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Abstract In this paper, we study a well-posed logarithmic counterpart of an ill-posed semi-
linear Cauchy problem associated with an abstract evolution equation of n-th order in time.

1 Introduction

In this paper, we present a result of local well-posedness for a logarithmic counterpart of an ill-
posed semilinear problem associated with a higher-order abstract Cauchy problem. The notion
of logarithmic operators under different spectral conditions is well-known in the literature, see
e.g. [2, 3, 5, 9, 10, 11, 12, 16, 17, 19, 20, 22, 26]. In this sense, logarithm equations and models of
evolution equations with logarithmic operators have attracted the attention of many researchers
and appeared in the literature with increasing frequency, see e.g. [3, 4, 5, 9, 10, 11, 12, 16, 17,
24].

To better present our results, we introduce some notation. Initially, we consider the following
abstract semilinear evolution equation of n-th order in time

dnu

dtn
+Au = f(u), t > 0, (1.1)

with initial conditions given by

diu

dti
(0) = ui ∈ X

n−(i+1)
n , i ∈ {0, 1, . . . , n− 1}, n ⩾ 3, (1.2)

where X is a separable Hilbert space and A : D(A) ⊂ X → X is an unbounded linear, closed,
densely defined, self-adjoint, and positive definite operator. See [14] and the references therein
for examples. We wish to study the fractional powers of Λn, the matrix operator obtained by
rewriting (1.1)-(1.2) as a first-order abstract system. Before, we need to compile some basic
facts and set up some terminologies.

Since A is a sectorial operator in the sense of [18, Definition 1.3.1], this allows us to define
the fractional power A−α of order α ∈ (0, 1) according to [2, Formula 4.6.9] and [18, Theorem
1.4.2], as a closed linear operator on its domain D(A−α) with inverse Aα.

Denote by Xα = D(Aα) for α ∈ [0, 1), taking A0 := I on X0 := X when α = 0. Recall
that Xα is dense in X for all α ∈ (0, 1], for details see [2, Theorem 4.6.5]. The fractional power
space Xα endowed with the norm ∥·∥Xα := ∥Aα ·∥X is a Banach space. It is not difficult to show
that Aα is the generator of a strongly continuous analytic semigroup on X for any α ∈ [0, 1], see
[18]. With this notation, we have X−α = (Xα)′ for all α > 0, see [2] for the characterization of
the negative scale.

The nonlinearity f in (1.1) is defined in X
n−1
n taking values in X and it is Lipschitz continu-

ous in bounded subsets of X
n−1
n .
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After that below, we rewrite (1.1)-(1.2) as a first-order abstract system; namely, we consider
the phase space

Y = X
n−1
n ×X

n−2
n ×X

n−3
n × · · · ×X

which is a Banach space equipped with the norm

∥ · ∥2
Y = ∥ · ∥2

X
n−1
n

+ ∥ · ∥2

X
n−2
n

+ ∥ · ∥2

X
n−3
n

+ · · ·+ ∥ · ∥2
X .

We can write the problem (1.1)-(1.2) as a Cauchy problem on Y , letting v1 = u, v2 = du
dt ,

v3 =
d2u
dt2 , . . ., vn = dn−1u

dtn−1 and

u =

 v1
v2

...
vn


and the initial value problem 

du

dt
+ Λu = F (u), t > 0,

u(0) = u0,
(1.3)

where the unbounded linear operator Λ : D(Λ) ⊂ Y → Y is defined by

D(Λ) = X1 ×X
n−1
n ×X

n−2
n × · · · ×X

1
n , (1.4)

and

Λu =


0 −I 0 ··· 0 0
0 0 −I ··· 0 0
...

...
...

. . .
...

...
0 0 0 ··· 0 −I
A 0 0 ··· 0 0




v1
v2

...
vn−1
vn

 :=


−v2
−v3

...
−vn
Av1

, ∀u =

 v1
v2

...
vn

 ∈ D(Λ). (1.5)

The nonlinearity F in (1.3) is given by

F (u) =

 0
0
...

f(v1)

 (1.6)

for any u =


v1
v2
v3

...
vn

 belonging to a suitable norm space.

The problem (1.1)-(1.2) with f is identically zero was studied in [14]. In [14] it is proved
that the Cauchy problem with n ⩾ 3 is well-posed if and only if A is a bounded linear operator
on X . It is also possible to find works involving Cauchy problems associated with an abstract
evolution equation of n-th order in time in [6], [15], and [21].
To our best knowledge, there is no logarithmic counterpart of the semilinear Cauchy problem of
n-the order in time, for n ⩾ 4 in the literature. The cases n = 2 and n = 3 can be found at
[3] and [8], respectively. The most interesting here is that we have an ill-posed problem on Y
via the theory of strongly continuous semigroup of linear bounded operators, whose logarithmic
formulation is a well-posed problem on Y , as we will see later. To obtain the logarithm operator
logΛ explicitly, we will first calculate the −α-th fractional powers (α ∈ (0, 1)) of Λ, and then
we will get a characterization of the logarithm operator of Λ.

We know that the unbounded linear operator −Λ with Λ : D(Λ) ⊂ Y → Y defined in
(1.4)-(1.5) is not the infinitesimal generator of a strongly continuous semigroup on Y , see [6,
Theorem 1.1]. But, by [6, Lemma 2.13] the unbounded linear operator Λ defined in (1.4)-(1.5)
is of positive type K ⩾ 1. This allows us to study logarithmic operators and its properties;
namely, given Λ : D(Λ) ⊂ Y → Y defined in (1.4)-(1.5), we consider the family of fractional
powers {Λα = (Λ−α)−1;α ∈ (0, 1)}. We know that Λ is densely ranged and densely defined
(because 0 ∈ ρ(Λ)), and consequently, we can consider the analytic semigroup of linear bounded
operators {Λ−t; t ⩾ 0} in Y and its infinitesimal generator denoted by − logΛ defined by

D(− logΛ) =
{
u ∈ Y ;∃ lim

t↘0

1
t
(Λ−t − I)u

}
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and for any u ∈ D(− logΛ)

(− logΛ)u = lim
t↘0

1
t
(Λ−t − I)u.

We can also consider the logarithmic operator logΛ : D(logΛ) ⊂ Y → Y defined by

D(logΛ) = D(− logΛ)

and for any u ∈ D(logΛ)
logΛu := −(− logΛ)u.

With this, we consider the logarithmic counterpart to (1.3) in Y ; namely, the semilinear
Cauchy problem 

duℓ

dt
+ (logΛ)uℓ = F (uℓ), t > 0,

uℓ(0) = uℓ0 ,
(1.7)

where F is given by (1.6).
We also consider the following notion of mild solution for (1.7). Given u0 ∈ Y we say that

uℓ is a mild solution of (1.7) provided uℓ ∈ C([0, t0(u0)), Y ) for t0(u0)) > 0 and uℓ satisfies for
t ∈ (0, t0(u0)) the variation of constants formula

uℓ(t) = Λ−tu0 +

∫ t

0
Λ−(t−s)F (uℓ(s))ds. (1.8)

This paper is organized as follows. In Section 2 we study the logarithm operator defined by
Λ given in (1.4)-(1.5). Finally, in Section 3 we study the semilinear Cauchy problem given in
(1.7).

2 Logarithmic operators

In this section, we study the spectral properties of the unbounded linear operator that we will
understand as being the logarithm operator of Λ. The following lemma is a key result in our
analysis, a proof of this result is given in [1].

Lemma 2.1. Let Un be nth degree Chebyshev polynomial of the second kind defined in Theorem
2.2. Then

Un(cos θ) sin θ = sin((n+ 1)θ), (2.1)

and
Un(−x) = (−1)nUn(x), (2.2)

for all θ ∈ R and n ⩾ 0.

The following theorem is one of the main results of this paper.

Theorem 2.2. If A and Λ are as in (1.4)-(1.5), respectively, then we have all the following.

i) −α-th fractional power Λ−α can be defined for α ∈ (0, 1) through

Λ−α =
sinαπ

π

∫ ∞

0
λ−α(λI + Λ)−1dλ. (2.3)

ii) Given any α ∈ (0, 1) we have Λ−α : Y → Y is given by

Λ−α =

[
(−1)i−j

n
Un−1

(
cos
(
α− i+ j

n
π

))
A−α−i+j

n

]
(2.4)

where Un : C → C is the nth degree Chebyshev polynomial of the second kind defined by
the recurrence relation for every x ∈ C and n ⩾ 2
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U0(x) = 1,
U1(x) = 2x,
Un+1(x) = 2xUn(x)− Un−1(x).

Proof. Part i) is a consequence of the fact that Λ is of positive type operator, see Pazy [23,
Theorem 2.6.9]. For the part ii) note that

(λI + Λ)−1 = (λnI +A)−1



λn−1I λn−2I λn−3I ··· λI I

−A λn−1I λn−2I ··· λ2I λI

−λA −A λn−1I ··· λ3I λ2I

...
...

...
. . .

...
...

−λn−3A −λn−4A −λn−5A ··· λn−1I λn−2I

−λn−2A −λn−3A −λn−4 ··· −A λn−1I


, for λ ∈ ρ(−Λ). (2.5)

Letting (λI + Λ)−1 = [aij ], with

aij =

{
−λi−j−1A(λnI +A)−1, if i > j;
λn+i−j−1(λnI +A)−1, if i ⩽ j.

Now considering the above characterization, using (2.3), applying in each entry of the matrix
(2.5) the fractional formula for A,

A−α =
sinαπ

π

∫ ∞

0
λ−α(λI +A)−1dλ,

and after the change of variable s = λn we obtain the following for i > j:

sinαπ
π

∫ ∞

0
λ−α(−λi−j−1A(λnI +A)−1)dλ

= −A
1
n

sinαπ
π

∫ ∞

0
s−

α−i+j+n
n (sI +A)−1ds

= −A
(−1)i−j−n

n

sin
((

α− i+ j + n

n

)
nπ

)
π

∫ ∞

0
(sI +A)−1ds.

Notice that we can rewrite the expression of the sin in terms of

sin
((

α− i+ j + n

n

)
nπ

)
= Un−1

(
cos
((

α− i+ j + n

n

)
π

))
sin
((

α− i+ j + n

n

)
π

)
,

where Un : C → C is the nth degree Chebyshev polynomial of second kind. Thus, we have

sinαπ
π

∫ ∞

0
λ−α(−λi−j−1A(λnI +A)−1dλ

= −(−1)i−j−n

n
Un−1

(
cos
((

α− i+ j + n

n

)
π

))
A−α−i+j

n

= −(−1)i−j

n
Un−1

(
cos
((

α− i+ j

n

)
π

))
A−α−i+j

n .

Similarly, for i ⩽ j, we obtain the following

sinαπ
π

∫ ∞

0
λ−α(λn+i−j−1(λnI +A)−1)dλ

=
(−1)i−j

n
Un−1

(
cos
((

α− i+ j

n

)
π

))
A−α−i+j

n .
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To better show the next results we will use the following notations for the coefficients of
matricial representation Λ−α:

C(α,n,differ) =
(−1)i−j

n
Un−1

(
cos
((

α− i+ j

n

)
π

))
; (2.6)

and

C(α,n,equal) =
1
n
Un−1

(
cos
(απ

n

))
. (2.7)

The terms ‘differ’ and ‘equal’ subscripts above refer to the entry of matricial representation
of Λ−α for i ̸= j and i = j, respectively. Therefore, we have the following results.

Proposition 2.3. Let C(α,n,differ) and C(α,n,equal) be the coefficients defined in (2.6) and (2.7),
respectively. Then

lim
α↘0

C(α,n,differ)

α
=

1
n

π

sin
((−i+j

n

)
π
) ,

and

lim
α↘0

C(α,n,equal) − 1
α

= 0.

Proof. Using (2.1), we have

Un−1

(
cos
((

α− i+ j

n

)
π

))
=

sin((α− i+ j)π)

sin
((

α−i+j
n

)
π
) .

Then

lim
α↘0

C(α,n,differ)

α
= lim

α↘0

(−1)i−j

n sin
((

α−i+j
n

)
π
) sin((α− i+ j)π)

α

= lim
α↘0

(−1)i−j

n sin
((

α−i+j
n

)
π
) sin(απ)

απ
π

=
1
n

π

sin
((−i+j

n

)
π
) .

Now, we will calculate lim
α↘0

C(α,n,equal) − 1
α

. Note that as before, we have

Un−1

(
cos
(απ

n

))
=

sin(απ)
sin
(
απ
n

) ,
and

1
α

[
1
n

sin(απ)
sin
(
απ
n

) − 1

]
= −

n− sin(απ) csc
(
απ
n

)
nα

.

Thus,

lim
α↘0

C(α,n,equal) − 1
α

= lim
α↘0

−
n− sin(απ) csc

(
απ
n

)
nα

.
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Note that this limit does not exist as α ↘ 0. For the L’Hôspital rule, we have

lim
α↘0

−
n− sin(απ) csc

(
απ
n

)
nα

=
π

n2 lim
α↘0

csc
(απ

n

)(
sin(απ) cot

(απ
n

)
− n cos(απ)

)

=
π

n2 lim
α↘0

sin(απ) cos
(
απ
n

)
− cos(απ) sin

(
απ
n

)
sin2 (απ

n

)
=

π

2n2 lim
α↘0

(n2 − 1) sin(απ)
cos
(
απ
n

)
= 0.

In the third equality above, note that the limit also does not exist, and we use L’Hôspital’s rule
again to conclude.

Theorem 2.4. If A and Λ are as in (1.4)-(1.5), respectively, then

logΛ = [ℓi,j ] (2.8)

where

ℓi,j =


logA

1
n , i = j,

− 1
n

π

sin
( i− j

n
π
)A i−j

n , i ̸= j.

Moreover

D(logΛ) = (X
n−1
n ∩D(logA))× · · · × (X

1
n ∩D(logA))×D(logA). (2.9)

Proof. Let α > 0 and u =


v1
v2
v3

...
vn

 ∈ D(logΛ), then by Theorem 2.2, we have

1
α
(Λ−α − I)u

=



1
α

(C(t,n,equal)A
−α

n −I)
1
α

C(t,n,differ)A
−α+1

n ···
1
α

C(t,n,differ)A
−α−1

n

1
α

C(t,n,differ)A
−α−1

n
1
α

(C(t,n,equal)A
−α

n −I) ···
1
α

C(t,n,differ)A
−α+n−2

n

...
...

. . .
...

1
α

C(t,n,differ)A
−α−n+1

n
1
α

C(t,n,differ)A
−α−n+2

n ···
1
α

(C(t,n,equal)A
−α

n −I)


 v1

v2

...
vn



=



1
α

(C(t,n,equal)A
−α

n −I)v1+
1
α

C(t,n,differ)A
−α+1

n v2+···+
1
α

C(t,n,differ)A
−α−1

n vn

1
α

C(t,n,differ)A
−α−1

n v1+
1
α

(C(t,n,equal)A
−α

n −I)v2+···+
1
α

C(t,n,differ)A
−α+n−2

n vn

...
1
α

C(t,n,differ)A
−α−n+1

n v1+
1
α

C(t,n,differ)A
−α−n+2

n v2+···+
1
α

(C(t,n,equal)A
−α

n −I)vn


.

We can write

1
α
(C(t,n,equal)A

−α
n − I) =

1
α
(C(t,n,equal) − 1)A−α

n +
1
α
(A−α

n − I) (2.10)
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If we compute the limit at each entry of the matrix representation, thanks to Proposition 2.3
and (2.10), we have the following convergences

1
α
(C(t,n,equal)A

−α
n − I)v1 +

1
α
C(t,n,differ)A

−α+1
n v2 + · · ·+ 1

α
C(t,n,differ)A

−α−1
n vn

converges to

− logA
1
n v1 +

1
n

π

sin
(
π
n

)A− 1
n v2 + · · · 1

n

π

sin
((

n−1
n

)
π
)A− n

−1 vn

in X
n−1
n , as α ↘ 0;

1
α
(C(t,n,differ)A

−α−1
n v1 +

1
α
(C(t,n,equal)A

−α
n − I)v2 + · · ·+ 1

α
C(t,n,differ)A

−α−2
n vn

converges to

− 1
n

π

sin
((

n−1
n

)
π
)A 1

n + (− logA
1
n v1 +

1
n

π

sin
(
π
n

)A− 1
n v2 + · · · 1

n

π

sin
((

n−1
n

)
π
)A−n−2

n vn

in X
n−2
n , as α ↘ 0;

...
1
α
(C(t,n,differ)A

−α−n+1
n v1 +

1
α
C(t,n,differ)A

−α−n+2
n v2 + · · ·+ 1

α
(C(t,n,equal)A

−α
n − I)vn

converges to

− 1
n

π

sin
((

n−1
n

)
π
)A 1

n v1 +

(
− 1
n

)
π

sin
((

n−1
n

)
π
)A−n−2

n v2 + · · ·+ (− logA
1
n )vn

in X , as α ↘ 0.

By the previous analysis, we conclude that (2.8) and (2.9) hold.

3 Logarithmic equations

One of the main results of this work is based on the fact that it is well known that the unbounded
linear operator − logΛ is the infinitesimal generator of an analytic semigroup of bounded linear
operators on Y , see e.g. [2]. In other words, the semilinear Cauchy problem (1.7) is a well-posed
problem on Y via the theory of strongly continuous semigroup of bounded linear operators.
Namely, we have the following results.

If we propose the semilinear Cauchy problem (1.7) on Y and we write uℓ = [viℓ]i∈{1,2,...,n}
then thanks to our previous results, the remarks above and [7, Theorem 2.2], we can rewrite the
semilinear differential equation in (1.7) as follows:

dnv1ℓ

dtn
+An−1

dn−1v1ℓ

dtn−1 + · · ·+A1
dv1ℓ

dt
+A0v1ℓ = The 1, 1 entry of the matrix [p(logΛ)f(uℓ)],

where
p(logΛ) = (logΛ)n−1 +An−1(logΛ)n−2 + · · ·+A2 logΛ+A1.

subject to initial conditions given by

∂j
t v1ℓ(0) = wj , j = 0, 1, . . . , n− 1.

The following results deal with the well-posedness of problem (1.7) with f identically zero.

Theorem 3.1. There exists a unique mild solution to the linear Cauchy problem
duℓ

dt
+ (logΛ)uℓ = 0, t > 0,

uℓ(0) = uℓ0 ,
(3.1)

given by
uℓ(t) = Λ−tu0

for any t ⩾ 0 such that if uℓ0 ∈ Y then uℓ ∈ C([0,∞), Y ) ∩ C1((0,∞), Y ).
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Proof. Since Λ is of positive type K ≥ 1, the linear operator − logΛ is the infinitesimal genera-
tor of {Λ−t : t ≥ 0} which is an analytic semigroup of angle π/2, see [2, Theorem 4.6.4].

Moreover, we can rewrite the linear differential equation in (3.1) as follows

dn

dtn
v1ℓ + logA

dn−1

dtn−1 v1ℓ +
n−1∑
k=1

(−1)ktr(Λk(logΛ))
dn−k

dtn−k
v1ℓ + det(logΛ)v1ℓ = 0

for t > 0, with initial conditions given by

∂j
t v1ℓ(0) = wj , j = 0, 1, . . . , n− 1.

In a suitable space such that uℓ0 ∈ Y , and

tr(ΛkM) =
1
k!

det([ti,j ]k), ti,j =


0, j > i+ 1,
k − i, j = i+ 1,
tr(M i−j+1), j ⩽ i.

(3.2)

Proposition 3.2. Let f be a function defined in X
1
n taking values in X such that it is Lipschitz

continuous in bounded subsets of X
1
n . Then, the function F defined as in (1.6) on Y taking

values in Y is Lipschitz continuous in bounded subsets of Y .

Proof. Let B be a bounded subset of Y . If

[
w1

...
wn

]
,

[
x1

...
xn

]
∈ Y , then for some cB > 0 we have

∥∥∥∥∥F
([

w1

...
wn

])
− F

([
x1

...
xn

])∥∥∥∥∥
2

Y

= ∥f(w1)− f(x1)∥2
X ⩽ cB∥w1 − x2∥2

X .

Theorem 3.3. Let f , F as in Proposition 3.2. Given a bounded subset B of Y and u0 ∈ B. Then
the semilinear Cauchy problem (1.7) is a locally well-posed problem on Y ; that is, for every
u0 ∈ B there exists a t0(u0) > 0 such that (1.7) has a unique mild solution on [0, t0(u0)) given
by (1.8). Moreover, if t0(u0) < ∞ then

lim
t↗t0(u0)

∥u(t)∥ = ∞.

Proof. The result is a consequence of our previous analysis jointly with [23, Theorem 1.4].

4 Applications

Let Ω ⊂ RN be a bounded domain with with sufficiently smooth boundary ∂Ω with N ∈
{1, 2, 3}, and let X = L2(Ω) be endowed with the standard inner product. In this section we
consider the unbounded linear operators AD : D(AD) ⊂ X → X defined by linear 2m-th order
uniformly elliptic partial differential operator

ADu = (−∆)mu, m ∈ N, (4.1)

with domain
D(AD) = H2m(Ω) ∩Hm

0 (Ω), (4.2)

and we also consider the linear evolution equations of n-th order in time with n ⩾ 4
4−N and

m ∈ N (m ⩾ 1)
∂n
t u+ (−∆)mu = f(u), (4.3)

subject to zero Dirichlet boundary conditions and initial conditions{
u(x, t) = ∆ju(x, t) = 0, x ∈ ∂Ω, t ⩾ 0, i ∈ {j, . . . ,m− 1},
u(x, 0) = u0(x), ∂i

tu(x, 0) = ui(x), x ∈ ∂Ω, i ∈ {1, . . . , n− 1}.
(4.4)
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The unbounded linear operator AD defined in (4.1)-(4.2) is a closed, densely defined, self-
adjoint, and positive definite operator. There exists ζ > 0 such that Reσ(AD) > ζ, that is,
Reλ > ζ for all λ ∈ σ(A), and therefore, AD is a sectorial operator in the sense of Henry [18,
Definition 1.3.1], with the eigenvalues {νj}j∈N:

0 < ν1 ⩽ ν2 ⩽ · · · ⩽ νj ⩽ . . . , νj → +∞ as j → +∞.

This allows us to define the fractional power A−α
D of order α ∈ (0, 1) according to [2, Formula

4.6.9] and [18, Theorem 1.4.2], as a closed linear operator on its domain D(A−α
D ) with inverse

Aα
D. Denote by Xα = D(Aα

D) for α ∈ [0, 1]. The fractional power space Xα endowed with the
graphic norm

∥ · ∥Xα := ∥Aα
D · ∥X

is a Banach space; namely, e.g., if mα is an integer, then

Xα = D((−∆)mα) = H2mα(Ω) ∩Hmα
0 (Ω)

with equivalent norms, see [13, Page 29] and [18, Pages 29 and 30].
With this notation, we have X−α = (Xα)′ for all α > 0, see [2] and [25] for the characteri-

zation of the negative scale. The scale of fractional power spaces {Xα}α∈R associated with AD

safisty
Xα ⊂ H2mα(Ω), α ∈ [0, 1],

where H2mα(Ω) are the potential Bessel spaces, see Cholewa and Dłotko [13, Page 48]. More-
over, the nonlinearity f : R → R in 4.3 is a continuously differentiable function satisfying for
some 2 < ρ ⩽ nN

nN−4m(n−1) the growth condition

|f ′(s)) ⩽ C(1 + |s|ρ−1), s ∈ R. (4.5)

The following result is a direct consequence of (4.5) via Mean Value’s Theorem.

Lemma 4.1. Let f be a real function of one real variable such that (4.5) holds. Then

|f(s1)− f(s2)| ⩽ 2ρ−1c|s1 − s2|
(
1 + |s1|ρ−1 + |s2|ρ−1),

for any s1, s2 ∈ R.

Moreover, we have the following result.

Lemma 4.2. Let f be a real function of one real variable such that the condition (4.5) holds.
Then there exists s ∈ (0, nN

4 ) such that the Nemitskiı̆ operator fe : X
n−1
n → X− s

n given by
fe(u)(x) = f(u(x)) for any u ∈ X

n−1
n and x ∈ Ω is Lipschitz continuous in bounded subsets of

X
n−1
n .

Proof. Let B be a bounded subset of X
n−1
n and u1, u2 ∈ B. Let s ∈ (0, nN

4 ) such that

ρ ⩽
nN + 4ms

nN − 4ms
.

Since Xα ↪→ H2mα(Ω) for any α > 0, we have

X
n−1
n ↪→ X

s
n ↪→ H

2ms
n (Ω) ↪→ L

2nN
nN−4ms (Ω).

Therefore L
2nN

nN+4ms (Ω) ↪→ X− s
n . Now, by Lemma 4.1 and Hölder’s inequality, we obtain

∥fe(u1)− fe(u2)∥X− s
n
⩽ c0∥fe(u1)− fe(u2)∥

L
2nN

nN+4ms (Ω)

⩽ c0∥2ρ−1c|u1 − u2|(1 + |u1|ρ−1 + |u2|ρ−1)∥
L

2nN
nN+4ms (Ω)

⩽ c1∥u1 − u2∥
L

2nN
nN−4ms (Ω)

∥1 + |u1|ρ−1 + |u2|ρ−1∥
L

nN
4ms (Ω)

⩽ c2∥u1 − u2∥
L

2nN
nN−4ms (Ω)

(1 + ∥u1∥ρ−1

L
nN(ρ−1)

4ms (Ω)
+ ∥u2∥ρ−1

L
nN(ρ−1)

4ms (Ω)
),
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where c0 is the embedding constant from L
2nN

nN+4ms (Ω) to X− s
n .

From Sobolev embeddings, we have

X
n−1
n ↪→ X

s
n ↪→ H

2ms
n (Ω) ↪→ L

nN(ρ−1)
4ms (Ω),

for all 2 < ρ ⩽ nN+4ms
nN−4ms , it follows that

∥fe(u1)− fe(u2)∥X− s
n
⩽ K∥u1 − u2∥

X
n−1
n

(1 + ∥u1∥ρ−1

X
n−1
n

+ ∥u2∥ρ−1

X
n−1
n

),

for some constant K > 0.

Remark 4.3. Since L
2nN

(nN−4m(n−1))ρ (Ω) ↪→ L2(Ω) for all 2 < ρ ⩽ nN
nN−4m(n−1) , it follows from

the proof of Lemma 4.2 that fe : X
n−1
n → L2(Ω) is Lipschitz continuous in bounded subsets;

that is,

∥fe(u1)− fe(u2)∥L2(Ω) ⩽ k∥fe(u1)− fe(u2)∥
L

2nN
nN−4m(n−1)ρ (Ω)

⩽ k1∥u1 − u2∥
X

n−1
n

,

where k1 = k1(∥u1∥
X

n−1
n

, ∥u2∥
X

n−1
n

). The scheme below describes this situation:

X
n−1
n ↪→ H

2m(n−1)
n (Ω) ↪→ L

2nN
nN−4m(n−1) (Ω)

f(u)≈uρ

−→ L
2nN

(nN−4m(n−1))ρ (Ω) ↪→ L2(Ω),

with 1 < ρ ⩽ nN
nN−4m(n−1) .

A direct consequence of Lemma 4.2 and Remark 4.3 is the following result.

Corollary 4.4. If f is as in Lemma 4.2, then the function F : Y → Y given by (1.6) is Lipschitz
continuous in bounded subsets of Y .

Now, Theorem 3.3 and [23, Theorem 1.4] guarantee local well-posedness for the semilinear
Cauchy problem (1.7) on Y with A = (−∆D)m and f as in Lemma 4.2.
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