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Abstract. We present some new linear, quadratic, cubic, and quartic binomial Fibonacci,
Lucas, and Fibonacci–Lucas summation identities.

1 Introduction

Our goal is to derive, from elementary identities, some presumably new Fibonacci and Lucas
identities including binomial coefficients. The research is a continuation of the recent works
by Adegoke [1, 2] and Adegoke et al. [4, 5, 6]. The results are similar to those found in the
classical articles of Carlitz [7], Carlitz and Ferns [8], Hoggatt et al. [10], Layman [13], Long
[14], and Zeitlin [18]. More recent results on finite sums involving Fibonacci numbers and their
generalizations can be found in [3, 9, 11, 16], among others.

Recall that the Fibonacci numbers Fj and the Lucas numbers Lj are defined, for j ∈ Z,
through the recurrences Fj = Fj−1 + Fj−2, j ≥ 2, F0 = 0, F1 = 1 and Lj = Lj−1 + Lj−2,
j ≥ 2, L0 = 2, L1 = 1, with F−j = (−1)j−1Fj and L−j = (−1)jLj . See sequences A000045
and A000032 in the On-Line Encyclopedia of Integer Sequences [15] and references contained
therein.

Throughout this paper, we denote the golden ratio by α = 1+
√

5
2 and write β = − 1

α , so that
αβ = −1 and α+ β = 1. Binet formulas for the Fibonacci and Lucas numbers are

Fj =
αj − βj

α− β
, Lj = αj + βj , j ∈ Z. (1.1)

Here are a couple of results to whet the reader’s appetite for reading on:

n∑
k=1

(
2n− 1
2k − 1

)
F2k−1 =

{
1
2F2n−1Ln−1Ln, n odd;
5
2F2n−1Fn−1Fn, n even,

n∑
k=1

(
2n− 1
2k − 1

)
L2k−1 =

1
2
(L4n−2 − L2n−1),

n∑
k=0

(
2n
2k

)
F3k+rF3k+s = 22n−1FnF3n+r+s,

bn/2c∑
k=0

(
n

2k

)
2n−2k+1F2k+s =

{
(−1)s+1F2n−s + 5n/2Fn+s, n even;
(−1)s+1F2n−s + 5(n−1)/2Ln+s, n odd,

n∑
k=0

(−1)k
(

2n
2k

)
Lj(2rk+s) =


√

5nFnjrLj(rn+s) cos
(
2n arctan(αjr)

)
, jr odd;

LnjrLj(rn+s) cos
(
2n arctan(αjr)

)
, jr even, n even;√

5LnjrFj(rn+s) cos
(
2n arctan(αjr)

)
, jr even, n odd.
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The organization of this paper is as follows. The next section is concerned with the pre-
liminaries, while in Sections 3–5 we derive identities involving Fibonacci (Lucas) numbers and
binomial coefficients. In the remaining sections, we will present results containing higher-order
binomial Fibonacci and Lucas identities. For instance, in Section 6, using some of Vajda’s formu-
las, we will derive new binomial identities involving products of Fibonacci and Lucas numbers.
Finally, in Sections 7 and 8 we derive some binomial identities involving the product of three
and four Fibonacci and/or Lucas numbers.

Note that our results can be applied more generally to broader classes of second-order linearly
recurrent sequences with constant coefficients.

2 Required identities

Lemma 2.1 (K. Adegoke [1]). For real or complex z, let a given well-behaved function h(z)

have in its domain the representation h(z) =
c2∑
k=c1

g(k)zf(k), where f(k) and g(k) are given real

sequences and −∞ ≤ c1 ≤ c2 ≤ ∞. Let j be an integer. Then

√
5

c2∑
k=c1

g(k)zf(k)Fjf(k) = h(αjz)− h(βjz), (2.1)

c2∑
k=c1

g(k)zf(k)Ljf(k) = h(αjz) + h(βjz). (2.2)

Lemma 2.2 (S. Vajda [17]). For integers r and s,

Fr+s + (−1)sFr−s = LsFr, Fr+s − (−1)sFr−s = FsLr, (2.3)

Lr+s + (−1)sLr−s = LsLr, Lr+s − (−1)sLr−s = 5FsFr. (2.4)

If u and v are integers having the same parity, then identities (2.3) and (2.4) can be put in the
following useful versions:

Fu + (−1)
u−v

2 Fv = Lu−v
2
Fu+v

2
, Fu − (−1)

u−v
2 Fv = Fu−v

2
Lu+v

2
,

Lu + (−1)
u−v

2 Lv = Lu−v
2
Lu+v

2
, Lu − (−1)

u−v
2 Lv = 5Fu−v

2
Fu+v

2
,

and

Fu + Fv =

{
Lu−v

2
Fu+v

2
, u−v

2 even;
Fu−v

2
Lu+v

2
, u−v

2 odd,
Fu − Fv =

{
Lu−v

2
Fu+v

2
, u−v

2 odd;
Fu−v

2
Lu+v

2
, u−v

2 even,

Lu + Lv =

{
Lu−v

2
Lu+v

2
, u−v

2 even;
5Fu−v

2
Fu+v

2
, u−v

2 odd,
Lu − Lv =

{
Lu−v

2
Lu+v

2
, u−v

2 odd;
5Fu−v

2
Fu+v

2
, u−v

2 even.

Lemma 2.3 (K. Adegoke [1]). For p and q integers,

1 + (−1)pα2q =

{
(−1)pαq

√
5Fq, p− q odd;

(−1)pαqLq, p− q even,

1− (−1)pα2q =

{
(−1)p−1αqLq, p− q odd;
(−1)p−1αq

√
5Fq, p− q even.

The following formulas can be easily derived from the Binet formulas (1.1).

Lemma 2.4. For p and q integers,

(−1)q + α2q = αqLq, (−1)q − α2q = −
√

5αqFq, (2.5)

(−1)q + β2q = βqLq, (−1)q − β2q =
√

5βq. (2.6)
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Lemma 2.5 (V. E. Hoggatt, Jr. et al. [10]). For p and q integers,

Lp+q − Lpαq = −
√

5βpFq, Lp+q − Lpβq =
√

5αpFq,

Fp+q − Fpαq = βpFq, Fp+q − Fpβq = αpFq.

Lemma 2.6. We have

1− α = β, 1− β = α, 1 + α = α2, 1 + β = β2, (2.7)

1− α3 = −2α, 1− β3 = −2β, 1 + α3 = 2α2, 1 + β3 = 2β2, (2.8)

1− 2α = −
√

5, 1− 2β =
√

5, 1 + 2α = α3, 1 + 2β = β3, (2.9)

2− α = β2, 2− β = α2, 2 + α = α
√

5, 2 + β = −β
√

5, (2.10)

1− α3
√

5 = −2α3, 1− β3
√

5 = 4β2, 1 + α3
√

5 = 4α2, 1 + β3
√

5 = −2β3, (2.11)
√

5− α3 = −2,
√

5− β3 = −4β,
√

5 + α3 = 4α,
√

5 + β3 = 2, (2.12)

3− α3 = 2β, 3− β3 = 2α, 3 + α3 = 2α
√

5, 3 + β3 = −2β
√

5, (2.13)

1− 3α3 = −2α2
√

5, 1− 3β3 = 2β2
√

5, 1 + 3α3 = 2α4, 1 + 3β3 = 2β4. (2.14)

Proof. Each identity is obtained by making appropriate substitutions for p and q in the identities
given in Lemma 2.5.

3 Binomial summation identities, Part 1

The first two key identities used frequently in this part of the paper are stated in the next funda-
mental lemma.

Lemma 3.1. For integers j, r, s, and a non-negative integer n, we have

2
√

5
bn/2c∑
k=0

(
n

2k

)
xn−2kz2kFj(2rk+s)

= αjs
(
(x+ αjrz)n + (x− αjrz)n

)
− βjs

(
(x+ βjrz)n + (x− βjrz)n

)
,

(3.1)

2
bn/2c∑
k=0

(
n

2k

)
xn−2kz2kLj(2rk+s)

= αjs
(
(x+ αjrz)n + (x− αjrz)n

)
+ βjs

(
(x+ βjrz)n + (x− βjrz)n

)
.

(3.2)

Proof. In the identity

h(z) = 2
bn/2c∑
k=0

(
n

2k

)
xn−2kz2rk+s = zs(x+ zr)n + zs(x− zr)n, (3.3)

identify g(k) = 2( n2k)x
n−2k, f(k) = 2rk + s, c1 = 0, c2 = bn/2c, and use these in (2.1) and

(2.2).

In our first main results, we state mixed Fibonacci–Lucas identities with additional parame-
ters.

Theorem 3.2. For a non-negative integer n and any integers s and j,

2
n∑
k=0

(
2n
2k

)
Fj(4k+s) =

(
L2n
j + 5nF 2n

j

)
Fj(2n+s), (3.4)

2
n∑
k=0

(
2n
2k

)
Lj(4k+s) =

(
L2n
j + 5nF 2n

j

)
Lj(2n+s), (3.5)



326 Kunle Adegoke, Robert Frontczak and Taras Goy

2
n−1∑
k=0

(
2n− 1

2k

)
Fj(4k+s) = (−1)j

(
L2n−1
j Fj(2n+s−1) − 5n−1F 2n−1

j Lj(2n+s−1)
)
, (3.6)

2
n−1∑
k=0

(
2n− 1

2k

)
Lj(4k+s) = (−1)j

(
L2n−1
j Lj(2n+s−1) − 5nF 2n−1

j Fj(2n+s−1)
)
. (3.7)

Proof. In (3.1), set x = (−1)j , z = 1, and r = 2 and use (2.5) and (2.6) to obtain

2
√

5
bn/2c∑
k=0

(
n

2k

)
Fj(4k+s) = Lnj

(
αj(n+s) − βj(n+s)

)
+ (−

√
5)nFnj

(
αj(n+s) − (−1)nβj(n+s)

)
,

from which (3.4) and (3.6) follow from the parity of n and the Binet formulas (1.1). The proof
of (3.5) and (3.7) is similar; use x = (−1)j , z = 1, and r = 2 in (3.2).

From Lemma 3.1 we can deduce the following Fibonacci and Lucas identities.

Theorem 3.3. For non-negative integer n and any integer s, we have

2
bn/2c∑
k=0

(
n

2k

)
F2k+s = F2n+s − (−1)sFn−s, (3.8)

2
bn/2c∑
k=0

(
n

2k

)
L2k+s = L2n+s + (−1)sLn−s. (3.9)

Proof. Set x = z = j = r = 1 in (3.1) and (3.2), and then use (2.7). This gives

2
√

5
bn/2c∑
k=0

(
n

2k

)
F2k+s = α2n+s − β2n+s − (αβ)s(αn−s − βn−s),

2
bn/2c∑
k=0

(
n

2k

)
L2k+s = α2n+s + β2n+s + (αβ)s(αn−s + βn−s),

from which the stated identities follow immediately from the Binet formulas.

We proceed with some corollaries.

Corollary 3.4. For a non-negative integer n and any integer s,

2
n∑
k=0

(
2n
2k

)
F2k+s =

{
Ln+sF3n, n odd;
Fn+sL3n, n even,

2
n∑
k=0

(
2n
2k

)
L2k+s =

{
5Fn+sF3n, n odd;
Ln+sL3n, n even.

Proof. Write 2n for n in each of the identities (3.8) and (3.9) and use Lemma 2.2.

A variant of the Fibonacci (Lucas) sums with even subscripts is stated as the next corollary.

Corollary 3.5. For a positive integer n,

2
n−1∑
k=0

(
2n− 1

2k

)
F2k =

{
5Fn−1FnF2n−1, n odd;
Ln−1LnF2n−1, n even,

2
n−1∑
k=0

(
2n− 1

2k

)
L2k = L4n−2 + L2n−1.

Proof. Replace n by 2n− 1 in each of the identities (3.8) and (3.9) and simplify.
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Theorem 3.6. For a non-negative integer n and any integer s,

bn/2c∑
k=0

(
n

2k

)
F6k+s = 2n−1(F2n+s + (−1)nFn+s

)
, (3.10)

bn/2c∑
k=0

(
n

2k

)
L6k+s = 2n−1(L2n+s + (−1)nLn+s

)
. (3.11)

Proof. Set x = z = j = 1 and r = 3 in (3.1) and (3.2), then use (2.8) and simplify.

As special cases of Theorem 3.6 obtained so far, we have the following mixed Fibonacci–
Lucas identities, depending on an additional parameter.

Corollary 3.7. For a non-negative integer n and any integer s, we have

n∑
k=0

(
2n
2k

)
F6k+s = 22n−1

{
LnF3n+s, n even;
FnL3n+s, n odd,

n∑
k=0

(
2n
2k

)
L6k+s = 22n−1

{
LnL3n+s, n even;
5FnF3n+s, n odd.

(3.12)

Proof. Write 2n for n in each of the identities (3.10), (3.11) and use Lemma 2.2.

Corollary 3.8. For a positive integer n,

n−1∑
k=0

(
2n− 1

2k

)
F6k = 4n−1

{
5Fn−1FnF2n−1, n odd;
Ln−1LnF2n−1, n even,

n−1∑
k=0

(
2n− 1

2k

)
L6k = 4n−1(L4n−2 − L2n−1).

Proof. Replace n by 2n− 1 in each of the identities (3.10), (3.11) and simplify.

Theorem 3.9. For a non-negative integer n and any integer s,

bn/2c∑
k=0

(
n

2k

)
5kF6k+s = 2n−1(2nF2n+s + (−1)nF3n+s

)
,

bn/2c∑
k=0

(
n

2k

)
5kL6k+s = 2n−1(2nL2n+s + (−1)nL3n+s

)
. (3.13)

Proof. Setting x = j = 1, z =
√

5, and r = 3 in (3.1) and (3.2) while making use of the
identities (2.11) gives

2
√

5
bn/2c∑
k=0

(
n

2k

)
5kF6k+s = 4n

(
α2n+s − β2n+s)+ (−2)n

(
α3n+s − β3n+s),

2
bn/2c∑
k=0

(
n

2k

)
5kL6k+s = 4n

(
α2n+s + β2n+s)+ (−2)n

(
α3n+s + β3n+s),

from which the stated identities follow.

Corollary 3.10. For a non-negative integer n and any integer s, we have
n∑
k=0

(
2n
2k

)
5kF6k+s = 22n−1(4nF4n+s + F6n+s

)
,

n∑
k=0

(
2n
2k

)
5kL6k+s = 22n−1(4nL4n+s + L6n+s

)
.



328 Kunle Adegoke, Robert Frontczak and Taras Goy

Theorem 3.11. For a non-negative integer n and any integer s,

2
n∑
k=0

(
2n
2k

)
F6k+s

5k
=

(
4
5

)n (
4nF2n+s + Fs

)
, (3.14)

2
n∑
k=0

(
2n
2k

)
L6k+s

5k
=

(
4
5

)n (
4nL2n+s + Ls

)
, (3.15)

8
n∑
k=0

(
2n− 1

2k

)
F6k+s

5k
=

(
4
5

)n (
4nL2n−1+s − 2Ls

)
, (3.16)

2
n∑
k=0

(
2n− 1

2k

)
L6k+s

5k
=

(
4
5

)n−1 (
4nF2n−1+s − 2Fs

)
. (3.17)

Proof. Setting z = j = 1, x =
√

5, and r = 3 in (3.1) and (3.2) while making use of the
identities (2.12) gives

2
bn/2c∑
k=0

(
n

2k

)
F6k+s

5k−(n+1)/2 = 4n
(
αn+s − (−1)nβn+s

)
+ (−2)n

(
αs − (−1)nβs

)
, (3.18)

2
bn/2c∑
k=0

(
n

2k

)
L6k+s

5k−n/2 = 4n
(
αn+s + (−1)nβn+s

)
+ (−2)n

(
αs + (−1)nβs

)
. (3.19)

Writing 2n for n in (3.18) and (3.19) produces identities (3.14), (3.15) while writing 2n− 1 for
n yields identities (3.16) and (3.17).

Theorem 3.12. For a non-negative integer n and any integer s,

2
bn/2c∑
k=0

(
n

2k

)
4kF2k+s =

{
F3n+s + 5n/2Fs, n even;
F3n+s − 5(n−1)/2Ls, n odd,

(3.20)

2
bn/2c∑
k=0

(
n

2k

)
4kL2k+s =

{
L3n+s + 5n/2Ls, n even;
L3n+s − 5(n+1)/2Fs, n odd.

Proof. Set x = j = r = 1 and z = 2 in (3.1), (3.2) and make use of (2.9). The calculations are
straightforward and omitted.

Theorem 3.13. For a non-negative integer n and any integer s,

bn/2c∑
k=0

(
n

2k

)
F2k+s

4k
=

1
2n+1

{
(−1)s+1F2n−s + 5n/2Fn+s, n even;
(−1)s+1F2n−s + 5(n−1)/2Ln+s, n odd,

bn/2c∑
k=0

(
n

2k

)
L2k+s

4k
=

1
2n+1

{
(−1)sL2n−s + 5n/2Ln+s, n even;
(−1)sL2n−s + 5(n+1)/2Fn+s, n odd.

Proof. Set x = 2, z = −1, and r = j = 1 in (3.1), (3.2) and make use of (2.10). The calculations
are straightforward and omitted.

Theorem 3.14. For a non-negative integer n and any integer s,

2
bn/2c∑
k=0

(
n

2k

)
F6k+s

9k
=

(
2
3

)n{
(−1)s+1Fn−s + 5n/2Fn+s, n even;
(−1)s+1Fn−s + 5(n−1)/2Ln+s, n odd,

2
bn/2c∑
k=0

(
n

2k

)
L6k+s

9k
=

(
2
3

)n{
(−1)sLn−s + 5n/2Ln+s, n even;
(−1)sLn−s + 5(n+1)/2Fn+s, n odd.
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Proof. Set x = r = 3, z = −1, and j = 1 in (3.1) and (3.2) and make use of (2.13). The
calculations are omitted.

We conclude with the following evaluation.

Theorem 3.15. For a non-negative integer n and any integer s,

bn/2c∑
k=0

(
n

2k

)
9kF6k+s = 2n−1

{
F4n+s + 5n/2F2n+s, n even;
F4n+s − 5(n−1)/2L2n+s, n odd,

bn/2c∑
k=0

(
n

2k

)
9kL6k+s = 2n−1

{
L4n+s + 5n/2L2n+s, n even;
L4n+s − 5(n+1)/2F2n+s, n odd.

Proof. Set x = j = 1 and z = r = 3 in (3.1), (3.2) and make use of (2.14). The calculations are
omitted.

4 Binomial summation identities, Part 2

This section is based on the following fundamental lemma.

Lemma 4.1. For integers j, r, s, and n with n non-negative, we have

2
√

5
dn/2e∑
k=1

(
n

2k − 1

)
xn−2k+1z2k−1Fj(2rk+s)

= αj(r+s)
(
(x+ αjrz)n − (x− αjrz)n

)
− βj(r+s)

(
(x+ βjrz)n − (x− βjrz)n

)
,

(4.1)

2
dn/2e∑
k=1

(
n

2k − 1

)
xn−2k+1z2k−1Lj(2rk+s)

= αj(r+s)
(
(x+ αjrz)n − (x− αjrz)n

)
+ βj(r+s)

(
(x+ βjrz)n − (x− βjrz)n

)
.

(4.2)

Proof. In the identity

h(z) = 2
dn/2e∑
k=1

(
n

2k − 1

)
xn−2kz2rk+s = zr+s(x+ zr)n − zr+s(x− zr)n,

identify g(k) = 2( n
2k−1)x

n−2k, f(k) = 2rk + s, c1 = 1, c2 = dn/2e, and use these in (2.1) and
(2.2).

The next achievement of the paper is the following statement.

Theorem 4.2. For a non-negative integer n and any integer s,

2
dn/2e∑
k=1

(
n

2k − 1

)
F2k+s = F2n+s+1 − (−1)sFn−s−1, (4.3)

2
dn/2e∑
k=1

(
n

2k − 1

)
L2k+s = L2n+s+1 + (−1)sLn−s−1.

Proof. Set x = z = j = r = 1 in (4.1) and (4.2) to obtain

2
√

5
dn/2e∑
k=1

(
n

2k − 1

)
F2k+s = α2n+s+1 − β2n+s+1 + (αβ)s+1(αn−s−1 − βn−s−1),

2
dn/2e∑
k=1

(
n

2k − 1

)
L2k+s = α2n+s+1 + β2n+s+1 − (αβ)s+1(αn−s−1 + βn−s−1),

and hence the stated identities.
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From Theorem 4.2 we can immediately obtain the following binomial identities.

Corollary 4.3. For a non-negative integer n and any integer s,

2
n∑
k=1

(
2n

2k − 1

)
F2k+s =

{
Ln+s+1F3n, n even;
Fn+s+1L3n, n odd,

(4.4)

2
n∑
k=1

(
2n

2k − 1

)
L2k+s =

{
5Fn+s+1F3n, n even;
Ln+s+1L3n, n odd.

Proof. We prove (4.4). From (4.3), using (2.3) we have

2
n∑
k=1

(
2n

2k − 1

)
F2k+s = F4n+s+1 − (−1)sF2n−s−1

= F3n+(n+s+1) + (−1)s+1F3n−(n+s+1)

=

{
Ln+s+1F3n, n even;
Fn+s+1L3n, n odd.

Corollary 4.4. For a positive integer n,

2
n∑
k=1

(
2n− 1
2k − 1

)
F2k−1 =

{
F2n−1Ln−1Ln, n odd;
5F2n−1Fn−1Fn, n even,

2
n∑
k=1

(
2n− 1
2k − 1

)
L2k−1 = L4n−2 − L2n−1.

Theorem 4.5. For a non-negative integer n and any integer s,

dn/2e∑
k=1

(
n

2k − 1

)
F6k+s = 2n−1(F2n+3+s − (−1)nFn+3+s

)
,

dn/2e∑
k=1

(
n

2k − 1

)
L6k+s = 2n−1(L2n+3+s − (−1)nLn+3+s

)
.

Proof. Set x = z = j = 1 and r = 3 in (4.1) and (4.2), use (2.8) and simplify.

Corollary 4.6. For a positive integer n and any integer s,

n∑
k=1

(
2n− 1
2k − 1

)
F6k+s = 4n−1(F4n+1+s + F2n+2+s

)
,

n∑
k=1

(
2n− 1
2k − 1

)
L6k+s = 4n−1(L4n+1+s + L2n+2+s

)
.

Theorem 4.7. For a non-negative integer n and any integer s,

dn/2e∑
k=1

(
n

2k − 1

)
4kF2k+s =

{
F3n+1+s − 5n/2Fs+1, n even;
F3n+1+s + 5(n−1)/2Ls+1, n odd,

dn/2e∑
k=1

(
n

2k − 1

)
4kL2k+s =

{
L3n+1+s − 5n/2Ls+1, n even;
L3n+1+s + 5(n+1)/2Fs+1, n odd.

Proof. Set x = j = r = 1 and z = 2 in (4.1) and (4.2), use (2.9) and simplify.
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Theorem 4.8. For a non-negative integer n and any integer s,

dn/2e∑
k=1

(
n

2k − 1

)
F2k+s

4k
=

1
2n+2

{
(−1)s+1F2n−1−s + 5n/2Fn+s+1, n even;
(−1)s+1F2n−1−s + 5(n−1)/2Ln+s+1, n odd,

dn/2e∑
k=1

(
n

2k − 1

)
L2k+s

4k
=

1
2n+2

{
(−1)sL2n−1−s + 5n/2Ln+s+1, n even;
(−1)sL2n−1−s + 5(n+1)/2Fn+s+1, n odd.

Proof. Set x = 2, z = −1, j = r = 1 in (4.1) and (4.2), use (2.10) and simplify.

Theorem 4.9. For a non-negative integer n and any integer s,

6
dn/2e∑
k=1

(
n

2k − 1

)
F6k+s

9k
=

(
2
3

)n{
(−1)s+1Fn−3−s + 5n/2Fn+s+3, n even;
(−1)s+1Fn−3−s + 5(n−1)/2Ln+s+3, n odd,

6
dn/2e∑
k=1

(
n

2k − 1

)
L6k+s

9k
=

(
2
3

)n{
(−1)sLn−3−s + 5n/2Ln+s+3, n even;
(−1)sLn−3−s + 5(n+1)/2Fn+s+3, n odd.

Proof. Set x = r = 3, z = −1, and j = 1 in (4.1) and (4.2), use (2.13) and simplify.

Theorem 4.10. For a non-negative integer n and any integer s,

dn/2e∑
k=1

(
n

2k − 1

)
9kF6k+s = 2n−1

{
F4n+3+s − 5n/2F2n+s+3, n even;
F4n+3+s + 5(n−1)/2L2n+s+3, n odd,

dn/2e∑
k=1

(
n

2k − 1

)
9kL6k+s = 2n−1

{
L4n+3+s − 5n/2L2n+s+3, n even;
L4n+3+s + 5(n+1)/2F2n+s+3, n odd.

Proof. Set x = j = 1 and z = r = 3 in (4.1), and (4.2), use (2.14) and simplify.

5 Binomial summation identities, Part 3

In this section, we introduce the following results.

Lemma 5.1. For integers j, r, s, and a non-negative integer n, we have

√
5
bn/2c∑
k=0

(−1)k
(
n

2k

)
xn−2kz2kFj(2rk+s)

= αjs
√
(x2 + α2jrz2)n cos

(
n arctan

(αjrz
x

))
− βjs

√
(x2 + β2jrz2)n cos

(
n arctan

(βjrz
x

))
,

(5.1)

bn/2c∑
k=0

(−1)k
(
n

2k

)
xn−2kz2kLj(2rk+s)

= αjs
√
(x2 + α2jrz2)n cos

(
n arctan

(αjrz
x

))
+ βjs

√
(x2 + β2jrz2)n cos

(
n arctan

(βjrz
x

))
,

(5.2)
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√
5
dn/2e∑
k=1

(−1)k−1
(

n

2k − 1

)
xn−2k+1z2k−1Fj(2rk+s)

= αjs
√
(x2 + α2jrz2)n sin

(
n arctan

(αjrz
x

))
− βjs

√
(x2 + β2jrz2)n sin

(
n arctan

(βjrz
x

))
,

dn/2e∑
k=1

(−1)k−1
(

n

2k − 1

)
xn−2k+1z2k−1Lj(2rk+s)

= αjs
√
(x2 + α2jrz2)n sin

(
n arctan

(αjrz
x

))
+ βjs

√
(x2 + β2jrz2)n sin

(
n arctan

(βjrz
x

))
.

Proof. In the identity

zs
√
(x2 + z2r)n cos

(
n arctan

(zr
x

))
=

bn/2c∑
k=0

(−1)k
(
n

2k

)
xn−2kz2rk+s,

identify h(z) = zs
√
(x2 + z2r)n cos

(
n arctan( z

r

x )
)
, g(k) = (−1)k( n2k)x

n−2k, f(k) = 2rk + s,
c1 = 0, c2 = bn/2c, and use these in (2.1) and (2.2). This proves (5.1) and (5.2). For the other
two identities use

zs+r
√
(x2 + z2r)n sin

(
n arctan

(zr
x

))
=

dn/2e∑
k=1

(−1)k−1
(

n

2k − 1

)
xn−2k+1z2rk+s,

and identify h(z) = zs+r
√
(x2 + z2r)n sin

(
n arctan( z

r

x )
)
, f(k) = 2rk + s, c1 = 1, c2 = dn/2e,

and g(k) = (−1)k−1( n
2k−1)x

n−2k+1.

We give an example. The next lemma proves useful.

Lemma 5.2. For integers r and n,

cos
(
2n arctan(αr)

)
= (−1)n cos

(
2n arctan(βr)

)
,

cos
(
(2n− 1) arctan(αr)

)
= (−1)n+r+1 sin

(
(2n− 1) arctan(βr)

)
,

sin
(
2n arctan(αr)

)
= (−1)n+r+1 sin

(
2n arctan(βr)

)
,

sin
(
(2n− 1) arctan(αr)

)
= (−1)n−1 cos

(
(2n− 1) arctan(βr)

)
.

Proof. On account of identities arctanx + arctan( 1
x) = π

2 , if x > 0, and αr = (−1)rβ−r,
we have arctan(αr) = π

2 − (−1)r arctan(βr), from which the identities follow upon applying
addition formulas for trigonometric functions.

The main result of this section is the following theorem in which we derive Fibonacci–Lucas
identities with two parameters involving the golden ratio.

Theorem 5.3. For a non-negative integer n and integers j, r, s,

n∑
k=0

(−1)k
(

2n
2k

)
Fj(2rk+s) =


√

5nFnjrFj(rn+s) cos
(
2n arctan(αjr)

)
, jr odd;

LnjrFj(rn+s) cos
(
2n arctan(αjr)

)
, jr and n even;

1√
5
LnjrLj(rn+s) cos

(
2n arctan(αjr)

)
, jr even, n odd,

n∑
k=0

(−1)k
(

2n
2k

)
Lj(2rk+s) =


√

5nFnjrLj(rn+s) cos
(
2n arctan(αjr)

)
, jr odd;

LnjrLj(rn+s) cos
(
2n arctan(αjr)

)
, jr and n even;√

5LnjrFj(rn+s) cos
(
2n arctan(αjr)

)
, jr even, n odd.

(5.3)
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Proof. The choice x = z = 1 in (5.1) and (5.2), noting also identities (2.5) and (2.6) with q = jr,
jr odd, gives

n∑
k=0

(−1)k
(

2n
2k

)
Fj(2rk+s) = 5(n−1)/2Fnjr

(
αj(rn+s) − βj(rn+s)

)
cos
(
2n arctan(αjr)

)
,

n∑
k=0

(−1)k
(

2n
2k

)
Lj(2rk+s) = 5n/2Fnjr

(
αj(rn+s) + βj(rn+s)

)
cos
(
2n arctan(αjr)

)
,

from which the stated identities for jr odd follow.
Similarly, x = z = 1 in (5.1) and (5.2), with jr even, gives

√
5

n∑
k=0

(−1)k
(

2n
2k

)
Fj(2rk+s) = Lnjr

(
αj(rn+s) − (−1)nβj(rn+s)

)
cos
(
2n arctan(αjr)

)
,

n∑
k=0

(−1)k
(

2n
2k

)
Lj(2rk+s) = Lnjr

(
αj(rn+s) + (−1)nβj(rn+s)

)
cos
(
2n arctan(αjr)

)
,

and hence the stated identities for jr even.

So far in this paper, we have been concerned with identities that are linear in the Fibonacci
and Lucas numbers. In the remaining three sections we will present results containing higher-
order binomial Fibonacci identities.

6 Quadratic binomial summation identities

Here we will derive a pair of binomial identities involving products of Fibonacci and Lucas
numbers. We require the results stated in the next two lemmas.

Lemma 6.1. If k, r, and s are integers, then

5Fk+rFk+s = L2k+r+s − (−1)k+sLr−s, (6.1)

Lk+rFk+s = F2k+r+s − (−1)k+sFr−s, (6.2)

Lk+rLk+s = L2k+r+s + (−1)k+sLr−s. (6.3)

Proof. These are variations on [17, Identities (15b), (17a), (17b)].

Lemma 6.2. If n is a positive integer, then

bn/2c∑
k=0

(
n

2k

)
(−1)k = (

√
2)n cos

(nπ
4

)
, (6.4)

bn/2c∑
k=0

(
n

2k

)
= 2n−1, (6.5)

bn/2c∑
k=0

(
n− 1

2k

)
= 2n−2, n ≥ 2, (6.6)

bn/2c∑
k=0

(
n

2k

)
(−4)k = (

√
5)n cos(n arctan 2), (6.7)

bn/2c∑
k=0

(
n

2k

)
(−5)k = (

√
6)n cos

(
n arctan

√
5
)
. (6.8)

Proof. Setting x = 1, z = i in (3.3) produces (6.4), while x = z = 1 gives 2
bn/2c∑
k=0

( n2k) = 2n,

from which (6.5) and (6.6) follow. Use of x = 1
2 , z = i, r = 1, s = 0 in (3.3) proves (6.7) while

x = 1√
5
, z = i, r = 1, and s = 0 produces (6.8).
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We present our next findings in the next theorem which provides some summation formulas
involving Fibonacci (Lucas) numbers and binomial coefficients.

Theorem 6.3. If n is a non-negative integer and r, s are integers, then

10
bn/2c∑
k=0

(
n

2k

)
Fk+rFk+s = L2n+r+s + (−1)r+sLn−r−s − (−1)s2n/2+1 cos

(nπ
4

)
Lr−s, (6.9)

2
bn/2c∑
k=0

(
n

2k

)
Lk+rFk+s = F2n+r+s − (−1)r+sFn−r−s − (−1)s2n/2+1 cos

(nπ
4

)
Fr−s, (6.10)

2
bn/2c∑
k=0

(
n

2k

)
Lk+rLk+s = L2n+r+s + (−1)r+sLn−r−s + (−1)s2n/2+1 cos

(nπ
4

)
Lr−s. (6.11)

Proof. From (6.1), we get

5
bn/2c∑
k=0

(
n

2k

)
Fk+rFk+s =

bn/2c∑
k=0

(
n

2k

)
L2k+r+s − (−1)sLr−s

bn/2c∑
k=0

(−1)k
(
n

2k

)
and hence (6.9), upon use of (3.9) and (6.4). The proof of (6.10) and (6.11) is similar.

Theorem 6.4. If n is a positive integer and r, s are any integers, then

10
n∑
k=0

(
2n
2k

)
4kFk+rFk+s = L6n+r+s + 5nLr+s − (−1)s5n2Lr−s cos

(
2n arctan 2

)
, (6.12)

10
n−1∑
k=0

(
2n− 1

2k

)
4kFk+rFk+s

= L6n+r+s−3 − 5nFr+s − (−1)s5n−1/22Lr−s cos
(
(2n− 1) arctan 2

)
,

(6.13)

2
n∑
k=0

(
2n
2k

)
4kLk+rFk+s = F6n+r+s + 5nFr+s − (−1)s5n2Fr−s cos

(
2n arctan 2

)
,

2
n−1∑
k=0

(
2n− 1
2k + 1

)
4kLk+rFk+s

= F6n+r+s−3 − 5n−1Lr+s − (−1)s5n−1/22Fr−s cos
(
(2n− 1) arctan 2

)
,

2
n∑
k=0

(
2n
2k

)
4kLk+rLk+s = L6n+r+s + 5nLr+s + (−1)s5n2Lr−s cos (2n arctan 2),

2
n−1∑
k=0

(
2n− 1

2k

)
4kLk+rLk+s

= L6n+r+s−3 − 5nFr+s + (−1)s5n−1/22Lr−s cos
(
(2n− 1) arctan 2

)
.

Proof. Using (6.1) we have

10
bn/2c∑
k=0

(
n

2k

)
4kFk+rFk+s = 2

bn/2c∑
k=0

(
n

2k

)
4kL2k+r+s − (−1)s2Lr−s

bn/2c∑
k=0

(−4)k
(
n

2k

)
,

from which (6.12) and (6.13) now follow on account of (3.20) and (6.7). The remaining identities
can be similarly proved, using (6.2), (6.3) and the identities stated in Theorem 3.12.

Further interesting identities involving Fibonacci and Lucas numbers are stated in the next
theorem.
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Theorem 6.5. If n is a positive integer and r, s and j are any integers, then

10
n∑
k=0

(
2n
2k

)
Fj(2k+r)Fj(2k+s) =

(
L2n
j + 5nF 2n

j

)
Lj(2n+r+s) − (−1)js4nLj(r−s),

2
n∑
k=0

(
2n
2k

)
Lj(2k+r)Fj(2k+s) =

(
L2n
j + 5nF 2n

j

)
Fj(2n+r+s) − (−1)js4nFj(r−s), (6.14)

2
n∑
k=0

(
2n
2k

)
Lj(2k+r)Lj(2k+s) =

(
L2n
j + 5nF 2n

j

)
Lj(2n+r+s) + (−1)js4nLj(r−s)

and

10
n−1∑
k=0

(
2n− 1

2k

)
Fj(2k+r)Fj(2k+s)

= (−1)jL2n−1
j Lj(2n+r+s−1) − (−1)j5nF 2n−1

j Fj(2n+r+s−1) − (−1)js22n−1Lj(r−s),

2
n−1∑
k=0

(
2n− 1

2k

)
Lj(2k+r)Fj(2k+s)

= (−1)jL2n−1
j Fj(2n+r+s−1) − (−1)j5n−1F 2n−1

j Lj(2n+r+s−1) − (−1)js22n−1Fj(r−s),

2
n−1∑
k=0

(
2n− 1

2k

)
Lj(2k+r)Lj(2k+s)

= (−1)jL2n−1
j Lj(2n+r+s−1) − (−1)j5nF 2n−1

j Fj(2n+r+s−1) + (−1)js22n−1Lj(r−s).

Proof. We prove (6.14). The proof of each of the remaining identities is similar and requires
the identities given in Theorem 3.2. In (6.1) write 2kj for k, rj for r and sj for s to obtain
5Fj(2k+r)Fj(2k+s) = Lj(4k+r+s) − (−1)jsLj(r−s). Thus,

10
n∑
k=0

(
2n
2k

)
Fj(2k+r)Fj(2k+s) = 2

n∑
k=0

(
2n
2k

)
Lj(4k+r+s) − (−1)js2Lj(r−s)

n∑
k=0

(
2n
2k

)
,

from which (6.14) follows after using (3.5) and (6.5).

Theorem 6.6. If n is a positive integer and r and s are any integers, then

5
bn/2c∑
k=0

(
n

2k

)
F3k+rF3k+s

= 2n−1(L2n+r+s + (−1)nLn+r+s
)
− (−1)s

√
2n cos

(nπ
4

)
Lr−s,

(6.15)

bn/2c∑
k=0

(
n

2k

)
L3k+rF3k+s = 2n−1(F2n+r+s + (−1)nFn+r+s

)
− (−1)s

√
2n cos

(nπ
4

)
Fr−s,

bn/2c∑
k=0

(
n

2k

)
L3k+rL3k+s = 2n−1(L2n+r+s + (−1)nLn+r+s

)
+ (−1)s

√
2n cos

(nπ
4

)
Lr−s.

Proof. We prove only (6.15). Using (6.1), write

5F3k+rF3k+s = L6k+r+s − (−1)k+sLr−s. (6.16)

Thus,

5
bn/2c∑
k=0

(
n

2k

)
F3k+rF3k+s =

bn/2c∑
k=0

(
n

2k

)
L6k+r+s − Lr−s

bn/2c∑
k=0

(−1)k+s
(
n

2k

)
and hence (6.15), using (3.11) and (6.4).
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Using (3.12), we have the following binomial Fibonacci identity.

Corollary 6.7. If n is a positive odd integer and r and s are any integers, then

n∑
k=0

(
2n
2k

)
F3k+rF3k+s = 22n−1FnF3n+r+s.

We conclude the analysis in this section with the following result.

Theorem 6.8. If n is a non-negative integer and r and s are any integers, then

bn/2c∑
k=0

(
n

2k

)
5k−1F3k+rF3k+s

= 2n−1(2nL2n+r+s + (−1)nL3n+r+s
)
− (−1)s

√
6n cos

(
n arctan

√
5
)
Lr−s,

(6.17)

bn/2c∑
k=0

(
n

2k

)
5kL3k+rF3k+s

= 2n−1(2nF2n+r+s + (−1)nF3n+r+s
)
− (−1)s

√
6n cos

(
n arctan

√
5
)
Fr−s,

bn/2c∑
k=0

(
n

2k

)
5kL3k+rL3k+s

= 2n−1(2nL2n+r+s + (−1)nL3n+r+s
)
+ (−1)s

√
6n cos

(
n arctan

√
5
)
Lr−s.

Proof. We prove (6.17). Using (6.16) we have

bn/2c∑
k=0

(
n

2k

)
5k−1F3k+rF3k+s =

bn/2c∑
k=0

(
n

2k

)
5kL6k+r+s − (−1)sLr−s

bn/2c∑
k=0

(
n

2k

)
(−5)k

and hence (6.17) using (3.13) and (6.8).

7 Cubic binomial summation identities

In this section, we derive some binomial identities involving the product of three Fibonacci
and/or Lucas numbers. The identities stated in the next lemma are needed for this purpose.

Lemma 7.1. For any integers k, r, s, and t,

5Fk+rFk+sFk+t = F3k+r+s+t − (−1)k+rFk+s+t−r − (−1)k+tLs−tFk+r, (7.1)

5Lk+rFk+sFk+t = L3k+r+s+t + (−1)k+rLk+s+t−r − (−1)k+tLs−tLk+r,

Lk+rLk+sFk+t = F3k+r+s+t + (−1)k+rFk+s+t−r − (−1)k+tFs−tLk+r,

Lk+rLk+sLk+t = L3k+r+s+t + (−1)k+rLk+s+t−r + (−1)k+tLs−tLk+r. (7.2)

Proof. These can be derived from the identities stated in Lemma 6.1. Identities (7.1) and (7.2)
are also given in [12].
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Theorem 7.2. If n is a non-negative integer and r, s, and t are any integers, then

10
bn/2c∑
k=0

(
n

2k

)
F2k+rF2k+sF2k+t = 2n

(
F2n+s+r+t + (−1)nFn+s+r+t

)
− (−1)r

(
F2n+s+t−r − (−1)s+t−rFn−s−t+r

)
− (−1)tLs−t

(
F2n+r − (−1)rFn−r

)
,

(7.3)

10
bn/2c∑
k=0

(
n

2k

)
L2k+rF2k+sF2k+t = 2n

(
L2n+s+r+t + (−1)nLn+s+r+t

)
+ (−1)r

(
L2n+s+t−r + (−1)s+t−rLn−s−t+r

)
− (−1)tLs−t

(
L2n+r + (−1)rLn−r

)
,

2
bn/2c∑
k=0

(
n

2k

)
L2k+rL2k+sF2k+t = 2n

(
F2n+s+r+t + (−1)nFn+s+r+t

)
+ (−1)r

(
F2n+s+t−r − (−1)s+t−rFn−s−t+r

)
− (−1)tFs−t

(
L2n+r + (−1)rLn−r

)
,

2
bn/2c∑
k=0

(
n

2k

)
L2k+rL2k+sL2k+t = 2n

(
L2n+s+r+t + (−1)nLn+s+r+t

)
+ (−1)r

(
L2n+s+t−r + (−1)s+t−rLn−s−t+r

)
+ (−1)tLs−t

(
L2n+r + (−1)rLn−r

)
.

Proof. Write 2k for k in (7.1) and sum to obtain

5
bn/2c∑
k=0

(
n

2k

)
F2k+rF2k+sF2k+t =

bn/2c∑
k=0

(
n

2k

)
F6k+r+s+t

− (−1)r
bn/2c∑
k=0

(
n

2k

)
F2k+s+t−r − (−1)tLs−t

bn/2c∑
k=0

(
n

2k

)
F2k+r,

whence (7.3) in view of (3.8) and (3.10).

8 Quartic binomial summation identities

We conclude our study with the derivation of some quartic binomial Fibonacci identities.
The identities stated in the next lemma are required.

Lemma 8.1. If k, p, q, r, and s are any integers, then

25Fk+pFk+qFk+rFk+s

= L4k+p+q+r+s − (−1)s+kL2k+p+q+r−s − (−1)r+kL2k+p+q−r+s

− (−1)q+kLp−qL2k+r+s + (−1)r+sLp+q−r−s + (−1)q+sLp−qLr−s,

(8.1)

5Lk+pFk+qFk+rFk+s = F4k+p+q+r+s − (−1)s+kF2k+p+q+r−s − (−1)r+kF2k+p+q−r+s

− (−1)q+kFp−qL2k+r+s + (−1)r+sFp+q−r−s + (−1)q+sFp−qLr−s,

5Lk+pLk+qFk+rFk+s = L4k+p+q+r+s − (−1)s+kL2k+p+q+r−s − (−1)r+kL2k+p+q−r+s

+ (−1)q+kLp−qL2k+r+s + (−1)r+sLp+q−r−s − (−1)q+sLp−qLr−s,

Lk+pLk+qLk+rFk+s = F4k+p+q+r+s − (−1)s+kF2k+p+q+r−s + (−1)r+kF2k+p+q−r+s

+ (−1)q+kLp−qF2k+r+s − (−1)r+sFp+q−r−s − (−1)q+sLp−qFr−s,

Lk+pLk+qLk+rLk+s

= L4k+p+q+r+s + (−1)s+kL2k+p+q+r−s + (−1)r+kL2k+p+q−r+s

+ (−1)q+kLp−qL2k+r+s + (−1)r+sLp+q−r−s + (−1)q+sLp−qLr−s.

(8.2)



338 Kunle Adegoke, Robert Frontczak and Taras Goy

Proof. These can be derived from the identities stated in Lemma 6.1. Identities (8.1) and (8.2)
are also given in [12].

Theorem 8.2. If n is a positive integer and p, q, r, and s are any integers, then

50
n∑
k=0

(
2n
2k

)
Fk+pFk+qFk+rFk+s

= (5n + 1)L2n+p+q+r+s − (−1)s5n/22Ln+p+q+r−s cos(2n arctanα)

− 5n/22 cos(2n arctanα)
(
(−1)rLn+p+q−r+s + (−1)qLp−qLn+r+s

)
+ (−1)s4n

(
(−1)rLp+q−r−s + (−1)qLp−qLr−s

)
,

(8.3)

10
n∑
k=0

(
2n
2k

)
Lk+pFk+qFk+rFk+s

= (5n + 1)F2n+p+q+r+s − (−1)s5n/22Fn+p+q+r−s cos(2n arctanα)

− 5n/22 cos(2n arctanα)
(
(−1)rFn+p+q−r+s + (−1)qFp−qLn+r+s

)
+ (−1)s4n

(
(−1)rFp+q−r−s + (−1)qFp−qLr−s

)
,

10
n∑
k=0

(
2n
2k

)
Lk+pLk+qFk+rFk+s

= (5n + 1)L2n+p+q+r+s − (−1)s5n/22Ln+p+q+r−s cos(2n arctanα)

− 5n/22 cos(2n arctanα)
(
(−1)rLn+p+q−r+s − (−1)qLp−qLn+r+s

)
+ (−1)s4n

(
(−1)rLp+q−r−s − (−1)qLp−qLr−s

)
,

2
n∑
k=0

(
2n
2k

)
Lk+pLk+qLk+rFk+s

= (5n + 1)F2n+p+q+r+s − (−1)s5n/22Fn+p+q+r−s cos(2n arctanα)

+ 5n/22 cos(2n arctanα)
(
(−1)rFn+p+q−r+s + (−1)qLp−qFn+r+s)

− (−1)s4n
(
(−1)rFp+q−r−s + (−1)qLp−qFr−s

)
,

2
n∑
k=0

(
2n
2k

)
Lk+pLk+qLk+rLk+s

= (5n + 1)L2n+p+q+r+s + (−1)s5n/22Ln+p+q+r−s cos(2n arctanα)

+ 5n/22 cos(2n arctanα)
(
(−1)rLn+p+q−r+s + (−1)qLp−qLn+r+s

)
+ (−1)s4n

(
(−1)rLp+q−r−s + (−1)qLp−qLr−s

)
.

Proof. From (8.1), we have

25
n∑
k=0

(
2n
2k

)
Fk+pFk+qFk+rFk+s

=
n∑
k=0

(
2n
2k

)
L4k+p+q+r+s − (−1)s

n∑
k=0

(
2n
2k

)
(−1)kL2k+p+q+r−s

− (−1)r
n∑
k=0

(
2n
2k

)
(−1)kL2k+p+q−r+s − (−1)qLp−q

n∑
k=0

(
2n
2k

)
(−1)kL2k+r+s

+ (−1)r+sLp+q−r−s
n∑
k=0

(
2n
2k

)
+ (−1)q+sLp−qLr−s

n∑
k=0

(
2n
2k

)
,

which yields (8.3) on account of (3.5), (5.3) and (6.5).
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9 Conclusion

In this paper, we derived summation identities involving Fibonacci (Lucas) numbers and bino-
mial coefficients ( n2k), (

n
2k−1), (

2n
2k), (

2n
2k−1), (

2n−1
2k ), and (2n−1

2k−1). Also, we presented results contain-
ing higher-order (quadratic, cubic, and quartic) binomial Fibonacci, Lucas, and Fibonacci–Lucas
summation identities.
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