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Abstract. Phu [16] introduced the generalized version of the concept of ordinary conver-
gence of sequences as rough convergence of sequences in a normed linear space. Here using
the idea of Phu we have introduced the idea of rough convergence of sequences in an S-metric
space and discussed some of the fundamental properties of rough limit set for some degree of
roughness. It has been shown that for a certain degree of roughness, a sequence that is rough
convergent may not necessarily be convergent.

1 Introduction

The abstract formulation of the concept of distance between two points of an arbitrary non empty
set has been seen in a metric space. It is well-known to all that by generalizing the concept of
distance the central concepts of real and complex analysis like open and closed sets, convergence
of a sequence, continuity and uniform continuity etc. have been generalized in a metric space.

Later many authors have found out many generalizations of the concept of metric space. The
idea of a 2-metric has been given by Gähler [9] in 1963 and in 1992 Dhage [7] introduced the
idea of D-metric as a generalization of ordinary metric. Later in 2006 we have got another
generalization of the concept of metric space by Mustafa and Sims [15] to bring some new ideas
in the fixed point theory. Huang and Zhang [11] introduced the idea of cone metric spaces in
2007 generalizing the concept of distance in an ordinary metric space. The idea of an S-metric
space has been given by S. Sedghi et al in 2012 for generalization of fixed point theorems in this
new structure.

The idea of rough convergence of sequences has been firstly given by Phu [16] in a normed
linear space. There he also introduces the idea of rough Cauchy sequences. Many works [2, 12,
13] have been done as an extension of these ideas. Banerjee and Mondal [4] studied the idea
of rough convergence of sequences in a cone metric space. Recently the idea of rough Cauchy
sequences has been introduced by Mondal [14] in a cone metric space. Some recent works in
the literature, as found in [3, 6, 8, 10, 19], present new ideas that offer fresh perspectives and
insights.

Here we have discussed the idea of rough convergence of sequences in an S-metric space. We
have shown that every r-convergent sequence in an S-metric space is bounded. Most importantly,
it has been verified for an r-convergent (r > 0) sequence that the r- limit set is a closed set and
its diameter cannot exceed 3r. Also it has been discussed with an example that in an S-metric
space a rough convergent sequence may not necessarily be a convergent sequence.

2 Preliminaries

Definition 2.1. [16] Let {xn} be a sequence in a normed linear space (X, ‖.‖), and r be a non
negative real number. Then {xn} is said to be r-convergent to x if for any ε > 0, there exists a
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natural number k such that ‖xn − x‖ < r + ε for all n ≥ k.

Definition 2.2. [18] In a nonempty set X a function S : X3 −→ [0,∞) is said to be an S-metric
on X if the following three conditions hold, for every x, y, z, a ∈ X:
(i) S(x, y, z) ≥ 0;
(ii) S(x, y, z) = 0 if and only if x = y = z;
(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)
Then the pair (X,S) is said to be an S-metric space.

There are many examples of S-metric spaces have been thoroughly discussed in [18]. There
also it has been shown by an example that a D∗-metric is an S-metric but the converse is not true
in general.

Throughout (X,S) or simplyX stands for an S-metric space, R for the set of all real numbers,
N for the set of all natural numbers, sets are always subsets of X unless otherwise stated. We
should note that in an S-metric space S(x, x, y) = S(y, y, x).

Definition 2.3. [18] In an S-metric space (X,S) for r > 0 and x ∈ X we define the open and
closed ball of radius r and center x respectively as follows :
BS(x, r) = {y ∈ X : S(y, y, x) < r}
BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}

There are several examples of open and closed sets in an S-metric space have been discussed
in [18].

Definition 2.4. [18] In an S-metric space (X,S) a subset A of X is said to be an open set if for
every x ∈ A there exists a r > 0 such that BS(x, r) ⊂ A.

Definition 2.5. [18] In an S-metric space (X,S) a subset A of X is said to be S-bounded if there
exists a r > 0 such that S(x, x, y) < r for every x, y ∈ A.

Definition 2.6. [18] In an S-metric space (X,S) a sequence {xn} is said to be converges to x in
X if for every ε > 0 there exists a natural number k such that S(xn, xn, x) < ε for every n ≥ k.

Definition 2.7. [18] In an S-metric space (X,S) a sequence {xn} is said to be a Cauchy sequence
in X if for every ε > 0 there exists a natural number k such that S(xn, xn, xm) < ε for every
n,m ≥ k.

Definition 2.8. [18] An S-metric space (X,S) is said to be complete if every Cauchy sequence
converges in this space.

In an S-metric space (X,S) the collection of all open subsets τ in X forms a topology on X
called topology induced by the S-metric. The open ball BS(x, r) of radius r and centre x is an
open set in X .

3 Rough convergence of sequences in an S-metric space

Definition 3.1. A sequence {xn} in an S-metric space (X,S) is said to be r-convergent to p if
for every ε > 0 there exists a natural number k such that S(xn, xn, p) < r+ ε holds for all n ≥ k.

Usually we denote it by xn
r−→ p and r is said to be the degree of roughness of rough conver-

gence of {xn}. We should note that Phu’s [16] idea has been utilized to define rough convergence
of sequences in an S-metric space. It should be observed that when r = 0 the rough convergence
becomes the classical convergence of sequences in an S-metric space. If {xn} is r-convergent to
p, then p is said to be a r-limit point of {xn}. For some r as defined above, the set of all r-limit
points of a sequence {xn} is said to be the r-limit set of the sequence {xn} and we will denote
it by LIMrxn. Therefore we can say LIMrxn =

{
x0 ∈ X : xn

r−→ x0

}
. We should note that

r-limit point of a sequence {xn} may not be unique, as can be observed from the following dis-
cussion.

Let X = R, the set of all real numbers and S : X3 −→ R be defined by S(x, y, z) =| x− z |
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+ | y − z |. It can be easily clarified that (X,S) is an S-metric space. Now let us consider a
sequence {xn} = {(−1)n 1

2n } in X . Clearly S(xn, xn, p) = 2 | xn − p | for some p ∈ R.
If p > 0 then by considering ε < 2 | 1

4 − p | we can easily clarify that there exists infinitely
many natural numbers n for which S(xn, xn, p) < ε does not hold. Also if p < 0 then choosing
ε < 2 | − 1

2 − p | we can find infinitely many natural numbers n for which S(xn, xn, p) < ε does
not hold.

But for p > 0 if we take r = (2 | − 1
2 − p |) + 1 then S(xn, xn, p) < r+ ε holds for all n. For

p < 0 if we take r = (2 | 1
4 − p |) + 1 then S(xn, xn, p) < r + ε holds for all n.

The following example shows that a sequence is rough convergent in an S-metric space may
not convergent in that space.

Example 3.1. Let us consider the S-metric space (X,S) as defined above. Now let us consider
the sequence {xn} where xn = (−1)n for n ∈ N. Clearly {xn} is not a convergent sequence in
X . Because if p ∈ R then S(xn, xn, p) = 2 | xn− p |. So S(xn, xn, p) equals to either 2 | 1+ p |
or 2 | 1 − p |. Hence if M = Min{2 | 1 + p |, 2 | 1 − p |} then for ε < M then there exists
infinitely many n for which S(xn, xn, p) < ε does not hold and hence {xn} is not a convergent
sequence in X .

But if r =Max{2 | 1 + p |, 2 | 1− p |} then for any ε > 0 we have S(xn, xn, p) < r + ε for
all n. Hence {xn} is a r-convergent sequence and r-converges to p.

We will use the similar kind of concept as was in the case of a metric space for diameter of a
set in an S-metric space. For a subset A of X the diameter of A is sup{S(x, x, y) : x, y ∈ A}. A
is said to be of infinite diameter in the case when supremum is not finite.

It has been discussed by Phu [16] in a normed linear space that the diameter of a r-limit set
of a r-convergent sequence is not greater then 2r. Here we have found out a similar kind of
property in an S-metric space as follows.

Theorem 3.2. The diameter of a r- limit set of a r-convergent sequence {xn} in an S-metric
space X is not greater then 3r.

Proof. We shall show that there does not exist elements y, z ∈ LIMrxn, such that S(y, y, z) >
3r holds. If possible let there exists elements y, z ∈ LIMrxn such that s > 3r holds where
s = S(y, y, z). Let us consider ε > 0 be arbitrarily preassigned. So we can find a k1, k2 ∈ N for
this ε such that S(xn, xn, y) < r+ ε for all n ≥ k1 and S(xn, xn, z) < r+ ε for all n ≥ k2. If we
suppose k = max{k1, k2} then S(xn, xn, y) < r+ε and S(xn, xn, z) < r+ε both hold for all n ≥
k . . . (i) . Now for n ≥ k we can write S(y, y, z) ≤ S(y, y, xn)+S(y, y, xn)+S(z, z, xn) . . . (ii).
Hence by using (i) on (ii) we can write S(y, y, z) < 3(r + ε). Now if we consider ε = ( s3 − r),
where ( s3 − r) > 0 then we have S(y, y, z) < s, which is a contradiction. Hence there can not
have elements y, z ∈ LIMrxn, such that S(y, y, z) > 3r holds.

The following property of a r-convergent sequence have been discussed by Phu [16] in a
normed linear space. Here we have discussed it in an S-metric space.

Theorem 3.3. A sequence {xn} r-converges to x in an S-metric space X will imply BS [x, r] =
LIMrxn, when {xn} converges to x.

Proof. First suppose that {xn} converges to x. Let y ∈ BS [x, r] and let ε be any arbitrary
preassigned positive real number. So there exists a natural number k such that S(xn, xn, x) < ε

2
for all n ≥ k and we also have S(x, x, y) ≤ r. Hence for n ≥ k we have S(xn, xn, y) ≤
S(xn, xn, x) + S(xn, xn, x) + S(y, y, x) and hence S(xn, xn, y) < r + ε holds for every n ≥ k.
Therefore y ∈ LIMrxn and hence BS [x, r] ⊂ LIMrxn.

Now let z ∈ LIMrxn and ε be any arbitrary preassigned positive real number. Now we can
find p1, p2 ∈ N such that S(xn, xn, z) < r + ε

3 for all n ≥ p1 and S(xn, xn, x) <
ε
3 for all
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n ≥ p2. Now if p = max{p1, p2} then S(xn, xn, z) < r + ε
3 and S(xn, xn, x) < ε

3 holds for
every n ≥ p . . . (i). Now for n ≥ p, S(x, x, z) ≤ S(x, x, xn) + S(x, x, xn) + S(z, z, xn) =
S(xn, xn, x) + S(xn, xn, x) + S(xn, xn, z) . . . (ii) holds. Hence by using (i) on (ii) we have
S(x, x, z) < r + ε for any ε > 0 and hence S(x, x, z) ≤ r holds. Therefore z ∈ BS [x, r].

Remark : If x, y be two distinct elements in X and S(x, x, y) = d then we can have two disjoint
open balls BS(x, d3 ) and BS(y, d3 ). Because if z ∈ BS(x, d3 ) ∩BS(y,

d
3 ) then S(x, x, z) < d

3 and
S(y, y, z) < d

3 . So S(x, x, y) ≤ S(x, x, z)+S(x, x, z)+S(y, y, z) < d, which is a contradiction.
Hence every S-metric space is Hausdorff. Therefore every convergent sequence in an S-metric
space has a unique limit.

Lemma 3.4. Every closed set in (X,S) contains all its limit points.

Proof is straightforward and so is omitted.

Lemma 3.5. In (X,S) a subset A of X is closed if and only if every sequence in A which
converges in X converges to a point in A.

Proof. First suppose that every sequence in A which converges in X converges to a point in A.
Now if possible let A is not closed. Then there exists a limit point p of A in the complement
of A. So BS(p, 1

n) ∩ (A \ {p}) 6= φ for all n ∈ N. Now if we consider an element xn from
BS(p,

1
n)∩ (A \ {p}) for all n ∈ N then {xn} is a sequence in A which converges to a point p in

the complement of A.
Let M be an open set containing p then there exists an open ball BS(p, g) for some g > 0

such that p ∈ BS(p, g) ⊂ M and hence there exists h ∈ N such that p ∈ BS(p, 1
h) ⊂ BS(p, g).

Therefore for n ≥ h we have xn ∈M . This is a contradiction to our supposition.
Conversely let A is a closed set in X . Now if we suppose that there exists a sequence {xn}

in A converges to a point r which is not in A. Then for every open ball B centered at r we have
B ∩ (A \ {r}) 6= φ, which is a contradiction to the fact that A is closed in X .

The following result has been discussed by Phu [16] in a normed linear space and is very
important in this sequel.

Theorem 3.6. Let {xn} be a sequence in (X,S). Then LIMrxn is a closed set for any degree
of roughness r ≥ 0.

Proof. We have to only discuss the case when LIMrxn 6= φ. Let {yn} be a sequence in
LIMrxn(6= φ) converges to y. We will show that y ∈ LIMrxn. Let ε > 0 be arbitrary positive
real number. Now we can find a k ∈ N such that

S(yn, yn, y) <
ε
3 and S(xn, xn, yp) < r + ε

3 holds for every n ≥ k.. . . (1)

where p is a fixed natural number greater then k.
Now we can write S(y, y, xn) ≤ S(y, y, yp) + S(y, y, yp) + S(xn, xn, yp) = S(yp, yp, y) +

S(yp, yp, y)+S(xn, xn, yp) . . . (2). Therefore using (1) on (2) for n ≥ k we can write S(y, y, xn) =
S(xn, xn, y) < r + ε. Hence y ∈ LIMrxn and hence LIMrxn is a closed set in X .

In (X,S) a sequence {xn} is said to be bounded if and only if there exists a B(> 0) ∈ R
such that S(xn, xn, xm) < B for all m,n ∈ N. The following theorem is a generalization of the
classical properly of a sequence that a convergent sequence must be bounded.

Theorem 3.7. Every r-convergent sequence in an S-metric space is bounded.

Proof. Let {xn} be a r-convergent sequence in an S-metric space (X,S) and r-converges to x.
We will show that {xn} is bounded inX . Now for any arbitrary ε > 0 we can find a natural num-
ber k such that S(xn, xn, x) < r+ε for all n ≥ k. Now consider L = max1≤i,j≤k{S(xi, xi, xj)}.

Now let i ≤ k and j ≥ k then S(xj , xj , xk) ≤ S(xj , xj , x) + S(xj , xj , x) + S(xk, xk, x) <
3(r + ε). Also S(xi, xi, xj) ≤ S(xi, xi, xk) + S(xi, xi, xk) + S(xj , xj , xk) < 2L+ 3(r + ε). If
i ≥ k and j ≤ k similarly we can show that S(xi, xi, xj) < 6(r + ε) + L.

Now consider the case for i ≥ k and j ≥ k we have S(xi, xi, xj) ≤ S(xi, xi, x)+S(xi, xi, x)+
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S(xj , xj , x) < 3(r + ε).
Now if B > max{3(r+ ε), L, (2L+ 3r+ 3ε), (6r+ 6ε+ L)} then S(xi, xi, xj) < B for all

i, j ∈ N. Therefore {xn} is bounded in X and hence the result follows.

We know that a bounded sequence in a metric space may not be convergent. But it has been
studied in [4] that a bounded sequence in a cone metric space is rough convergent for some
degree of roughness. In the next theorem we will extend this idea in an S-metric space.

Theorem 3.8. A bounded sequence in an S-metric space is always r-convergent for some degree
of roughness r.

Proof. Let {xn} be a bounded sequence in an S-metric space (X,S). So there exists a B > 0
such that S(xi, xi, xj) < B for all i, j ∈ N. Hence for any ε > 0 we have S(xi, xi, xj) < B + ε
for all i, j. Therefore, for the degree of roughness B, {xn} rough converges to xp for every
p ∈ N. Hence the result follows.

Theorem 3.9. Let {an} and {bn} be two sequences in an S-metric space (X,S) with the property
that S(ai, ai, bi) ≤ r

2 for all i ≥ k1(∈ N) and r > 0. Then if {an} converges to a ξ ∈ X will
imply {bn} is r- convergent to ξ.

Proof. Let ε > 0 be a preassigned real number. Now since {an} converges to ξ corresponding
to this ε > 0 we can find a natural number k2 such that S(an, an, ξ) < ε for all n ≥ k2.

Now if we consider k = max(k1, k2) then for all n ≥ k we have S(bn, bn, ξ) ≤ S(bn, bn, an)+
S(bn, bn, an)+S(ξ, ξ, an) <

r
2 +

r
2 + ε = r+ ε. Because S(bn, bn, an) = S(an, an, bn) ≤ r

2 and
S(ξ, ξ, an) = S(an, an, ξ) < ε for all n ≥ k. Hence the result follows.

Let {xn} is a r-convergent sequence in an S-metric space (X,S) and r-converges to x. Then
it have been already discussed in [4, 16] that if {ξn} be a convergent sequence in LIMrxn and
converges to ξ will imply ξ ∈ LIMrxn. We have found out similar kind of property in an
S-metric space as discussed bellow.

Theorem 3.10. Let {xn} is a r-convergent sequence in an S-metric space (X,S) and r-converges
to x. Then if {ξn} be a convergent sequence in LIMrxn and converges to ξ will imply {xn} is a
2r-convergent sequence in X and 2r-converges to ξ.

Proof. Let ε > 0 be a preassigned real number. Since {ξn} converges to ξ there exists a natural
number k1 such that S(ξn, ξn, ξ) < ε

3 for all n ≥ k1. Also since {xn} is a r-convergent to x there
exists a natural number k2 such that S(xn, xn, x) < r + ε

3 for all n ≥ k2. Let k be the maximum
of k1 and k2 and consider a member ξm of {ξn} where m > k.

Now for all n ≥ k we have S(xn, xn, ξ) ≤ S(xn, xn, ξm) + S(xn, xn, ξm) + S(ξ, ξ, ξm) =
S(xn, xn, ξm) + S(xn, xn, ξm) + S(ξm, ξm, ξ) < (r + ε

3) + (r + ε
3) +

ε
3 = 2r + ε. Therefore

S(xn, xn, ξ) < 2r + ε holds for all n ≥ k and hence the result follows.

Let {xn} be a sequence in an S-metric space (X,S) then a ξ ∈ X is said to be a cluster point
of {xn} if for every ε > 0 and every natural number p there exists a natural number k > p such
that S(xk, xk, ξ) < ε holds. The idea of a closed ball has been discussed previously.

The following result has been discussed in a cone metric space[4] here we have verified the
same in an S-metric space. It is a characterization of rough convergence in terms of cluster
points.

Theorem 3.11. Let {xn} be a r-convergent sequence in an S-metric space (X,S). Then for any
cluster point c of {xn}, LIMrxn ⊂ BS [c, r] holds.

Proof. Let ε be a preassigned positive quantity and x ∈ LIMrxn. We can find a natural number
k such that S(xn, xn, x) < r+ ε

3 for all n ≥ k. Also since c is a cluster point of {xn} there exists
a natural number m > k such that S(xm, xm, c) < ε

3 holds.
Now for this natural numbermwe can write S(c, c, x) ≤ S(c, c, xm)+S(c, c, xm)+S(x, x, xm) =

S(xm, xm, c)+S(xm, xm, c)+S(xm, xm, x) <
ε
3 +

ε
3 +(r+ ε

3) = r+ε. Hence S(c, c, x) < r+ε.
Since ε is chosen arbitrarily S(c, c, x) ≤ r and hence S(x, x, c) ≤ r. Therefore x ∈ BS [c, r] and
the result follows.
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4 Conclusion

In this study, we introduced the idea of rough convergence of sequences in an S-mertric space.
We have shown that every r-convergent sequence in an S-metric space is bounded. Most impor-
tantly, it has been verified for a r-convergent sequence(r > 0) that the r- limit set is a closed set
and its diameter cannot exceed 3r. Also it has been discussed with an example that a rough con-
vergent sequence may not be a convergent sequence. The results discussed in this work extend
several well-known findings in the existing literature.
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[9] S. Gähler, 2-metrische Räume und iher topoloische Struktur, Math. Nachr. 26 (1963), 115–148.

[10] Ömer KISI, On invariant aritheoremetic statistically convergence and lacunary invariant aritheoremetic
statistically convergence, Palestine Journal of Mathematics, Vol. 11 (2) (2022), 378–383.

[11] Huang Long-Gung, Zhang X: Cone metric spaces and fixed point theorems of contractive mappings,
Journal of Mathematical Analysis and Applications, 332(2) (2007), 1468-1476.

[12] P. Malik, and M. Maity, On rough convergence of double sequence in normed linear spaces, Bull. Allah.
Math. Soc. 28(1), 89-99, 2013.

[13] P. Malik, and M. Maity, On rough statistical convergence of double sequences in normed linear spaces,
Afr. Mat. 27, 141-148, 2016.

[14] R. Mondal, Rough Cauchy sequences in a cone metric space, J. Math. Comput. Sci., 12 (2022), Article
ID 14.

[15] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006),
289–297.

[16] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. and Optimiz, 22: (2001),
199-222.

[17] H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. and Optimiz,
24: (2003), 285-301.

[18] S. Sedghi, N. Shobe, A Aliouche, A generalization of fixed point theorems in S-metric spaces, Matemat-
icki Vesnik 64(2012), 258-266.

[19] B. Sarma and M. Das, I-convergence of difference sequences of fuzzy real numbers defined by Orlicz
function, Palestine Journal of Mathematics Vol. 4(2) (2015) , 399–404.



322 Rahul Mondal and Sukila khatun

Author information
Rahul Mondal, Department of Mathematics, Vivekananda Satavarshiki Mahavidyalaya, Manikpara, Jhargram
-721513, West Bengal, India.
E-mail: imondalrahul@gmail.com

Sukila khatun, Department of Mathematics, The University of Burdwan, Golapbag, Burdwan-713104, West
Bengal, India.
E-mail: sukila610@gmail.com

Received: 2022-10-13.

Accepted: 2024-01-02.


	1 Introduction
	2 Preliminaries
	3 Rough convergence of sequences in an S-metric space
	4 Conclusion

