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Abstract In this paper, we introduce a novel theorem concerning the existence of solutions
for Coupled Systems of Time-Fractional Differential Problems. This is achieved through the
utilization of the ψ-Caputo fractional derivative, where the order is confined within the range
of 0 < α < 1. The validation of the existence result is demonstrated by employing certain
conditions, namely Lipschitz and Carathéodory conditions.

1 Introduction

Fractional calculus has emerged as a pivotal tool in contemporary research, greatly aiding re-
searchers in tackling intricate problems. The methodologies and techniques within this field
have undergone substantial refinement in recent years. An illustrative instance is the establish-
ment of existence results for numerous linear or nonlinear fractional equations, each defined with
specific initial conditions. Across various articles, scholars are delving into fractional differen-
tial problems concerning time. Each study introduces a fresh fractional derivative approach. For
instance, in [10], the problem is examined utilizing the Caputo-Fabrizio fractional derivative.

Conversely, our article ventures into a similar problem domain but employs the ψ-Caputo
fractional derivative. Furthermore, we incorporate the pantograph fractional equation key to en-
rich our investigation. Our research is centered around the examination of an equation presented
in the following form: {

CDα,ψ
0+ x(ξ, t) = φ1 ((ξ, t, x(ξ, ηt), y(ξ, δt)) ,

CDβ,ψ
0+ y(ξ, t) = φ2 (ξ, t, x(ξ, ηt), y(ξ, δt)) .

(1.1)

This portrays a system comprising of two nonlinear time-fractional differential equations,
where the fractional derivative employed is the ψ-Caputo derivative.{

x(0, 0) = ϕ1(x),

y(0, 0) = ϕ2(y),
(1.2)

where 0 < α < 1, 0 < β < 1, (x, t) ∈ [0, 1]× [0, 1] , η, δ > 0, ϕ1, ϕ2 ∈ C(X,R) and the map-
pings φ1, φ2 continuous functions of [0, 1]2 × R2 with values in R. Subsequent to investigating
the aforementioned equation system, our focus will shift towards examining the same system,
albeit with the inclusion of:{

CDα,ψ
0+ x(ξ, t) ∈ F1(ξ, t, x(ξ, ηt), y(ξ, δt)),

CDβ,ψ
0+ y(ξ, t) ∈ F2(ξ, t, x(ξ, ηt), y(ξ, δt)).

(1.3)

with the follwing conditions, {
x(0, 0) = ϕ1(x),

y(0, 0) = ϕ2(y),
(1.4)
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where F1, F2 : [0, 1]× [0, 1]×R×R → P(R) are some multivalued maps.
This paper is structured in the following manner: firstly, we provide the essential preliminar-

ies required to delve into the study of ψ-Caputo fractional calculus. Subsequently, a significant
portion is dedicated to presenting the outcomes derived from our analysis of the problem. Fi-
nally, our discourse concludes with a succinct summary.

2 Preliminaries

In this section, we will commence by introducing all the essential outcomes requisite for our
investigation into ψ-Caputo fractional calculus, encompassing both the derivative and the integral
aspects. For a comprehensive understanding, we direct interested readers to references [2, 4, 6].

Definition 2.1. [3] The ψ−Caputo fractional derivative at order α of the function u is given by

CDα,ψ
0+ u(x, t) =

1
Γ(n− (α))

∫ t

0
ψ′(s)(ψ(t)− ψ(s))n−(α)−1u

[n]
ψ (x, s)ds (2.1)

Where

u
[n]
ψ (x, s) =

(
1

ψ′(s)

d

ds

)n
u(x, s) and n = [α] + 1.

And [α] denotes the integer part of the real number α.

Definition 2.2. [3] The ψ-Riemann-Liouville fractional integral at order α of the function u is
given by

Iα,ψ0+ u(x, t) =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1u(x, s)ds. (2.2)

Remark 2.3. In particular, if α ∈]0, 1[, then we have

CDα,ψ
0+ g(t) =

1
Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1g′(s)ds. (2.3)

and
CDα,ψ

0+ g(t) = I1−α,ψ
0+

(
g′(t)

ψ′(t)

)
The solution of (CDα,ψ

0+ x)(ξ, t) = g(ξ, t) is written in the form

x(ξ, t) =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1g(ξ, s)ds. (2.4)

Before proceeding, we consider the following sets :
(X, d) : a metric space;
P(X): the class of all subsets of X:
2X : the class of all nonempty subsets of X;
Pc1(X): the class of all closed subsets of X;
Pbd(X):the class ofall bounded subsets of X;
Pcv(X): the class of all convex subsets of X;
Pcp(X): the class of all compact subsets of X;
Pcp,cv(X) : the class of all compact and convex subsets of X .

Definition 2.4. [1, 9]

i- Let the function F : X → 2X , x ∈ X is said to be a fixed point of F when : x ∈ Fx.

ii- The function F : [0, 1]× [0, 1] → Pc1(R) is called measurable if for all w ∈ R :

(ξ, t) 7→ d(w,F(ξ, t)) = inf{∥w − x∥ : x ∈ F(ξ, t)}.
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iii- The Pompeiu-Hausdorffmetric Hd: 2X × 2X → [0, ∞) is defined by :

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},

such that d(A, b) = inf
a∈A

d(a, b).

Let CB(X) the set of closed and bounded subsets of X , and C(X) the set of closed subsets
of X .

Proposition 2.5. [9, 1]

1- (CB(X), Hd) is a metric space.

2- F is convex-valued, if for all x ∈ X , Fx is convex .

3- F is compact-valued, if for all x ∈ X , Fx is compact .

4- F : X → C(X) is contracting if there is a constant γ ∈ (0, 1) such that :
Hd(Fx,Fy) ≤ γd(x, y) , ∀x, y ∈ X .

Definition 2.6. Let F : [0, 1]× [0, 1]×R×R → 2R is a multifunction .

i- We say that F is a Caratheodory multifunction if for all (ξ, t) ∈ [0, 1]2 and (x1, x2) ∈ R :
(ξ, t) 7−→ F(ξ, t, x1, x2) is mesurable, and (x1, x2) 7−→ F(ξ, t, x1, x2) is upper semicontin-
uous .

ii- We say that F is a L1−Caratheodory when for each ρ > 0 there exists βρ ∈ L1([0, 1] ×
[0, 1], R+) such that :

∥F(ξ, t, x1, x2)∥ = sup
(ξ,t)∈[0,1]x[0,1]

{|s| : s ∈ F(ξ, t, x1, x2)} ≤ βρ(ξ, t),

for all |xi| ≤ ρ and (ξ, t) ∈ [0, 1]× [0, 1].

We pass to define some notions related to multifunction.

Definition 2.7. 1- The set of selections of Fi at xi is defined by :

SFi(xi) =

{
wi ∈ L1([0, 1]× [0, 1], R) : wi(ξ, t) ∈ F(ξ, t, xi(ξ, t), x′i(ξ, t))

for almost all (ξ, t) ∈ [0, 1]× [0, 1]} ,

}
(2.5)

for all xi, x′i ∈ CR([0, 1]× [0, 1]) for i = 1, 2.

2- The graph of the multifunction F : X → Y is defined by the set :

Gr(F) = {(x, y) ∈ X × Y : y ∈ F (x)}.

Proposition 2.8. 1- For all xi ∈ CK([0, 1] × [0, 1]) when dimK < ∞, we have SFi(xi) are
nonempty.

2- Let F : X → Y is a multifunction, we say that Gr(F) is a closed subset of X × Y , when
for all sequences {xn}n∈N ∈ X with xn → x0 and {yn}n∈N ∈ Y with yn → y0, such that
yn ∈ F(xn) we have y0 ∈ F(x0).

We provide several crucial results that will be utilized in the subsequent proofs.

Theorem 2.9. Let T : X → X the completely continuous operator with X is a Banach space.
The set K = {x ∈ X,x = λT x , λ ∈ [0, 1]} is bounded. Then, the operator T has a fixed point.
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Lemma 2.10. Let F : X → Pcl(Y ) ,

i- Gr(F) is closed subset of X × Y if F is upper semicontinuous.

ii- F is upper semicontinuous if F is completely continuous and Gr(F) is closed.

Lemma 2.11. Let F : [0, 1]× [0, 1]×X ×X → Pcp,cv(X) an L1−Caratheodory function with
X is a separable Banach space, and let Θ : L1([0, 1]× [0, 1], X) → CX([0, 1]× [0, 1]) a linear
continuous mapping. Then, the operator :

Θ · SF :

{
CX([0, 1]× [0, 1]) → Pcp,cv(CX([0, 1]× [0, 1])

x 7→ (Θ · SF)(x) = Θ(SF,x),

is a closed graph operator.

Theorem 2.12. Let E be a Banach space C a dosed convex subset of E,U an open subset of C
and 0 ∈ U. Let us suppose that F : U → Pcp,cv(C) depicts an upper semicontinuous compact
map, such that Pcp,cv(C) denotes the family of nonempty, compact convex subsets of C. Then
either F admits a fixed point in U or there exist x ∈ ∂U and λ ∈ (0, 1) such that x ∈ λF(x).

3 Main result

We consider the following system:{
CDα,ψ

0+ x(ξ, t) = φ1 (ξ, t, x(ξ, ηt), y(ξ, δt))
CDβ,ψ

0+ y(ξ, t) = φ2 (ξ, t, x(ξ, ηt), y(ξ, δt))
(3.1)

with initial conditions x(0, 0) = ϕ1(x) and y(0, 0) = ϕ2(y).
Where: φ1, φ2 : [0, 1]2 ×X2 → X are continuous mappings, ϕ1, ϕ2 ∈ C(X,R), α, β ∈ (0, 1),
(ξ, t) ∈ [0, 1], and CDα,ψ

0+ and CDβ,ψ
0+ are the fractional derivatives of ψ−Caputo of order respec-

tively α, β.
Consider X =

{
x : x ∈ CR([0, 1]× [0, 1])

}
is the Banach space with the following norm:

∥x∥X = sup
(ξ,t)∈[0,1]x[0,1]

|x(ξ, t)|.

And the space (X ×X, ∥.∥X×X) is a Banach space via the product norm :

∥(x, y)∥X×X = ∥x∥X + ∥y∥X .

We proceed to show the following lemma concerning the integral solution.

Lemma 3.1. Let φ ∈ L1
X([0, 1] × [0, 1]) and α ∈ (0, 1), the fractional differential equation

CDα,ψ
0+ x(ξ, t) = φ(ξ, t), with x(0, 0) = ϕ1(x), admits a unique integral solution x0 ∈

CX([0, 1]× [0, 1]) of the form :

x0(ξ, t) = ϕ1(x) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1φ(ξ, s)ds.

Proof. we apply the ψ−Caputo fractional integral in two sides and find that :

x0(ξ, t)− x0(0, 0) =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1φ(ξ, s)ds

so, x0(ξ, t) = x0(0, 0) + 1
Γ(α)

∫ t
0 ψ

′(s)(ψ(t)− ψ(s))α−1φ(ξ, s)ds.
This shows the general form of the integral solution, we go on to show the uniqueness of this
solution.
Let x1, x2 two integral solutions of the problem, we have :

CDα,ψ
0+ x1(ξ, t)−C Dα,ψ

0+ x2(ξ, t) = [CDα,ψ
0+ (x1 − x2)](ξ, t) = 0 and (x1 − x2)(0, 0) = 0.
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By the property of the ψ−Caputo fractional derivative, we get u1 = u2.
Hence, u0 is a unique solution of initial value problem .
Then, we conclude that :

x0(ξ, t) = ϕ1(x) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1φ(ξ, s)ds.

With : x0(0, 0) = ϕ1(x).

We consider two operators T1, T2 : X → X defined as follows :

(T1x)(ξ, t) = ϕ1(x) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1φ(ξ, s, x(ξ, ηs), y(ξ, δs))ds

(T2y)(ξ, t) = ϕ2(y) +
1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1φ(ξ, s, x(ξ, ηs), y(ξ, δs))ds

and put

N1 =
(ψ(T )− ψ(0))α

Γ(α+ 1)
, N2 =

(ψ(T )− ψ(0))β

Γ(β + 1)
(3.2)

Before completing, we consider the following hypotheses:

(H1) φ1, φ2 : [0, 1]2×X2 → X are continuous mappings, and there exist two constant L1, L2 > 0
such that :
| φ1(ξ, t, x1, x2) |≤ L1 and | φ2(ξ, t, x1, x2) |≤ L2, ∀(ξ, t) ∈ [0, 1]2 , ∀x1, x2 ∈ X .

(H2) There two constants Lx , Ly > 0 such that :
| ϕ1(x) |≤ Lx and | ϕ2(y) |≤ Ly, for all x, y ∈ X .

(H3) Suppose there are two positive constants Kx , Ky such that for all x1, x2, y1, y2 ∈ X :

| ϕ1(x1)− ϕ1(x2) |≤ Kx ∥ x1 − x2 ∥,

| ϕ2(y1)− ϕ2(y2) |≤ Ky ∥ y1 − y2 ∥,

(H4) There exist a nondecreasing bounded continuous map χ : [0, ∞) → (0, ∞) and a continu-
ous function p : [0, 1]× [0, 1] → (0, ∞) such that :

∥Fi(ξ, t, xi(ξ, t), yi(ξ, t))∥ ≤ p(ξ, t)χ(∥xi∥) , ∀(ξ, t) ∈ [0, 1]× [0, 1], xi, yi ∈ X.

Theorem 3.2. Suppose that the two hypotheses (H1) and (H2) are verified then the system admits
at least one solution.

Proof. let T : X ×X → X ×X be an operator defined by:

T (x, y)(ξ, t) := ((T1x)(ξ, t), (T2y)(ξ, t)) , ∀(ξ, t) ∈ [0, 1]× [0, 1].

According to the hypothesis (H1) , T is a continuous operator. We prove that the operator T
maps bounded sets into the bounded subsets of X ×X .
Let Ω be a bounded subset ofX ×X, (x, y) ∈ Ω, and (ξ, t) ∈ [0, 1]× [0, 1]. Then, we have :

|(T1x)(ξ, t)| = |ϕ1(x) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1φ(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

⩽ Lx +
(ψ(T )− ψ(0))α

Γ(α+ 1)
L1

⩽ Lx +N1L1,
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hince, ∥(T1x)(ξ, t)∥X ≤ Lx + L1N1.
Also, we have :

|(T2y)(ξ, t)| = |ϕ2(y) +
1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1φ(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

⩽ Ly +
(ψ(T )− ψ(0))β

Γ(β + 1)
L2

⩽ Ly +N2L2,

hince, ∥(T2y)(ξ, t)∥X ≤ Ly + L2N2.
Thus,

∥T (x, y)(ξ, t)∥X×X ≤ Lx + L1N1 + Ly + L2N2.

This shows that the operator T maps bounded sets into the bounded sets of X ×X .
We go on to show that T is an equicontinuous operator. Let t1, t2 ∈ [0, 1] with t1 < t2. Then, we
have :

|(T1x)(ξ, t1)− (T1x)(ξ, t2)| = |
(
ϕ1(x) +

1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))α−1φ1(ξ, s, x(ξ, ηs), y(ξ, δs))ds

)
−
(
ϕ1(x) +

1
Γ(α)

∫ t2

0
ψ′(s)(ψ(t2)− ψ(s))α−1φ1(ξ, s, x(ξ, ηs), y(ξ, δs))ds

)
|

⩽ | 1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))α−1φ1(ξ, s, x(ξ, ηs), y(ξ, δs))ds

− 1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t2)− ψ(s))α−1φ1(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

+ | 1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t2)− ψ(s))α−1φ1(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

− 1
Γ(α)

∫ t2

0
ψ′(s)(ψ(t2)− ψ(s))α−1φ1(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

⩽
L1

Γ(α+ 1)
(|ψα(t2)− ψα(t1)− (ψ(t2)− ψ(t1))

α| − (ψ(t2)− ψ(t1))
α)

When ψ is a continuous function, then we obtain : |(T1x)(ξ, t2)− (T1x)(ξ, t1)| → 0 whenever
t2 → t1 .
By utilizing the Arzela-Ascoli theorem, T1 is completely continuous.
Similarly we have :

|(T2y)(ξ, t1)− (T2y)(ξ, t2)| = |
(
ϕ2(y) +

1
Γ(β)

∫ t1

0
ψ′(s)(ψ(t)− ψ(s))β−1φ2(ξ, s, x(ξ, ηs), y(ξ, δs))ds

)
−
(
ϕ2(y) +

1
Γ(β)

∫ t2

0
ψ′(s)(ψ(t)− ψ(s))β−1φ2(ξ, s, x(ξ, ηs), y(ξ, δs))ds

)
|

⩽ | 1
Γ(β)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))β−1φ2(ξ, s, x(ξ, ηs), y(ξ, δs))ds

− 1
Γ(β)

∫ t1

0
ψ′(s)(ψ(t2)− ψ(s))β−1φ2(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

+ | 1
Γ(β)

∫ t1

0
ψ′(s)(ψ(t2)− ψ(s))β−1φ2(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

− 1
Γ(β)

∫ t2

0
ψ′(s)(ψ(t2)− ψ(s))α−1φ2(ξ, s, x(ξ, ηs), y(ξ, δs))ds|

⩽
L2

Γ(β + 1)
(∣∣ψβ(t2)− ψβ(t1)− (ψ(t2)− ψ(t1))

β
∣∣− (ψ(t2)− ψ(t1))

β
)
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by utilizing the Arzela-Ascoli theorem we observe that T2 is completely continuous. Therefore,
we get ∥T (x, y)(ξ, t2) − T (x, y)(ξ, t2)∥X×X → 0 whenever t2 tends to t1 . Thus, T is
completely continuous.
Now show that the set, Ω = {(u, ν) ∈ X × X : (u, ν) = λT (u, ν) for someλ ∈ [0, 1]} is
bounded.
Let x, y ∈ Ω and λ ∈ [0, 1] such that: (x, y) = λT (x, y) .
Hence, x(ξ, t) = λ(T1x)(ξ, t) and y(ξ, t) = λ(T2y)(ξ, t) for all (ξ, t) ∈ [0, 1]× [0, 1].
We have :

1
λ
| x(ξ, t) |=| (T1x)(ξ, t) |≤ Lx + L1N1,

1
λ
| y(ξ, t) |=| (T2y)(ξ, t) |≤ Ly + L2N2,

so we get : | x(ξ, t) |≤ λ(Lx + L1N1) and | y(ξ, t) |≤ λ(Ly + L2N2) .
Then,

∥ (x, y) ∥X×X≤ λ(Lx + L1N1 + Ly + L2N2).

which implies that Ω is bounded. Hence, T has a fixed point which is a solution for the coupled
system of the time-fractional differential equations.

Now, we study the existence of solution for the coupled system of time-fractional differential
inclusions {

(CDα,ψ
0+ x)(ξ, t) ∈ F1(ξ, t, x(ξ, ηt), y(ξ, δt)),

(CDβ,ψ
0+ y)(ξ, t) ∈ F2(ξ, t, x(ξ, ηt), y(ξ, δt))

(3.3)

with :
x(0, 0) = ϕ1(x), y(0, 0) = ϕ2(y), (3.4)

Definition 3.3. Let (x1, x2) ∈ C([0, 1]× [0, 1], X)×C([0, 1]× [0, 1], X), we say that (x1, x2)
is a solution of system (3.3) with the conditions (3.4) if there is (w1, w2) ∈ L1([0, 1]× [0, 1])×
L1([0, 1] × [0, 1]) such that wi(ξ, t) ∈ Fi(ξ, t, x(ξ, t), y(ξ, t)) for all (ξ, t) ∈ [0, 1] × [0, 1]
and i = 1, 2 and xe have :

xi(ξ, t) = ϕi(xi) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1wi(ξ, s, x(ξ, ηs), y(ξ, δs))ds.

Theorem 3.4. Let F1,F2 : [0, 1]× [0, 1]×R×R → Pcp,cv(R) be L1− Caratheodory multifunc-
tions, and suppose that (H4) is verifed .Then the system (3.3) − (3.4) has at least one solution
.

Proof. Let the operator N : X ×X → 2X×X define by N(x1, x2) = (
N1(x1,x2)
N2(x1,x2)

) , where:

N1(x1, x2) = {h1 ∈ X×X : there exists z1 ∈ SF1,x1 such that h1(ξ, t) = z1(ξ, t) ∀(ξ, t) ∈ [0, 1]×[0, 1]},

and,

N2(x1, x2) = {h2 ∈ X×X : there existsz2 ∈ SF2,x2 such that h2(ξ, t) = z2(ξ, t)∀(ξ, t) ∈ [0, 1]×[0, 1]},

we have:

h1(ξ, t) = ϕ1(x1) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1z1(ξ, s)ds.

h2(ξ, t) = ϕ2(x2) +
1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1z2(ξ, s)ds.

then, each fixed point of the operator N is a solution for system of time-fractional differential
inclusions (3.3).
Step1 : Prove that N is convex-valued.
Let (x1, x2) ∈ X ×X, (h1, h2), (h′1, h

′
2) ∈ N(u1, u2) and zi, z′i ∈ SFi(x1,x2) such that :{

h1(ξ, t) = ϕ1(x1) +
1

Γ(α)

∫ t
0 ψ

′(s)(ψ(t)− ψ(s))α−1z1(ξ, s)ds,

(h′1(ξ, t) = ϕ1(x′1) +
1

Γ(α)

∫ t
0 ψ

′(s)(ψ(t)− ψ(s))α−1z′1(ξ, s)ds
(3.5)
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{
h2(ξ, t) = ϕ(x) + 1

Γ(α)

∫ t
0 ψ

′(s)(ψ(t)− ψ(s))α−1z2(ξ, s)ds,

(h′2(ξ, t) = ϕ2(x′2) +
1

Γ(α)

∫ t
0 ψ

′(s)(ψ(t)− ψ(s))α−1z′2(ξ, s)ds
(3.6)

Let λ ∈ [0, 1] ,then, we have :

[λh1 + (1 − λ)h′1](ξ, t) = (λϕ1(x1) + (1 − λ)ϕ1(x
′
1))

+
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1[λz1(ξ, s) + (1 − λ)z′1(ξ, s)]ds.

and,

[λh2 + (1 − λ)h′2](ξ, t) = (λϕ2(x2) + (1 − λ)ϕ2(x
′
2))

+
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1[λz2(ξ, s) + (1 − λ)z′2(ξ, s)]ds.

we have Fi has convex values, SFi(xi) is a convex set and [λhi + (1 − λ)h′i] ∈ Ni(x1, x2) for
i = 1, 2.
This implies that the operator N has convex values.
Step2 : We go on to show that N maps bounded sets of X into bounded sets.
Let a positive constant a and the set Ba = {(x1, x2) ∈ X ×X : ∥(x1, x2)∥ ≤ a} be a bounded
subset of X ×X ,let (h1, h2) ∈ N(x1, x2) , and (x1, x2) ∈ Ba.
by the hypothesis (H4), we obtain :

|(h1)(ξ, t)| = |ϕ1(x1) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1z1(ξ, s)ds|

≤ Lx +
(ψ(T )− ψ(0))α

Γ(α+ 1)
.

∫ t

0
|z1(ξ, s)|ds

≤ Lx + ∥p∥∞χ(∥x1∥)N1,

Then,
∥h1∥ ≤ Lx + ∥p∥∞ψ(∥x1∥)N1.

Similarly, we obtain:
∥h2∥ ≤ Ly + ∥p∥∞ψ(∥x2∥)N2.

Thus, ∥(h1, h2)∥ ≤ (Lu + Lν) + ∥p∥∞χ(∥(u1, u2)∥)(N1 +N2) .
Step3 : Prove that N maps bounded sets into equicontinuous subsets of X ×X .
Let (x1, x2) ∈ Ba and t1, t2 ∈ [0, 1] with t1 < t2. Then, we have:

|(h1)(ξ, t2)− (h1)(ξ, t1)| = |
(
ϕ1(x1) +

1
Γ(α)

∫ t2

0
ψ′(s)(ψ(t2)− ψ(s))α−1z1(ξ, s)ds

)
−
(
ϕ1(x1) +

1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))α−1z1(ξ, s)ds

)
|

≤ | 1
Γ(α)

∫ t2

0
ψ′(s)(ψ(t2)− ψ(s))α−1z1(ξ, s)ds

− 1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))α−1z1(ξ, s)ds|

+ | 1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))α−1z1(ξ, s)ds

− 1
Γ(α)

∫ t1

0
ψ′(s)(ψ(t1)− ψ(s))α−1z1(ξ, s)ds|

≤ ∥p∥∞χ(∥x1)∥)
Γ(α+ 1)

(|ψα(t2)− ψα(t1)− (ψ(t2)− ψ(t1))
α| − (ψ(t2)− ψ(t1))

α)
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By using a similar method, we obtain :

|(h2)(ξ, t2)−(h2)(ξ, t1)| ≤
∥p∥∞χ(∥x2)∥)

Γ(β + 1)
(∣∣ψβ(t2)− ψβ(t1)− (ψ(t2)− ψ(t1))

β
∣∣− (ψ(t2)− ψ(t1))

β
)

Hence, |hi(ξ, t2)− hi(ξ, t1)| → 0 as (ξ, t2) → (ξ, t1) .
By using the Arzela-Ascoli theorem we get that N is completely continuous. Hence, N is upper
semicontinuous.
Step4 : Show that N has a closed graph.
Let {(xn1 , xn2 )} be a sequence in X ×X with (xn1 , x

n
2 ) → (x0

1, x
0
2).

We get the following sequences:
(hn1 , h

n
2 ) ∈ N(un1 , u

n
2 ) with (hn1 , h

n
2 ) → (h0

1, h
0
2) .

And, (vn1 , ν
n
2 ) ∈ SF1(un

1 ) × SF2(un
2 ) with (zn1 , z

n
2 ) → (z0

1 , z
0
2).

We have :

hn1 (ξ, t) = ϕ1(x
n
1 ) +

1
Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1zn1 (ξ, s)ds , ∀ξ, t ∈ [0, 1]

hn2 (ξ, t) = ϕ2(x
n
2 ) +

1
Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1zn2 (ξ, s)ds , ∀ξ, t ∈ [0, 1]

with,

h0
1(ξ, t) = ϕ1(x

0
1) +

1
Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1z0

1(ξ, s)ds,

h0
2(ξ, t) = ϕ2(x

0
2) +

1
Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1z0

2(ξ, s)ds,

show that there exists (ν0
1 , ν

0
2) ∈ SF1(u0

1)
× SF2(u0

2)
.

Now, consider the linear operators Θ1,Θ2 : L1([0, 1]× [0, 1], X) → C([0, 1]× [0, 1], X) defined
by :

Θ1(z1)(ξ, t) = ϕ1(x1) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1z1(ξ, s)ds,

Θ2(z2)(ξ, t) = ϕ2(x2) +
1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1z2(ξ, s)ds.

Xe have :

∥hn1 (ξ, t)− h0
1(ξ, t)∥ = ∥

(
ϕ1(x

n
1 ) +

1
Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1zn1 (ξ, s)ds

)
−
(
ϕ1(x

0
1) +

1
Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1z0

1(ξ, s)ds

)
∥

≤∥ ϕ1(x
n
1 )− ϕ1(x

0
1) ∥ +∥ 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1[zn1 (ξ, s)− z0

1(ξ, s)]ds∥

≤ Kx ∥ xn1 − x0
1 ∥ +∥ 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1[zn1 (ξ, s)− z0

1(ξ, s)]ds∥ → 0,

and,

∥hn2 (ξ, t)− h0
2(ξ, t)∥ = ∥

(
ϕ2(x

n
2 ) +

1
Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1zn1 (ξ, s)ds

)
−
(
ϕ2(x

0
2) +

1
Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1z0

1(ξ, s)ds

)
∥

≤∥ ϕ2(x
n
2 )− ϕ2(x

0
2) ∥ +∥ 1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1[zn2 (ξ, s)− z0

2(ξ, s)]ds∥

≤ Ky ∥ xn2 − x0
2 ∥ +∥ 1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1[zn2 (ξ, s)− z0

2(ξ, s)]ds∥ → 0.
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So, ΘiSFi
is a closed graph operator for i = 1, 2.

Also, we get hni (x, t) ∈ Θi(SFi(un
i )
) for all n ∈ N.

Thus, N has a closed graph.
Step5 : Now, we prove that there is an open set U ⊆ X with (x1, x2) ̸∈ N(x1, x2) for all
λ ∈ (0, 1) and (x1, x2) ∈ ∂U.
Let λ ∈ (0, 1) and (x1, x2) ∈ λN(x1, x2) . Then, there exists zi ∈ L1([0, 1] × [0, 1], R) with
zi ∈ SFi(xi)(i = 1, 2) such that :

x1(ξ, t) = ϕ1(x1) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1z1(ξ, s)ds , ∀ξ, t ∈ [0, 1]

x2(ξ, t) = ϕ2(x2) +
1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1z2(ξ, s)ds , ∀ξ, t ∈ [0, 1].

From the previous results we find that:

∥xi∥ ≤ (Lx + Ly) + ∥p∥∞χ(∥xi∥)
n∑
i=1

Ni.

Then,

∥xi∥/(Lx + Ly) + ∥p∥∞χ(∥xi∥)
n∑
i=1

Ni ≤ 1

for i = 1, 2.
We take Mi > 0 with ∥xi∥ ≠Mi such that :

Mi/(Lx + Ly) + ∥p∥∞χ(∥xi∥)
n∑
i=1

Ni > 1 , i = 1, 2.

Let U = {(x1, x2) ∈ X × X : ∥(x1, x2)∥ < min{M1,M2}}. The operator N : U → P(X) is
upper semicontinuous and completely continuous. Also, we showed that there is no (x1, x2) ∈
∂U such that (x1, x2) ∈ λN(x1, x2) for some λ ∈ (0, 1) .
Hence, the operator N has a fixed point (x1, x2) ∈ U which is a solution for time- fractional
differential inclusion (3.3)− (3.4).

4 Conclusion

In this article, we have examined the existence and uniqueness of solutions for a system of
equations and inclusions. The system is characterized by differential fractional-in-time opera-
tors using the ψ-Caputo fractional derivative, along with a hint of the pantograph differential
equation. Additionally, we incorporate L1-Caratheodory multifunctions to analyze the problem
further.
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