and $b+y$ are non-unit elements of R. Since I is a weakly 1 -absorbing δ-primary ideal of R, we have $(a+x)(b+y) \in I$ or $c+z \in \delta(I)$. Since $x, y, z \in I$, we conclude that $a b \in I$ or $c \in \delta(I)$, is a contradiction. Thus $I^{3}=0$.

Theorem 2.11. (i) Let I be a weakly 1-absorbing δ-primary ideal of a reduced ring R. Suppose that I is not a 1-absorbing ideal δ-primary ideal of R and (a, b, c) is a 1- δ-triple-zero of I such that $a, b \notin(I: c)$. Then $I=0$.
(ii) Let I be a non-zero weakly 1-absorbing δ-primary ideal of a reduced ring R. Suppose that I is not a 1-absorbing ideal δ-primary ideal of R and (a, b, c) is a $1-\delta$-triple-zero of I. Then $a c \in I$ or $b c \in I$.

Proof. (1) Since $a, b \in(I: c)$, then $I^{3}=0$ by Theorem 2.10(3). Since R is reduced, we conclude that $I=0$.
(2) Suppose that neither $a c \in I$ nor $b c \in 0$. Then $I=0$ by (1), a contradiction since I is a non-zero ideal of R by hypothesis. Hence if (a, b, c) is a $1-\delta$-triple-zero of I, then $a c \in I$ or $b c \in I$.

Theorem 2.12. Let I be a weakly 1-absorbing δ-primary ideal of R. If I is not a weakly δ primary ideal of R, then there exists an irreducible element $x \in R$ and a non-unit element $y \in R$ such that $x y \in I$, but neither $x \in I$ nor $y \in \delta(I)$. Furthermore, if ab $\in I$ for some non-unit elements $a, b \in R$ such that neither $a \in I$ nor $b \in \delta(I)$, then a is an irreducible element of R.

Proof. Suppose that I is not a weakly δ-primary ideal of R. Then there exist non-unit elements $x, y \in R$ such that $0 \neq x y \in I$ with $x \notin I, y \notin \delta(I)$. Suppose that x is not an irreducible element of R. Then $x=c d$ for some non-unit elements $c, d \in R$. Since $0 \neq x y=c d y \in I$ and I is weakly 1 -absorbing δ-primary and $y \notin \delta(I)$, we conclude that $c d=x \in I$, a contradiction. Hence x is an irreducible element of R.

Proposition 2.13. Let $\left\{I_{i}: i \in \Lambda\right\}$ be a collection of weakly 1-absorbing δ-primary ideals of R such that $Q=\delta\left(I_{i}\right)=\delta\left(I_{j}\right)$ for every distinct $i, j \in \Lambda$. Then $I=\bigcap_{i \in \Lambda} I_{i}$ is a weakly 1 -absorbing δ-primary ideal of R.

Proof. Suppose that $0 \neq a b c \in I=\cap_{i \in \Lambda} I_{i}$ for non-unit elements a, b, c of R and $a b \notin I$. Then for some $k \in \Lambda, 0 \neq a b c \in I_{k}$ and $a b \notin I_{k}$. It implies that $c \in \delta\left(I_{k}\right)=Q=\delta(I)$.

Proposition 2.14. Let $\left\{J_{i} \mid i \in D\right\}$ be a directed set of weakly 1-absorbing δ primary ideals of R, where δ is an ideal expansion. Then the ideal $J=\cup_{i \in D} J_{i}$ is a weakly 1-absorbing δ-primary ideal of R.

Proof. Let $0 \neq a b c \in J$, then $0 \neq a b c \in J_{i}$ for some $i \in D$. Since J_{i} is a weakly 1-absorbing δ-primary ideal of $R, a b \in J_{i}$ or $c \in \delta\left(J_{i}\right) \subseteq \delta(J)$. Hence, J is a weakly 1-absorbing δ-primary ideal of R.

Proposition 2.15. Let I be a weakly 1-absorbing δ-primary ideal of R and c be a non-unit element of $R \backslash I$. Then $(I: c)$ is a weakly δ-primary ideal of R.

Proof. Suppose that $0 \neq a b \in(I: c)$ for some non-unit $c \in R \backslash I$ and assume that $a \notin(I: c)$. Hence b is a non-unit element of R. If a is unit, then $b \in(I: c) \subseteq \delta((I: c))$ and we are done. So assume that a is a non-unit element of R. Since $0 \neq a b c=a c b \in I$ and $a c \notin I$ and I is a weakly 1 -absorbing δ-primary ideal of R, we conclude that $b \in \delta(I) \subseteq \delta((I: c))$. Thus $(I: c)$ is a weakly δ-primary ideal of R.

Let R_{1} and R_{2} be two rings, let δ_{i} be an expansion function of $\mathcal{I}\left(R_{i}\right)$ for each $i \in\{1,2\}$ and $R=R_{1} \times R_{2}$. For a proper ideal $I_{1} \times I_{2}$, the function δ_{\times}defined by $\delta_{\times}\left(I_{1} \times I_{2}\right)=\delta_{1}\left(I_{1}\right) \times \delta_{2}\left(I_{2}\right)$ is an expansion function of $I(R)$.
The following result characterizes the 1-absorbing δ_{\times}-primary ideals of the direct product of rings.

Theorem 2.16. Let R_{1} and R_{2} be commutative rings with identity that are not fields, $R=R_{1} \times$ R_{2}, and I be a a non-zero proper ideal of R. Then the following statements are equivalent.
(i) I is a weakly 1-absorbing δ_{\times}-primary ideal of R.
(ii) Either $I=I_{1} \times R_{2}$, where $I=I_{1} \times R_{2}$ for some δ_{1}-primary ideal I_{1} of R_{1} or $I=R_{1} \times I_{2}$ for some δ_{2}-primary ideal I_{2} of R_{2}, or $I=I_{1} \times I_{2}$, where I_{1} and I_{2} are proper ideals of R_{1}, R_{2}, respectively with $\delta_{1}\left(I_{1}\right)=R_{1}$ and $\delta_{2}\left(I_{2}\right)=R_{2}$.
(iii) I is a 1-absorbing δ_{\times}-primary ideal of R.
(iv) I is a δ_{\times}-primary ideal of R_{1}.

Proof. (1) \Rightarrow (2). Suppose that I is a weakly 1 -absorbing δ_{\times}-primary ideal of R. Then I is of the form $I_{1} \times I_{2}$ for some ideals I_{1} and I_{2} of R_{1} and R_{2}, respectively. Assume that $I=I_{1} \times R_{2}$ for some proper ideal I_{1} of R_{1}. We show that I_{1} is a δ-primary ideal of R_{1}. Let $a b \in I_{1}$ for some $a, b \in R_{1}$. We can assume that a and b are non-unit elements of R_{1}. Since R_{2} is not a field, there exists a non-unit non-zero element $x \in R_{2}$. Then $0 \neq(a, 1)(1, x)(b, 1) \in I_{1} \times R_{2}$ which implies that either $(a, 1)(1, x) \in I_{1} \times R_{2}$ or $(b, 1) \in \delta_{\times}\left(I_{1} \times R_{2}\right)=\delta_{1}\left(I_{1}\right) \times R_{2}$; i.e, $a \in I_{1}$ or $b \in \delta_{1}\left(I_{1}\right)$. Similarly, If $I=R_{1} \times I_{2}$ for some proper ideal I_{2} of R_{2}.
Now suppose that both I_{1} and I_{2} are proper. Since I is a non-zero ideal of R, we conclude that $I_{1} \neq 0$ or $I_{2} \neq 0$. We may assume that $I_{1} \neq 0$. Let $0 \neq c \in I_{1}$. Then $0 \neq(1,0)(1,0)(c, 1)=$ $(c, 0) \in I_{1} \times I_{2}$. It implies that $(1,0)(1,0) \in I_{1} \times I_{2}$ or $(c, 1) \in \delta_{\times}\left(I_{1} \times I_{2}\right)=\delta_{1}\left(I_{1}\right) \times \delta_{2}\left(I_{2}\right)$, since I_{1} is proper then $\delta_{2}\left(I_{2}\right)=R_{2}$. Now show that case 1 : If $I_{2} \neq 0$ Let $0 \neq b \in I_{2}$. Then $0 \neq(0,1)(0,1)(1, b)=(0, b) \in I_{1} \times I_{2}$. It implies that $(0,1)(0,1) \in I_{1} \times I_{2}$ or $(1, b) \in \delta_{\times}\left(I_{1} \times\right.$ $\left.I_{2}\right)=\delta_{1}\left(I_{1}\right) \times \delta_{2}\left(I_{2}\right)$, since I_{2} is proper then $\delta_{1}\left(I_{1}\right)=R_{1}$. Now show that case 2: If $I_{2}=0$. Let $e \in R_{2}$ non-unit, then $(c, 1)(1, e)(1,0)=(c, 0) \in I$. That implies $(c, 1)(1, e) \in I_{1} \times I_{2}$ or $(1,0) \in \delta_{\times}\left(I_{1} \times I_{2}\right)=\delta_{1}\left(I_{1}\right) \times \delta_{2}\left(I_{2}\right)$ since $I_{2}=0$ then $\delta_{1}\left(I_{1}\right)=R_{1}$.
$(2) \Rightarrow(3) \Rightarrow(4)$. by [13, Theorem 2.28].
$(4) \Rightarrow(1)$. Clear.
Let R and S be commutative rings with non-zero identity, and $f: R \rightarrow S$ be a homomorphism of the ring. f is called $\delta \gamma$-homomorphism if δ, γ be two expansion functions of $\mathcal{I}(R)$ and $\mathcal{I}(S)$, respectively, and $\delta\left(f^{-1}(I)\right)=f^{-1}(\gamma(I))$ for all ideals I of S. Additionally, if f is a $\delta \gamma$-epimorphism, then for each I is an ideal of R containing $\operatorname{Ker}(f)$ we get $\gamma(f(I))=f(\delta(I))$.

Theorem 2.17. Let R and S be commutative rings with $1 \neq 0$ and let $f: R \rightarrow S$ be a $\delta \gamma$ homomorphism such that $f(1)=1$. Then the following statements hold:
(i) Suppose that f is a monomorphism and $f(a)$ is a non-unit element of S for every non-unit element $a \in R$ (for example if $U(S)$ is a torsion group) and J is a weakly 1-absorbing γ-primary ideal of S. Then $f^{-1}(J)$ is a weakly 1-absorbing δ-primary ideal of R.
(ii) If f is an epimorphism and I is a weakly 1-absorbing δ-primary ideal of R such that $\operatorname{Ker}(f) \subseteq I$, then $f(I)$ is a weakly 1-absorbing γ-primary ideal of S.

Proof. (1) Let $0 \neq a b c \in f^{-1}(J)$ for some non-unit elements $a, b, c \in R$. Since $\operatorname{Ker}(f)=0$, we have $0 \neq f(a b c)=f(a) f(b) f(c) \in J$, where $f(a), f(b), f(c)$ are non-unit elements of S by hypothesis. Hence $f(a) f(b) \in J$ or $f(c) \in \gamma(J)$. Hence $a b \in f^{-1}(J)$ or $c \in \delta\left(f^{-1}(J)\right)=$ $f^{-1}(\gamma(J))$. Thus $f^{-1}(J)$ is a weakly 1 -absorbing δ-primary ideal of R.
(2) Let $0 \neq x y z \in f(I)$ for some non-unit elements $x, y, z \in R$. Since f is epimorphism, there exists non-unit elements $a, b, c \in I$ such that $x=f(a), y=f(b), z=f(c)$. Then $f(a b c)=$ $f(a) f(b) f(c)=x y z \in f(I)$. Since $\operatorname{Ker}(f) \subseteq I$, we have $0 \neq a b c \in I$. It follows $a b \in I$ or $c \in \delta(I)$. Thus $x y \in f(I)$ or $z \in f(\delta(I))$. Since f is epimorphism and $\operatorname{Ker}(f) \subseteq I$, we have $f(\delta(I))=\gamma(f(I))$. Thus we are done.

Let δ be an expansion function of $\mathcal{I}(R)$ and I a proper ideal of R. Then the function δ_{q} : $R / I \rightarrow R / I$, defined by $\delta_{q}(J / I)=\delta(J) / I$ for all ideals $I \subseteq J$, becomes an expansion function of R / I. Consider the natural homomorphism $\pi: R \rightarrow R / J$. Then for ideals I of R with $\operatorname{Ker}(\pi) \subseteq I$, we have $\delta_{q}(\pi(I))=\pi(\delta(I))$.

Theorem 2.18. Let I be a proper ideal of R. Then the following statements hold.
(i) If J is a proper ideal of a ring R with $J \subseteq I$ and I is a weakly 1-absorbing δ-primary ideal of R, then I / J is a weakly 1-absorbing δ_{q}-primary ideal of R / J.
(ii) If J is a proper ideal of a ring R with $J \subseteq I$ such that $U(R / J)=\{a+J \mid a \in U(R)\}$. If J is a 1-absorbing δ-primary ideal of R and I / J is a weakly 1-absorbing δ_{q}-primary ideal of R / J, then I is a 1-absorbing δ-primary ideal of R.
(iii) If $\{0\}$ is a 1-absorbing δ-primary ideal of R and I is a weakly 1-absorbing δ-primary ideal of R, then I is a 1-absorbing δ-primary ideal of R.
(iv) If J is a proper ideal of a ring R with $J \subseteq I$ such that $U(R / J)=\{a+J \mid a \in U(R)\}$. If J is a weakly 1-absorbing δ-primary ideal of R and I / J is a weakly 1-absorbing δ_{q}-primary ideal of R / J, then I is a weakly 1-absorbing δ-primary ideal of R.

Proof. (1) Consider the natural epimorphism $\pi: R \rightarrow R / J$. Then $\pi(I)=I / J$. So we are done by Theorem 2.17 (2).
(2) Suppose that $a b c \in I$ for some non-unit elements $a, b, c \in R$. If $a b c \in J$, then $a b \in J \subseteq I$ or $c \in \delta(J) \subseteq \delta(I)$ as J is a 1 -absorbing δ-primary ideal of R. Now assume that $a b c \notin J$. Then $J \neq(a+J)(b+J)(c+J) \in I / J$, where $a+J, b+J, c+J$ are non-unit elements of R / J by hypothesis. Thus $(a+J)(b+J) \in I / J$ or $(c+J) \in \delta_{q}(I / J)=\delta(I) / J$. Hence $a b \in I$ or $c \in \delta(I)$.
(3) The proof follows from (2).
(4) Suppose that $0 \neq a b c \in I$ for some non-unit elements $a, b, c \in R$. If $a b c \in J$, then $a b \in J \subseteq I$ or $c \in \delta(J) \subseteq \delta(I)$ as J is a weakly 1 -absorbing primary ideal of R. Now assume that $a b c \notin J$. Then $J \neq(a+J)(b+J)(c+J) \in I / J$, where $a+J, b+J, c+J$ are non-unit elements of R / J by hypothesis. Thus $(a+J)(b+J) \in I / J$ or $(c+J) \in \delta_{q}(I / J)=\delta(I) / J$. Hence $a b \in I$ or $c \in \delta(I)$.

Corollary 2.19. Let R be a ring and S a subring of R. If I is a weakly 1-absorbing δ-primary ideal of R with $S \nsubseteq I$, then $I \cap S$ is a weakly 1-absorbing δ-primary ideal of S.

Proof. Suppose that S is a subring of R and I is a weakly 1 -absorbing δ-primary ideal of R with $S \nsubseteq I$. Consider the injection $i: S \rightarrow R$. Note that $i^{-1}(I)=I \cap S$, so by Theorem 2.17 (1), $I \cap S$ is a weakly 1 -absorbing δ-primary ideal of S.

Let S be a multiplicatively closed subset of a ring R and δ an expansion function of $\mathcal{I}(R)$. Note that δ_{S} is an expansion function of $\mathcal{I}\left(S^{-1} R\right)$ such that $\delta_{S}\left(S^{-1} I\right)=S^{-1} \delta(I)$ for each ideal I of R.

Theorem 2.20. Let S be a multiplicatively closed subset of R, and I is a weakly 1-absorbing δ-primary ideal of R such that $I \cap S=\emptyset$, then $S^{-1} I$ is a weakly 1-absorbing δ_{S}-primary ideal of $S^{-1} R$.

Proof. Suppose that $0 \neq \frac{a}{s_{1}} \frac{b}{s_{2}} \frac{c}{s_{3}} \in S^{-1} I$ for some non-unit $a, b, c \in R \backslash S, s_{1}, s_{2}, s_{3} \in S$ and $\frac{a}{s_{1}} \frac{b}{s_{2}} \notin S^{-1} I$. Then $0 \neq u a b c \in I$ for some $u \in S$. Since I is weakly 1 -absorbing δ-primary and uab $\notin I$, we conclude $c \in \delta(I)$. Thus $\frac{c}{s_{3}} \in S^{-1} \delta(I)=\delta_{s}\left(S^{-1} I\right)$. Thus $S^{-1} I$ is a weakly 1 -absorbing δ_{s}-primary ideal of $S^{-1} R$.

Let A be a ring and E an A-module. Let I be an ideal of A and F be a submodule E. Then, $I \propto F$ is an ideal of $A \propto E$ if and only if $I E \subseteq F$. Moreover for an expansion function δ of A, it is clear that δ_{α} defined as $\delta_{\propto}(I \propto F)=\delta(I) \propto E$ is an expansion function of $A \propto E$.

Theorem 2.21. Let A be a ring, E an A-module, and δ be an expansion function of $\mathcal{I}(A)$. Let I be an ideal of A and F a submodule of E such that $I E \subseteq F$. Then the following statement holds:
(i) If $I \propto F$ is a weakly l-absorbing δ_{\propto}-primary ideal of $A \propto E$, then I is a weakly 1absorbing δ-primary ideal of A.
(ii) $I \propto E$ is a weakly 1-absorbing δ_{\propto}-primary ideal of $A \propto E$ if and only if I is a weakly 1-absorbing δ-primary ideal of A and for $a, b, c \in A$ with abc $=0$, but $a b \notin I$ and $c \notin$ $\delta(I)$, then $a b \in \operatorname{ann}(E)$ and $c \in \operatorname{ann}(E)$.

Proof. (1) Assume that $I \propto F$ is a weakly 1-absorbing δ_{\propto}-primary ideal of $A \propto E$ and let a, b, c be non-unit elements of A such that $0 \neq a b c \in I$. Thus $(0,0) \neq(a, 0)(b, 0)(c, 0)=$ $(a b c, 0) \in I \propto F$ which implies that $(a, 0)(b, 0) \in I \propto F$ or $(c, 0) \in \delta_{\propto}(I \propto F)=\delta(I) \propto E$. Therefore $a b \in I$ or $c \in \delta(I)$ and so (1) holds.
(2) Let $I \propto E$ is a weakly 1 -absorbing δ_{\propto}-primary ideal of $A \propto E$. By (1) we have I is a weakly 1 -absorbing δ-primary ideal of A. Suppose that $a b c=0$, but $a b \notin I$ and $c \notin \delta(I)$ $(a, b \in R)$. Assume, say, $a b \notin \operatorname{ann}(E)$. So there exists $e \in E$ with $a b e \neq 0$. Then $(0,0) \neq$ $(a, 0)(b, 0)(c, e) \in I \propto E$, but $(a, 0),(b, 0) \notin I \propto E$ and $(c, e) \notin \delta(I) \propto E=\delta_{\propto}(I \propto F)$, a contradiction. $(\Leftarrow)(a, s),(b, t),(c, r)$ be non-unit elements of $A \propto E$ such that $(0,0) \neq$ $(a, s)(b, t)(c, r)=(a b c, b c s+a c t+a b r) \in I \propto E$. If $a b c \neq 0$. Clearly, $a b c \in I$ then $a b \in I$ or $c \in \delta(I)$ since I is a weakly 1-absorbing δ-primary ideal of A. Then $(a, s)(b, t) \in I \propto E$ or $(c, r) \in \delta(I) \propto E=\delta_{\propto}(I \propto E)$. So assume that $a b c=0$. Suppose $a b \notin I$ and $c \notin \delta(I)$. Then by hypothesis, $a b, c \in \operatorname{ann}(E)$. Then $(a, s),(b, t),(c, r)=(a b, a t+b s)(c, r)=(0,0)$ a contradiction. So (2) holds.

Let A and B be two rings with unity, let J be an ideal of B, and let $f: A \longrightarrow B$ be a ring homomorphism. In this setting, we consider the following subring of $A \times B$ defined by $A \bowtie^{f} J:=\{(a, f(a)+j) \in A \times B \mid a \in A, j \in J\}$. is called the amalgamation of A and B along J with respect to f. This construction is a generalization of the amalgamated duplication of a ring along an ideal denoted $A \bowtie I$ (introduced and studied by D'Anna and Fontana in [10]). for more studies of this constriction see [7, 8, 9, 11].

Theorem 2.22. Let A and B be commutative rings with $1 \neq 0$ and let $f: A \rightarrow B$ be a $\delta \gamma$ homomorphism such that $f\left(1_{A}\right)=1_{B}$. Let $\delta_{\bowtie}\left(I \bowtie^{f} J\right)=\left\{(a, f(a)+j) \in A \bowtie^{f} J \mid a \in \delta(I)\right.$ and $j \in f(\delta(I))\}$
(i) if $I \bowtie^{f} J$ is weakly 1-absorbing δ_{\bowtie}-primary, then I is weakly 1-absorbing δ-primary.
(ii) Let f is an epimorphism and $J \subseteq \gamma(f(I))=f(\delta(I))$. if I is 1-absorbing δ-primary then $I \bowtie^{f} J$ is 1 -absorbing δ_{\bowtie}-primary.
(iii) Let f is an epimorphism and $\operatorname{Ker}(f) \subseteq I$. If $I \bowtie^{f} J$ is weakly 1-absorbing δ_{\bowtie}-primary, then $f(I)+J$ is weakly 1 -absorbing γ-primary of $f(A)+J$.

Proof. (1) Assume that $I \bowtie^{f} J$ is weakly 1 -absorbing δ_{\bowtie}-primary. Let a, b, c be non-unit elements of A such that $0 \neq A B C \in I$ with $a b \notin I$. Then, $(0,0) \neq(a b c, f(a b c)) \in I \bowtie^{f} J$ and $(a b, f(a b)) \notin I \bowtie^{f} J$ which implies $(c, f(c)) \in \delta_{\bowtie}\left(I \bowtie^{f} J\right)$. Thus, $c \in \delta(I)$ as desired.
(2) I is 1 -absorbing δ-primary. Let $(0,0) \neq(a, f(a)+i)(b, f(b)+j)(c, f(c)+k) \in I \bowtie^{f} J$ with $(a, f(a)+i)(b, f(b)+j) \notin I \bowtie^{f} J$. Then, $a b c \in I$ but $a b \notin I$ which implies $c \in \delta(I)$. Thus $f(c)+k \in \gamma(f(I))$ since $J \subseteq \gamma(f(I))$. Therefore $(c, f(c)+k) \in \delta_{\bowtie}\left(I \bowtie^{f} J\right)$.
(3) let $(f(x)+j),(f(y)+k),(f(z)+l)$ be non-unit elements of $f(A)+J$ such that $0 \neq$ $(f(x)+j)(f(y)+k)(f(z)+l) \in f(I)+J$ with $(f(x)+j)(f(y)+k) \notin f(I)+J$. Then, the fact that $\operatorname{Ker}(f) \subseteq I$ implies $(0,0) \neq(x, f(x)+j)(y, f(y)+k)(z, f(z)+l) \in I \bowtie^{f} J$ with $(x, f(x)+j)(y, f(y)+k) \notin I \bowtie^{f} J$. which implies $(z, f(z)+l) \in \delta_{\bowtie}\left(I \bowtie^{f} J\right)$. then $z \in \delta(I)$ and $l \in \gamma(f(I))$. which give $f(z) \in f(\delta(I))=\gamma(f(I))$ since f is an epimorphism. Thus $(f(z)+l) \in \gamma(f(I)) \subseteq \gamma(f(I)+J)$

Corollary 2.23. Let A be commutative ring with $1 \neq 0$ and let $\delta_{\bowtie}(I \bowtie J)=\{(a, a+j) \in A \bowtie$ $J \mid a$ and $j \in \delta(I)$
 δ-primary ideals.
(ii) Let $J \subseteq \delta(I)$. if I is 1-absorbing δ-primary, then $I \bowtie J$ is 1-absorbing δ_{\bowtie}-primary.

References

[1] D.D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Mathematics, 29 (4) (2003), 831840.
[2] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56.
[3] S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Mathematical Journal, 12 (3) (2005), 423-429.
[4] A. Badawi and Y. Celikel, On 1-absorbing primary ideals of a commutative rings, J. Algebra Appl. (2020), 2050111.
[5] A. Badawi and Y. Celikel, On Weakly 1-Absorbing Primary Ideals of Commutative Rings, Algebra Colloquium Vol. 29, No. 02, pp. 189-202 (2022)
[6] M. Boisen and P.B. Sheldon, CPI-extensions : overrings of integral domains with special prime spectrums, Canad. J. Math. 29 (1977) 722-737.
[7] M. chhiti and K. kaiba, The total graph of amalgamated algebra, Indian Journal of Mathematics, Vol. 64, No. 2, (2022), 245-261.
[8] M. D'Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative algebra and its applications, Walter de Gruyter, Berlin, (2009) 241-252.
[9] M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra (2010), 1633-1641.
[10] M. D'Anna and M. Fontana, The amalgamated duplication of ring along an ideal: the basic properties, J. Algebra Appl. 6(3) (2007), 241-252.
[11] M. D'Anna, C.A. Finocchiaro, M. Fontana, New algebraic properties of an amalgamated algebras along an ideal, Comm. Algebra 44(5) (2016), 1836-1851.
[12] D.E Dobbs, A. Elkhalfi and N. mahdou Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47(5) (2019), 2060-2077.
[13] A. El Khalfi, N. Mahdou, Ü. Tekir, S. Koc, On 1-absorbing δ-primary ideals. An. St. Univ. Constanta. 29(3), 2021, 135-150.
[14] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin, 1989.
[15] J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.
[16] D. Zhao, δ-primary ideals of commutative rings. Kyungpook Math. J. 41 (2001), 17-22.

Author information

M. Chhiti, Modeling and mathematical structures Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.
E-mail: Chhiti.med@hotmail.com
K. Kaiba, Modeling and mathematical structures Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.
E-mail: kh.kaiba@gmail.com

Received: 2022-12-19
Accepted: 2023-09-07

