ON THE COMPARABILITY GRAPHS OF LATTICES

Rahul Jejurkar and Vinayak Joshi
Communicated by Harikrishnan Panackal

MSC 2020 Classifications: 06C05, 05C40.
Keywords and phrases: comparability graph, inclusion graph, modular lattice.

Abstract

The covering graphs and the comparability graphs of ordered sets have received a lot of attention. In this paper, we study the comparability graph of lattices. We discuss the basic properties of the comparability graphs, such as connectedness, diameter, girth, etc. We also use these results to unify many results of the inclusion graph of algebraic structures like vector spaces, modules, rings, semigroups, etc.

1 Introduction

The covering graphs $\operatorname{Cov}(P)$ and the comparability graphs $\operatorname{Com}(P)$ are widely studied graphs associated with a poset P. Note that the covering graph $\operatorname{Cov}(P)$ and the comparability graph $\operatorname{Com}(P)$ do not determine the poset P up to isomorphism. However, on the other hand, there are some special classes of posets (e.g., modular lattices) whose covering graph $\operatorname{Cov}(P)$ still contains important information about the poset P. In [13], Ward proved that a modular lattice of finite length is distributive if and only if its covering graph contains no subgraph isomorphic to $K_{2,3}$ (the covering graph of M_{3}). Further, Dilworth [7] proved that the covering graph of a modular lattice of finite length and of breadth n contains a subgraph isomorphic to the n dimensional hypercube, i.e., $\mathbf{2}^{n}$.

In general, a comparability graph is a simple unoriented graph, and two vertices are adjacent if and only if they are comparable with respect to some partial order on its vertices.

Recently, there has been an ever-growing interest in the graph associated with algebraic structures, for example, zero-divisor graphs of rings and ordered sets, ideal intersection graphs of rings, ideal inclusion graphs of rings (semigroups), etc. A generic definition of an inclusion graph can be done as follows. Let X be an algebraic structure. Then, the inclusion graphs of substructures of X are denoted by $\operatorname{In}(X)$, where the vertex set is the collection of all nontrivial substructures of X, and two substructures M and N are adjacent if and only if either $M \subseteq N$ or $N \subseteq M$. The following are examples of the inclusion graphs associated with the various algebraic structures.
(i) The subspace inclusion graph $\operatorname{In}(V)$ of a finite-dimensional vector space V (see [5]).
(ii) The submodule inclusion graph $\operatorname{In}(M)$ of a module M (see [8]) .
(iii) The ideal inclusion graph $\operatorname{In}(R)$ of a ring R (see [1]).
(iv) The ideal inclusion graph $\operatorname{In}(S)$ of a semigroup S (see [2]).
(v) The subgroup inclusion graph $\operatorname{In}(G)$ of a group G (see [6]).

We have noted that there is a unifying pattern in the results of the inclusion graph of substructures of algebraic structures (cf. [1, Theorem 1], [4, Theorem 4.1], [8, Proposition 2.5]). Furthermore, we observe that the comparability graph of the lattice of substructures of an algebraic structure is a tool for studying these graphs. Hence, it is necessary to know the properties of the lattice of substructures of an algebraic structure. In the Remark 1.1, we have listed the known properties.
Remark 1.1. (i) If V is a finite-dimensional vector space over a field F, then the lattice $L(V)$ of subspaces of V is bounded, modular, atomistic, dual atomistic, complemented and selfdual.
(ii) The lattice $L(M)$ of submodules of a module M is a bounded, modular lattice.
(iii) The lattice $L(R)$ of left ideals of a ring R is a bounded, modular lattice.
(iv) The lattice $L(S)$ of ideals of a semigroup S is a bounded, distributive lattice.
(v) The lattice $L(G)$ of subgroups of a group G is a bounded lattice. If G is abelian, then $L(G)$ is a bounded, modular lattice.

We, now quote the formal definition of the comparability graph.
Definition 1.2. Let L be a bounded lattice. The comparability graph of L is an undirected, simple graph denoted by $\operatorname{Com}(L)$, where the vertex set is $L \backslash\left\{0_{L}, 1_{L}\right\}$ and two vertices a and b are adjacent if and only if a and b are comparable, i.e., $a<b$ or $b<a$.

From the definitions of the comparability graph and the inclusion graph, we have the following remark.

Remark 1.3. (i) If V is a finite dimensional vector space over the field F, then the subspace inclusion graph $\operatorname{In}(V)$ is the comparability graph of the lattice $L(V)$ of subspaces of V, i.e., $\operatorname{In}(V)=\operatorname{Com}(L(V))$.
(ii) The submodule inclusion graph $\operatorname{In}(M)$ of a module M is the comparability graph of the lattice $L(M)$ of submodules of M, i.e., $\operatorname{In}(M)=\operatorname{Com}(L(M))$.
(iii) The inclusion ideal graph $\operatorname{In}(R)$ of a ring (semigroup) R is the comparability graph of the lattice $L(R)$ of ideals of R, i.e., $\operatorname{In}(R)=\operatorname{Com}(L(R))$.
(iv) The inclusion graph $I(G)$ of subgroups of a group G is the comparability graph of the lattice $L(G)$ of subgroups of G, i.e., $\operatorname{In}(G)=\operatorname{Com}(L(G))$.

2 Preliminaries

Let $(L ; \leq)$ be a lattice. The least element and greatest element (if they exist) will be denoted by 0_{L} and 1_{L}, respectively. A subset L^{\prime} of L is said to be a sublattice of L if it satisfies the property that $a, b \in L^{\prime}$ implies that $a \vee b, a \wedge b \in L^{\prime}$ with the \vee and the \wedge of L^{\prime} are restrictions to L^{\prime} of the \vee and the \wedge of L. A lattice L is said to be bounded if it has both 0_{L} and 1_{L}. A $0-1$-sublattice of a bounded lattice L is a sublattice containing the 0_{L} and 1_{L} of L. If two elements a, b are incomparable, we denote it by $a \| b$. If any two elements in L are comparable, then L is said to be a chain. C_{n} denotes a chain with n elements, and the length of C_{n} is $n-1$. If L has 0_{L} and every chain in L is finite, then the height $h(a)$ of an element $a \in L$ is the maximum length of a maximal chain from 0_{L} to a. The length of L, denoted by $\ell(L)$, is defined as the maximum length of a maximal chain in L. If L has 1_{L}, then $\ell(L)=h\left(1_{L}\right)$.

For $x, y \in L$ we write $y \prec x$ (y is covered by x or x covers y) if $y<x$ and $y<z \leq x$ implies that $x=z$. A sublattice L^{\prime} of L is said to a cover preserving sublattice if it satisfies the property that $a \prec b$ in L if and only if $a \prec b$ in L^{\prime} for any $a, b \in L^{\prime}$.

Fig. 1 Cover preserving

Example 2.1. Consider the lattice L depicted in the adjacent figure. Clearly, $L^{\prime}=\left\{0_{L}, a, b, c, 1_{L}\right\}$ is a cover preserving 0-1sublattice of L whereas $L^{\prime \prime}=\left\{0_{L}, c, d, 1_{L}\right\}$ is a sublattice of L, in fact, a $0-1$-sublattice of L but not a cover preserving. The lattice L^{\prime} is isomorphic to a nonmodular lattice N_{5}.

O-1-sublattice N_{5}

An element a of a bounded lattice L is an atom if $0_{L} \prec a$, and it is a dual atom if $a \prec 1_{L}$. A bounded lattice L is called atomic if for every non-zero element b, there exists an atom $a \in L$ such that $a \leq b$. A bounded lattice L is called dual atomic if for every non-unit element b, there exists a dual atom $a \in L$ such that $b \leq a$. An atomic lattice L is called atomistic if every non-zero element is a join of atoms contained in it, and it is called dual atomistic if every non-unit element is a meet of dual atoms above it.

Let (L, \leq) be a lattice with a partial order \leq. Then the dual lattice (L, \geq) of L is the lattice, where the partial order \geq is defined as $x \geq y$ if and only if $x \leq y$ in L for $x, y \in L$. The dual lattice of L is denoted by L^{*}. A lattice is said to be self-dual if $L \cong L^{*}$.

A lattice is called upper semimodular if and only if it satisfies the upper covering condition, i.e., $a \prec b$ implies that $a \vee c \prec b \vee c$ or $a \vee c=b \vee c$. The upper semimodular lattices are also known as semimodular lattices. The dual notion of upper semimodular lattice is lower semimodular lattice. A lattice L is called modular, if for $a, b, c \in L, c \vee(a \wedge b)=(c \vee a) \wedge b$ for all $c \leq b$. Clearly, a modular lattice is upper semimodular as well as lower semimodular. A lattice L is said to be distributive if it satisfies $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ or $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ for all $a, b, c \in L$. In a bounded lattice L, an element a is a complement of an element b if $a \vee b=1_{L}$ and $a \wedge b=0_{L}$ and the lattice L is said to be complemented if every element in L has a complement. A Boolean lattice is a lattice that is complemented and distributive. Any undefined concepts related to lattice theory can be found in [3], [9], [12].

Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. A graph G is an edgeless graph if $E(G)$ is empty. A simple graph has no loops and multiple edges. A graph H is said to be a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If all the vertices of G are pairwise adjacent, then G is said to be complete. Two graphs G_{1} and G_{2} are said to be isomorphic if there exists a bijective map, ϕ, from $V\left(G_{1}\right)$ to $V\left(G_{2}\right)$ such that $(u, v) \in E\left(G_{1}\right)$ if and only if $(\phi(u), \phi(v)) \in E\left(G_{2}\right)$, for any $u, v \in V\left(G_{1}\right)$. A finite graph G is a path if its vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the list and its length is the number of edges in it. A path G is a cycle if its initial and end vertices coincide. A graph G is said to be triangulated (hyper-triangulated) if each vertex (edge) of G is a vertex (edge) of a triangle. A graph G is connected if each pair of vertices in G belongs to a path; otherwise, G is disconnected. If G is a connected graph, then the distance between two vertices $u, v \in V(G)$, denoted by $d(u, v)$, is defined as the length of a shortest path joining u and v; otherwise, it is infinity. The diameter of G is the maximum number in the set of distances between the pairs of vertices of G. The girth of a graph G is the length of a shortest cycle if it exists; otherwise, it is infinity. Any undefined concepts related to graph theory can be found in [14].

Throughout the paper, L is a bounded lattice.

3 Basic results

In this section, we quote a few immediate results from the definitions.
Remark 3.1. (i) $\operatorname{Com}(L)$ is a complete graph if and only if L is a chain.
(ii) If L is a lattice, then there is a one-to-one correspondence between (maximal) chains in $L \backslash\left\{0_{L}, 1_{L}\right\}$ and (maximal) cliques in $\operatorname{Com}(L)$.
(iii) If L is an atomistic lattice of length at least 2 , then $\operatorname{Com}(L)$ is not a complete graph.

The following corollary is immediate from Remark 3.1 and Remark 1.1.
Corollary 3.2 ([4, Corollary 3.3]). The subspace inclusion graph In (V) of a vector space V is not complete for $\operatorname{dim}(V) \geq 2$.

Lemma 3.3. If L_{1} is a sublattice of a lattice L, then $\operatorname{Com}\left(L_{1}\right)$ is an induced subgraph of $\operatorname{Com}(L)$.

Remark 3.4. The converse of Lemma 3.3 is not generally true.
Lemma 3.5. Let V be a vector space. If W is a subspace of V with a dimension greater than 1 , then the lattice $L(W)$ of subspaces of W is a sublattice of $L(V)$.

Corollary 3.6 ([4, Theorem 3.1]). If V is a vector space over a field F and W is a subspace of V with a dimension greater than 1, then $\operatorname{In}(W)$ is a subgraph of $\operatorname{In}(V)$.

Corollary 3.7 ([8, Proposition 2.1]). Let M be an R-module. If K is a submodule of M, then $\operatorname{In}(K)$ is a subgraph of $\operatorname{In}(M)$.

Corollary 3.8 ([4, Theorem 3.1]). If G is a group and N is a subgroup of G, then $\operatorname{In}(N)$ is a subgraph of $\operatorname{In}(G)$.

Lemma 3.9. Let L be a lattice and $a, b \in L$ such that $h(a)=h(b)=k<\infty$. Then a and bare not adjacent in $\operatorname{Com}(L)$.

Proof. Let $a, b \in L$ such that $h(a)=h(b)=k<\infty$. Assume that a and b are comparable. Without loss of generality, let $a<b$. Since $h(a)=k$, there exists a maximal chain, $0_{L} \prec a_{1} \prec a_{2} \prec$ $\cdots \prec a_{k}=a$. Also, $a<b$ implies that there is a maximal chain $a \prec a_{k+1} \prec \cdots \prec a_{m}=b$. Clearly, $0_{L} \prec a_{1} \prec a_{2} \prec \cdots \prec a_{k}(=a) \prec a_{k+1} \prec \cdots \prec a_{m}=b$ is a chain from 0_{L} to b. This gives $k=h(b) \geq m>k$, a contradiction. Thus, a and b are incomparable and are not adjacent in $\operatorname{Com}(L)$.

Remark 3.10. In the case of graded lattices, all maximal chains between any two elements are of the same length. Hence, in the above proof, the inequality $h(b) \geq m$ is equality, that is, $h(b)=m$.

Now, we relate the dimension of a subspace and the height of that subspace in the subspace lattice. Note that the subspace lattice is modular; hence, the height function is well-defined.

Lemma 3.11. Let V be a vector space. If W is a subspace of V, then $\operatorname{dim}(W)=h(W)$ in $L(V)$.
Proof. Let V be a vector space and W be a subspace of V. Suppose that $\operatorname{dim}(W)=k$. Let $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ be a basis of W. Consider the subspace W_{i} generated by $\left\{w_{1}, w_{2}, \cdots, w_{i}\right\}$ and W_{0} is the subspace generated by 0 . Clearly, we have a chain of subspaces $W_{i}(i=0,1, \cdots, k)$ of V such that $W_{0} \varsubsetneqq W_{1} \varsubsetneqq W_{2} \varsubsetneqq \cdots \varsubsetneqq W_{k-1} \varsubsetneqq W_{k}$ and $\operatorname{dim}\left(W_{i}\right)=i$, for $i=0,1,2, \cdots, k$. Clearly, this is a maximal chain of length k in $L(V)$ from $0_{L(V)}$ to W. Since $L(V)$ is modular and hence graded, we have $h(W)=k$ in $L(V)$. Thus, $\operatorname{dim}(W)=h(W)$ in $L(V)$.

Corollary 3.12 ([4, Lemma 3.1]). If W_{1} and W_{2} are two distinct subspaces of V of the same dimension, then W_{1} and W_{2} are not adjacent in $\operatorname{In}(V)$.

Proof. Follows from Lemma 3.11 and Lemma 3.9.

4 Connectedness of the comparability graphs

In this section, we study the connectedness of the comparability graph of lattices. In particular, we study the comparability graph of 0-modular lattices, a general class than the class of modular lattices and atomic lattices with the covering property. We need the following definitions and results.

Definition 4.1 ([12, p. 133]). A lattice L with the least element 0_{L} is said to be 0 -modular if for $a, b, c \in L$, we have $a \leq c$ and $b \wedge c=0_{L}$ implies $(a \vee b) \wedge c=a$.

Theorem 4.2 ([12, p. 134, Theorem 3.4.1]). A lattice L with 0 is 0 -modular if and only if for $a, b, c \in L$ with $a<c, b \wedge c=0_{L}$, and $b \vee a=b \vee c$ together imply $a=c$. In other words, L is 0 -modular if and only if there exists in L no pentagon sublattice N_{5} (Fig. 1) containing the least element 0_{L} of L.

The Hasse diagrams of M_{n} and M_{∞} are shown below.

Theorem 4.3. Let L be a 0-modular lattice with at least two non-zero, non-unit elements. Then the following statements are equivalent.
(i) $\operatorname{Com}(L)$ is a disconnected graph.
(ii) $L \cong M_{n}$ or $L \cong M_{\infty}$.
(iii) $\operatorname{Com}(L)$ is an edgeless graph.
(iv) L contains a cover preserving 0-1-sublattice isomorphic to $C_{2} \times C_{2}$, where C_{2} is the twoelement chain.

Proof. (1) \Rightarrow (2): Suppose that $\operatorname{Com}(L)$ is a disconnected graph. So there exist two vertices a and b that are not connected in $\operatorname{Com}(L)$. Clearly, $a, b \in L \backslash\left\{0_{L}, 1_{L}\right\}$ with $a \wedge b=0_{L}$ and $a \vee b=1_{L}$. Otherwise, if $a \wedge b \neq 0$ or $a \vee b \neq 1_{L}$, then we get a path $a \sim a \wedge b \sim b$ or $a \sim a \vee b \sim b$ in $\operatorname{Com}(L)$, a contradiction. So $a \| b$ in L.

First, we show that a and b are atoms in L. On the contrary, suppose that a is not an atom in L. Let $a_{1}<a$ for some a_{1} in $L \backslash\left\{0_{L}\right\}$. If $a_{1} \wedge b \neq 0_{L}$, then we get a path $a \sim a_{1} \sim a_{1} \wedge b \sim b$, a contradiction. Thus, we have $a_{1} \wedge b=0_{L}$. Similarly, $a_{1} \vee b=1_{L}$. Hence $a_{1} \| b$ in L. Thus, from the above discussion, we conclude that $\left\{0_{L}, a, a_{1}, b, 1_{L}\right\}$ forms a sublattice of L isomorphic to N_{5} containing 0_{L}, a contradiction to the fact that L is 0 -modular. Hence a must be an atom. On similar lines, we can show that b is an atom.

We show that a and b are dual atoms. On the contrary, suppose that a is not a dual atom in L. Let $a<a_{2}$ for some a_{2} in L such that $a_{2} \neq 1_{L}$. If $a_{2} \vee b \neq 1_{L}$, then we get a path $a \sim a_{2} \sim a_{2} \vee b \sim b$, a contradiction. Thus, we have $a_{2} \vee b=1_{L}$. Similarly, $a_{2} \wedge b=0_{L}$. Hence $a_{2} \| b$ in L. Therefore, from the above discussion, we conclude that $\left\{0_{L}, a, a_{2}, b, 1_{L}\right\}$ forms a sublattice of L isomorphic to N_{5} containing 0_{L}, a contradiction to the fact that L is 0 -modular. Hence a must be a dual atom. Using similar arguments, we can show that b is a dual atom.

If there is no non-zero, non-unit element other than a, b, then we see that $L \cong M_{2}$. Thus, in this case, we are through. Now, if c is any other non-zero, non-unit element of $L \backslash\{a, b\}$, then we show that c is an atom that is also a dual atom.

On the contrary, suppose that c is not an atom of L. As a and b, both are atoms as well as dual atoms; we have $a \vee c=1_{L}, a \wedge c=0_{L}, b \vee c=1_{L}$ and $b \wedge c=0_{L}$, i.e., $a \| c$ and $b \| c$. Since c is not an atom, there exists c_{1} such that $c_{1}<c$ and $c_{1} \neq 0_{L}$. Again, we have $c_{1} \nsim a$ and $c_{1} \nsim b$, as a and b both are atoms as well as dual atoms. Therefore $a \| c_{1}$ and $b \| c_{1}$. This gives $a \vee c_{1}=1_{L}, a \wedge c_{1}=0_{L}, b \vee c_{1}=1_{L}$ and $b \wedge c_{1}=0_{L}$. Thus, we conclude that $\left\{0_{L}, c, c_{1}, a, 1_{L}\right\}$ forms a sublattice isomorphic to N_{5} containing 0_{L}, a contradiction to 0 -modularity of L. Hence c must be an atom. Using similar arguments, we can also show that c is a dual atom.

Thus, we observe that every non-zero, non-unit element in L is an atom, which is also a dual atom of L. Hence if L is finite, then $L \cong M_{n}$ and, if L is infinite, then $L \cong M_{\infty}$.
$(2) \Rightarrow(3):$ It is quite straightforward.
$(3) \Rightarrow(4)$: Since L has at least two non-zero, non-unit elements, $|V(G(L))| \geq 2$. Let a, b be two vertices of $\operatorname{Com}(L)$. As $\operatorname{Com}(L)$ is an edgeless graph, $a \nsim b$ and hence $a \vee b=1_{L}$ and $a \wedge b=0_{L}$. If there exists a non-zero, non-unit element c (say) such that $0_{L}<c<a$, then $a \sim c$, i.e., there is an edge between a and c, a contradiction. Hence $0_{L} \prec a$. Using similar arguments, we can show that $0_{L} \prec b, a \prec 1_{L}$ and $b \prec 1_{L}$. This gives a cover preserving $0-1$-sublattice isomorphic to $C_{2} \times C_{2}$.
$(4) \Rightarrow(1)$: Since L contains a cover preserving $0-1$-sublattice isomorphic to $C_{2} \times C_{2}$, there are at least two non-zero, non-unit elements a, b (say) in L such that $0_{L} \prec a \prec 1_{L}$ and $0_{L} \prec b \prec 1_{L}$. Clearly, a and b are not connected in $\operatorname{Com}(L)$, i.e., $\operatorname{Com}(L)$ is a disconnected graph.

Theorem 4.4 ([9, p. 59]). A modular lattice L is distributive if and only if it does not contain a sublattice isomorphic to M_{3}.

Definition 4.5 ([11, p. 31]). In a lattice with 0_{L}, the following property is called the covering property: If p is an atom and $a \wedge p=0_{L}$, then $a \prec a \vee p$.

We can prove the following result using similar arguments as in Theorem 4.3. Note that every atomic 0 -modular lattice satisfies the covering property.

Theorem 4.6. Let L be an atomic lattice with at least two non-zero, non-unit elements. If L satisfies the covering property, then the following statements are equivalent.
(i) $\operatorname{Com}(L)$ is a disconnected graph.
(ii) $L \cong M_{n}$ or $L \cong M_{\infty}$.
(iii) $\operatorname{Com}(L)$ is an edgeless graph.
(iv) L contains a cover preserving 0-1-sublattice isomorphic to $C_{2} \times C_{2}$.

Proof. (1) $\Rightarrow(2)$: Since $\operatorname{Com}(L)$ is disconnected, there exists at least two vertices a and b such that a and b are not connected in $\operatorname{Com}(L)$. Clearly, $a \wedge b=0_{L}$ and $a \vee b=1_{L}$; otherwise, we get a path $a \sim a \wedge b \sim b$ or $a \sim a \vee b \sim b$, a contradiction.

We show that $L \cong M_{n}$ or $L \cong M_{\infty}$.
First, we show that a and b are atoms and dual atoms. Since L is atomic, there exists atoms a_{1} and b_{1} such that $a_{1} \leq a$ and $b_{1} \leq b$. Since a_{1} and b_{1} both are two distinct atoms, we have $a_{1} \wedge b_{1}=0_{L}$. If $a_{1} \vee b_{1} \neq 1_{L}$, then we get a path $a \sim a_{1} \sim a_{1} \vee b_{1} \sim b_{1} \sim b$, a contradiction. Thus, we must have $a_{1} \vee b_{1}=1_{L}$. Now, as a_{1} is an atom and $a_{1} \wedge b_{1}=0_{L}$, by using the covering property, we have $b_{1} \prec a_{1} \vee b_{1}$, i.e., $b_{1} \prec 1_{L}$. Hence b_{1} is a dual atom of L, but $b_{1} \leq b$. This implies $b_{1}=b$. Thus, b is an atom as well as a dual atom of L. Similarly, we get a as an atom as well as a dual atom of L.

If there is no non-zero, non-unit element other than a, b, then we see that $L \cong M_{2}$. Thus, in this case, we are through.

Now, if c is any other non-zero, non-unit element of $L \backslash\{a, b\}$, then we show that c is an atom and a dual atom. Clearly, $c \nsim a$ and $c \nsim b$, i.e., $a \vee c=b \vee c=1_{L}$ and $a \wedge c=b \wedge c=0_{L}$. As L is an atomic lattice, an atom c_{1} exists, such as $c_{1} \leq c$. Clearly, $c_{1} \wedge a=0_{L}$, as both are distinct atoms and $c_{1} \vee a=1_{L}$ as a is a dual atom. Also, since a is an atom and $a \wedge c_{1}=0_{L}$, by the covering property, we get $c_{1} \prec a \vee c_{1}$, i.e., $c_{1} \prec 1_{L}$. This implies c_{1} is a dual atom, but $c_{1} \leq c$, i.e., $c_{1}=c$. This proves that c is an atom as well as a dual atom of L.

Thus, every non-zero, non-unit element of L is an atom as well as a dual atom of L. So if L is finite, then $L \cong M_{n}$ and, if L is infinite, then $L \cong M_{\infty}$.
$(2) \Rightarrow(3)$: is straightforward.
(3) \Rightarrow (4): Since L has at least two non-zero, non-unit elements, $|V(G(L))| \geq 2$. Let a, b be two vertices of $\operatorname{Com}(L)$. As $\operatorname{Com}(L)$ is an edgeless graph, $a \nsim b$ and $a \vee b=1_{L}$ and $a \wedge b=0_{L}$. If there exists a non-zero, non-unit element c (say) such that $0_{L}<c<a$, then $a \sim c$, i.e., there is an edge between a and c, a contradiction. Hence $0_{L} \prec a$. Using similar arguments, we can show that $0_{L} \prec b, a \prec 1_{L}$ and $b \prec 1_{L}$. This gives a cover preserving sublattice containing 0_{L} and 1_{L} isomorphic to $C_{2} \times C_{2}$.
$(4) \Rightarrow(1)$: Since L contains a cover preserving sublattice containing 0_{L} and 1_{L} isomorphic to $C_{2} \times C_{2}$, there are at least two non-zero, non-unit elements a, b (say) in L such that $0_{L} \prec a \prec 1_{L}$ and $0_{L} \prec b \prec 1_{L}$. Clearly, a and b are not connected in $\operatorname{Com}(L)$, i.e., $\operatorname{Com}(L)$ is a disconnected graph.

The following remark follows from Theorem 4.3, which is also valid if the lattice is an atomic lattice with the covering property.

Remark 4.7. Let L be a 0 -modular lattice. Then, the following statements hold.
(i) If L has at least three non-zero, non-unit elements and $\operatorname{Com}(L)$ is disconnected, then L is not distributive.
(ii) $\operatorname{Com}(L)$ is connected if and only if for any two atoms a, b and for any two dual atoms c, d in L, we have, $a \vee b \neq 1_{L}$ and $c \wedge d \neq 0_{L}$.

Corollary 4.8 ([4, Corollary 3.2]). If $\operatorname{dim}(V)=2$, then $\operatorname{In}(V)$ is an edgeless graph.
Proof. As the lattice $L(V)$ of subspaces of a vector space V is a 0-modular lattice, and if $\operatorname{dim}(V)=2$, then $L(V)$ is isomorphic to M_{n} or M_{∞}. Hence, by Theorem 4.3, $\operatorname{In}(V)$ is an edgeless graph.

Corollary 4.9 ([8, Proposition 2.5]). Let M be a R-module. Then $\operatorname{In}(M)$ is disconnected if and only if M is a direct sum of two simple R-modules.

Proof. Suppose that $\operatorname{In}(M)$ is disconnected, i.e., $\operatorname{Com}(L(M))$ is disconnected. By Theorem 4.3, the lattice $L(M)$ of submodules of M contains a cover preserving sublattice containing 0_{L} and 1_{L} isomorphic to $C_{2} \times C_{2}$. Hence there exists two non-trivial submodules M_{1} and M_{2} of M such that $M_{1} \cap M_{2}=0_{L(M)}$ and $M_{1}+M_{2}=M$. Hence, we have $M=M_{1} \oplus M_{2}$. The converse follows again by Theorem 4.3 and the fact that M is a direct sum of two simple R-modules.

Theorem 4.10 ([10, p. 232]). Let D be a division ring and n be a positive integer number. Then for every left ideal I of a matrix ring $M_{n}(D)$ over D, there exists an invertible matrix P and integer $r, 0 \leq r \leq n$, such that $I=P H_{r}(D) P^{-1}$, where $H_{r}(D)$ denotes the left ideal of $M_{n}(D)$ containing all matrices whose $j^{\text {th }}$ column is zero, for every $r<j \leq n$.

Theorem 4.11. If a ring R is isomorphic to any one of the following
(i) $M_{n_{1}}\left(D_{1}\right) \times M_{n_{2}}\left(D_{2}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)$, where $k \geq 2$;
(ii) $D_{1} \times D_{2} \times \cdots \times D_{k}$, where $k \geq 3$;
(iii) $M_{n}(D)$, where $n \geq 3$,
where D, D_{1}, \cdots, D_{k} are division rings and $M_{n_{i}}\left(D_{i}\right)$ is a matrix ring, then $L(R) \not \approx M_{n}$ or $L(R) \nsubseteq M_{\infty}$.

Proof. To prove the claim, it is enough to show that R has two nontrivial left ideals I_{1} and I_{2} such that $I_{1} \varsubsetneqq I_{2}$. Let $H_{r}(D)$ denotes the set of all left ideals of $M_{n}(D)$ containing all matrices whose $j^{\text {th }}$ column is zero, for every $r<j \leq n$.
(1) If $R \cong M_{n_{1}}\left(D_{1}\right) \times M_{n_{2}}\left(D_{2}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)$, for $k \geq 2$, then take $I_{1}=H_{1}\left(D_{1}\right) \times 0 \times \cdots \times 0$ and $I_{2}=H_{1}\left(D_{1}\right) \times H_{1}\left(D_{2}\right) \times 0 \times \cdots \times 0$.
(2) If $R \cong D_{1} \times D_{2} \times \cdots \times D_{k}$, for $k \geq 2$, then take $I_{1}=D_{1} \times 0 \times \cdots \times 0$ and $I_{2}=D_{1} \times D_{2} \times 0 \times \cdots \times 0$.
(3) If $R \cong M_{n}(D)$, then take $I_{1}=H_{1}(D)$ and $I_{2}=H_{2}(D)$.

Theorem 4.12. Wedderburn-Artin Theorem: Let R be any left semisimple ring. Then $R=$ $M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{r}}\left(D_{r}\right)$ for suitable division rings D_{1}, \cdots, D_{r} and positive integers n_{1}, \cdots, n_{r}. The number r is uniquely determined, as are the pairs $\left\{\left(n_{1}, D_{1}\right), \cdots,\left(n_{r}, D_{r}\right)\right\}$ (up to a permutation). There are exactly r mutually non-isomorphic left simple modules over R.

Corollary 4.13 ([1, Theorem 1]). Let R be a ring. Then $\operatorname{In}(R)$ is not connected if and only if $R \cong M_{2}(D)$ or $D_{1} \times D_{2}$, for some division rings D, D_{1}, D_{2}.

Proof. First, suppose that $\operatorname{In}(R)$ is not connected, i.e., $\operatorname{Com}(L(R))$ is disconnected. By Theorem 4.3, we have $L(R) \cong M_{n}$ or $L(R) \cong M_{\infty}$, i.e., every nontrivial left ideal in R is minimal as well as maximal left ideal of R. Hence for any two nontrivial left ideals I and J of R, we have $I \cap J=\{0\}$ and $I+J=R$. Thus, R is a semisimple ring. By Wedderburn-Artin Theorem, $R \cong M_{n_{1}}\left(D_{1}\right) \times M_{n_{2}}\left(D_{2}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)$, where $D_{1}, D_{2}, \cdots, D_{k}$ are division rings. Thus, by Theorem 4.11 and as $L(R) \cong M_{n}$ or $L(R) \cong M_{\infty}$, we must have $R \cong M_{2}(D)$ or $D_{1} \times D_{2}$. Conversely, Suppose that $R \cong M_{2}(D)$ or $D_{1} \times D_{2}$, for some division rings D, D_{1}, D_{2}. Theorem 4.10 shows that every non-zero left ideal is a minimal ideal of R. Thus, by Theorem 4.3, $\operatorname{Com}(L(R))$ is disconnected.

Corollary 4.14 ([2, Theorem 3.1]). The graph $\operatorname{In}(S)$ of a semigroup S is disconnected if and only if S contains at least two minimal left ideals, and every nontrivial left ideal of S is minimal as well as maximal.

Corollary 4.15 ([2, Theorem 3.4]). The graph $\operatorname{In}(S)$ of a semigroup S is disconnected if and only if S is the union of exactly two minimal left ideals.

5 Diameter of the comparability graphs

Theorem 5.1. Let L be a 0 -modular lattice. If $\operatorname{Com}(L)$ is connected, then diam $(\operatorname{Com}(L)) \leq 3$.
Proof. Suppose that $\operatorname{Com}(L)$ is connected. Let $a, b \in L \backslash\left\{0_{L}, 1_{L}\right\}$. We consider the following cases.

Case(1): If a and b are comparable, i.e., $a \sim b$, then $d(a, b)=1$
Case(2): Suppose that $a \| b$. If either $a \wedge b \neq 0_{L}$ or $a \vee b \neq 1_{L}$, then we get a path $a \sim a \wedge b \sim b$ or $a \sim a \vee b \sim b$ that gives $d(a, b)=2$. Suppose that $a \wedge b=0_{L}$ and $a \vee b=1_{L}$. Since $\operatorname{Com}(L)$ is connected, there exists $c \in L \backslash\left\{0_{L}, 1_{L}\right\}$ such that $c \sim a$ or $c \sim b$. Without loss of generality, assume that $c \sim a$. If $c \sim b$, then we get $d(a, b)=2$. Suppose that $c \nsim b$, i.e., $c \| b$. If $c \wedge b=0_{L}$ and $c \vee b=1_{L}$, then the set $\left\{0_{L}, a, c, b, 1_{L}\right\}$ will forms a sublattice isomorphic to N_{5} containing 0_{L}, a contradiction to the fact that L is 0 -modular. Therefore, either $c \wedge b \neq 0_{L}$ or $c \vee b \neq 1_{L}$. Then we have a path $a \sim c \sim c \wedge b \sim b$ or $a \sim c \sim c \vee b \sim b$. Hence $d(a, b) \leq 3$. Thus, from all the above cases, we get $\operatorname{diam}(G(L)) \leq 3$.

Example 5.2. The lattice depicted in the adjacent figure is a 0-modular lattice. From the path, $a \sim b \sim c \sim d$, we have $d(a, b)=3$. Hence the diameter of the corresponding comparability graph is 3 . This shows that the bound in Theorem 5.1 is sharp.

Theorem 5.3. Let L be an atomic lattice that satisfies the covering property. If $\operatorname{Com}(L)$ is connected, then $\operatorname{diam}(\operatorname{Com}(L)) \leq 4$.

Proof. Let $\operatorname{Com}(L)$ be a connected graph. We consider the following cases.
Case(1): If $a \sim b$, then $d(a, b)=1$.
Case(2): If a and b are not adjacent and $a \wedge b \neq 0_{L}$ or $a \vee b \neq 1_{L}$ then we have either $a \sim a \wedge b \sim b$ or $a \sim a \vee b \sim b$. Thus, in either case, $d(a, b)=2$.

Case(c): If a and b are not adjacent and $a \wedge b=0_{L}$ and $a \vee b=1_{L}$. Since L is atomic, an atom a_{1} exists, such as $a_{1} \leq a$. If $a_{1} \wedge b \neq 0_{L}$, then $a_{1} \leq b$, as a_{1} is an atom. So, $a \sim a_{1} \sim b$ and hence $d(a, b)=2$. If $a_{1} \wedge b=0_{L}$, then as L satisfies the covering property, $b \prec a_{1} \vee b$. If $a_{1} \vee b \neq 1_{L}$, then we get a path $a \sim a_{1} \sim a_{1} \vee b \sim b$ and $d(a, b) \leq 3$. If $a_{1} \vee b=1_{L}$, then b will be a dual atom, as $b \prec a_{1} \vee b=1_{L}$. Since L is atomic, consider an atom b_{1} such that $b_{1} \leq b$. If $a_{1}=b_{1}$, then $d(a, b) \leq 2$, as we have a path $a \sim a_{1}=b_{1} \sim b$. Let $a_{1} \wedge b_{1}=0_{L}$. Since a_{1} is an atom, using the covering property, $b_{1} \prec a_{1} \vee b_{1}$. Now, if $a_{1} \vee b_{1} \neq 1_{L}$, then we have a path $a \sim a_{1} \sim a_{1} \vee b_{1} \sim b_{1} \sim b$ and $d(a, b) \leq 4$. If $a_{1} \vee b_{1}=1_{L}$, then by the covering property, both a_{1} and b_{1} are dual atoms. In this case, $a=a_{1}$ and $b=b_{1}$. Thus $\left\{0_{L}, a, b, 1_{L}\right\}$ forms a cover preserving sublattice of L isomorphic to $C_{2} \times C_{2}$. Hence, $\operatorname{Com}(L)$ is not connected, a contradiction.

Thus, from the above cases, $d(a, b) \leq 4$, for any $a, b \in L \backslash\left\{0_{L}, 1_{L}\right\}$. Hence $\operatorname{diam}(G(L)) \leq$ 4.

Example 5.4. The lattice depicted in the adjacent figure satisfies the covering property. From the path, $a \sim b \sim c \sim d \sim e$, we have $d(a, e)=4$. Hence the diameter of the corresponding comparability graph is 4 . This shows that the bound in Theorem 5.3 is sharp. Also, it is an example of an atomic lattice that satisfies the covering property but is not 0 -modular.

Corollary 5.5 ([4, Lemma 4.1]). If $\operatorname{dim}(V) \geq 3$, then $\operatorname{In}(V)$ is connected and diam $(\operatorname{In}(V)) \leq$ 3.

Proof. This follows from the fact that $L(V)$ is 0 -modular and Theorem 5.1.
Corollary 5.6. If L is a complemented, 0 -modular lattice of length at least 3 and $\operatorname{Com}(L)$ is connected, then $\operatorname{diam}(\operatorname{Com}(L))=3$.

Proof. By Theorem 5.1, we have $\operatorname{diam}(G(L)) \leq 3$. Let $a \in L \backslash\left\{0_{L}, 1_{L}\right\}$. Note that such a exists as $\ell(L) \geq 3$. Since L is complemented, there exists $b \in L \backslash\left\{0_{L}, 1_{L}\right\}$ such that $a \wedge b=0_{L}$ and $a \vee b=1_{L}$. Assume that either a or b is not an atom. Without loss of generality, assume that a is not an atom. Then there exists $c \in L \backslash\left\{0_{L}, 1_{L}\right\}$ such that $c<a$, then by 0 -modularity of L, we get $c=(c \vee b) \wedge a$. Clearly, $c \vee b \neq 1_{L}$, otherwise $c=a$, a contradiction. Hence, we get a
path $a \sim c \sim c \vee b \sim b$ with $c \vee b \neq b$, as $a \wedge b=0_{L}$ and $c \neq 0_{L}$. Thus in this case $d(a, b)=3$ and hence $\operatorname{diam}(\operatorname{Com}(L))=3$. Now, we can assume that a and b are atoms. Now, without loss of generality, if there exists $d \notin\left\{0_{L}, 1_{L}\right\}$ such that $d>a$, then $d \vee b=1_{L}$, as $a \vee b=1_{L}$. We claim that $d \wedge b \neq 0_{L}$. Suppose $d \wedge b=0_{L}$. Then by 0-modularity, $a=(a \vee b) \wedge d=d$, a contradiction. Hence, $d \wedge b \neq 0_{L}$. Thus, we get a path $a \sim d \sim d \wedge b \sim b$, which is a minimal path between a and b. Hence, $d(a, b)=3$. Thus $\operatorname{diam}(L)=3$.

Corollary 5.7. If L is an atomistic, dual atomic, 0 -modular lattice of length at least 3 and $\operatorname{Com}(L)$ is connected, then $\operatorname{diam}(\operatorname{Com}(L))=3$.
Proof. Since $\ell(L) \geq 3$ and L is dual atomic, a dual atom $b \in L$ exists, which is not an atom. Further, as $b<1_{L}$ and L is an atomistic lattice, there exists an atom $p \in L$ such that $p<1_{L}$ and $p \npreceq b$. Since L is atomistic, there exists an atom $q \in L$ such that $q<b$. So we have distinct atoms p and q with $p \prec p \vee q$ and $q \prec p \vee q$. By Remark 4.7, we have $q \vee p \neq 1_{L}$. So we get a path $b \sim q \sim q \vee p \sim p$. We claim that this path is a minimal path in $\operatorname{Com}(L)$. For this, if $b \sim c \sim p$, then we have $p<c$ and, $b<c$ or $c<b$. The possibility $c<b$ is not possible; otherwise, $p<b$, a contradiction. Hence $b<c$. As $c \neq 1_{L}$, and b is a dual atom, we have $b=c$, a contradiction. Hence, $b \sim q \sim q \vee p \sim p$ is a minimal path. Therefore, $d(b, p)=3$. Thus, we get the result by Theorem 5.1.
Corollary 5.8 ([4, Theorem 4.1]). If $\operatorname{dim}(V) \geq 3$, then $\operatorname{diam}(\operatorname{In}(V))=3$.
Corollary 5.9 ([8, Proposition 2.5]). If In (M) is connected graph, then $\operatorname{diam}(\operatorname{In}(M)) \leq 3$.
Corollary 5.10 ([1, Theorem 1]). If $\operatorname{In}(R)$ is connected graph, then diam $(\operatorname{In}(R)) \leq 3$.
Corollary 5.11 ([2, Theorem 3.5]). If $\operatorname{In}(S)$ is a connected graph, then $\operatorname{diam}(\operatorname{In}(S)) \leq 3$.
Corollary 5.12. If G is an abelian group and the $\operatorname{graph} \operatorname{Com}(L(G))$ is connected, then $\operatorname{diam}(\operatorname{Com}(L(G))) \leq 3$.
Proof. As G is abelian, the subgroup lattice $L(G)$ is modular. By Theorem 5.1, we get the result.

This shows that our result improves the following result.
Corollary 5.13 ([6, Theorem 2.11]). If G is a finite abelian group and $I(G)$ be the subgroup inclusion graph, then $\operatorname{diam}(I(G)) \in\{1,2,3,4, \infty\}$.

6 Girth of the comparability graphs

Lemma 6.1. If L is a lattice of length 3 with at most two atoms or dual atoms, then $\operatorname{Com}(L)$ does not contain any cycle.
Proof. Let $c_{1}-c_{2}-c_{3}-\cdots-c_{k}-c_{1}$ be a cycle in $\operatorname{Com}(L)$. As $\ell(L)=3$, every non-zero, non-unit element of L is either an atom or a dual atom of L, i.e., each c_{i} is either an atom or a dual atom for $i=1,2,3, \cdots, k$. Without loss of generality, suppose c_{1} is an atom. Then we observe that, $k \leq 4$. Suppose $k \geq 5$. Then we will have c_{1}, c_{3}, c_{5} are three atoms, a contradiction to the fact that L has at most two atoms. Hence, the cycle is $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$. Further observe that $c_{1}, c_{3} \leq c_{2}$ and hence $c_{1} \vee c_{3} \leq c_{2}$. As $\ell(L)=3$ and $0_{L} \prec c_{1}<c_{1} \vee c_{3} \leq c_{2} \prec 1_{L}$, we have $c_{1} \vee c_{3}=c_{2}$. Similarly, $c_{1} \vee c_{3}=c_{4}$. This implies that $c_{2}=c_{4}$, a contradiction. Thus, $\operatorname{Com}(L)$ does not contain a cycle. On similar lines, we can prove that if L has at most two dual atoms, then $\operatorname{Com}(L)$ does not contain any cycle.

Lemma 6.2. If L is a lattice of length 3 with at least three atoms, then $\operatorname{Com}(L)$, does not contain a 4-cycle as well as a cycle of odd length.

Proof. Suppose that $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$ is a 4 -cycle in $\operatorname{Com}(L)$. Using the arguments as in Lemma 6.1, we can say that $\operatorname{Com}(L)$ does not contain a 4-cycle.

Now, suppose we have a cycle of odd length $c_{1}-c_{2}-c_{3}-\cdots-c_{2 k}-c_{2 k+1}-c_{1}$ in $\operatorname{Com}(L)$. Without loss of generality, suppose that c_{1} is an atom. Arguing as above, we have $c_{2 k+1}$ as an atom. Since c_{1} and $c_{2 k+1}$ both are atoms in L, a contradiction, as they can not be adjacent in $\operatorname{Com}(L)$. Thus, $\operatorname{Com}(L)$ does not contain a cycle of odd length.

Remark 6.3. From Lemma 6.2, it is clear that, if $\ell(L)=3$, then $\operatorname{girth}(G(L)) \geq 2 k$ for some $k \geq 3$. Consider a lattice L depicted in the adjacent figure. Clearly, $\operatorname{Com}(L)$ contains a 10 -cycle. Moreover, there exists a lattice of length 3 containing a $2 k$-cycle, where $k \geq 3$.

Lemma 6.4. If $C o m(L)$ contains a cycle of odd length, then it contains a triangle.
Proof. Suppose that we have a cycle of odd length $c_{1}-c_{2}-c_{3}-\cdots-c_{2 k}-c_{2 k+1}-c_{1}$ in $\operatorname{Com}(L)$. Since $c_{1} \sim c_{2}$, either $c_{1}<c_{2}$ or $c_{1}>c_{2}$. Without loss of generality, assume that $c_{1}<c_{2}$. If $c_{2}<c_{3}$, then c_{1}, c_{2}, c_{3} forms a triangle. Let $c_{2}>c_{3}$. Again if $c_{3}>c_{4}$, then c_{2}, c_{3}, c_{4} forms a triangle. Therefore, on similar arguments, we have $c_{3}<c_{4}, c_{4}>c_{5}$ and so on. And lastly we have $c_{2 k}>c_{2 k+1}$. Now, if $c_{1}<c_{2 k+1}$, then $c_{1}, c_{2 k}, c_{2 k+1}$ forms a triangle and if $c_{1}>c_{2 k+1}$, then $c_{1}, c_{2}, c_{2 k+1}$ forms a triangle.

Thus, if $\operatorname{Com}(L)$ contains a cycle of odd length, then it must contain a triangle.
Lemma 6.5. Let L be a lattice. If Com (L) contains a 4-cycle, then it contains a triangle.
Proof. Suppose that $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$ is 4-cycle in $\operatorname{Com}(L)$. Since $c_{1} \sim c_{2}$, without loss of generality, assume that $c_{1}<c_{2}$. If $c_{2}<c_{3}$, then $c_{1}<c_{2}<c_{3}$, and we get a triangle. Let $c_{2}>c_{3}$. If $c_{3}>c_{4}$, then $c_{2}>c_{3}>c_{4}$ and again, we get a triangle. Let $c_{3}<c_{4}$. If $c_{4}<c_{1}$, then $c_{3}<c_{4}<c_{1}$ gives a triangle. Let $c_{4}>c_{1}$.

So far we have $c_{1}<c_{2}, c_{2}>c_{3}, c_{3}<c_{4}$ and $c_{4}>c_{1}$. Clearly, $c_{1} \leq c_{1} \vee c_{3} \leq c_{2}$ and $c_{3} \leq c_{1} \vee c_{3} \leq c_{2}$. If $c_{1}=c_{1} \vee c_{3}$ or $c_{3}=c_{1} \vee c_{3}$, then $c_{1} \sim c_{3}$ and we get a triangle. Let $c_{1} \neq c_{1} \vee c_{3}$ and $c_{3} \neq c_{1} \vee c_{3}$. This gives $c_{1}<c_{1} \vee c_{3} \leq c_{2}$ and $c_{3}<c_{1} \vee c_{3} \leq c_{2}$. Similarly, we get $c_{1}<c_{1} \vee c_{3} \leq c_{4}$ and $c_{1}<c_{1} \vee c_{3} \leq c_{4}$. If $c_{1} \vee c_{3}=c_{2}$, then $c_{1}<c_{2}<c_{4}$ and also if $c_{1} \vee c_{3}=c_{4}$, then $c_{1}<c_{4}<c_{2}$. Let $c_{1} \vee c_{3} \neq c_{2}$ and $c_{1} \vee c_{3} \neq c_{4}$. Then $c_{1}<c_{1} \vee c_{3}<c_{2}$ gives a triangle. Thus, $\operatorname{Com}(L)$ contains a triangle.

Corollary 6.6 ([4, Lemma 4.2]). If $\operatorname{dim}(V)=3$, then $\operatorname{In}(V)$ does not contain any cycle of length 3, 4 or 5.

Proof. In $L(V)$, the dimension of V is the length of that lattice. As $\operatorname{dim}(V)=3, \ell(L(V))=3$. Since $L(V)$ is an atomistic lattice and $\ell(L(V))=3$, over any field, finite or infinite, the number of atoms in $L(V)$ is at least 3. Hence, the result follows from Lemma 6.2.

Corollary 6.7 ([1, Lemma 2][8, Proposition 2.6]). Let M be a ring (R-module). If In(M) has a cycle of length 4 or 5 , then $\operatorname{In}(M)$ has a triangle.

Theorem 6.8. If L is a 0-modular lattice, then $\operatorname{girth}(\operatorname{Com}(L))=3$ if $\ell(L)>3$; otherwise 6 or ∞.

Proof. Let L be a 0-modular lattice. We consider the following cases.
Case(1): Assume that, $\ell(L)>3$. Clearly, there exists a chain of length 3 of non-zero, nonunit elements of L, which yields a cycle of length 3 in $\operatorname{Com}(L)$. Thus, in this case $\operatorname{girth}(G(L))=$ 3.

Case(2): Assume that, $\ell(L)=3$. From Lemma 6.1, it is clear that if L has at most two atoms or at most two dual atoms, then $\operatorname{Com}(L)$ does not contain a cycle. In such cases, $\operatorname{girth}(G(L))=$ ∞. Suppose that L has at least three atoms and at least three dual atoms. By Lemma 6.2, $\operatorname{Com}(L)$ does not contain cycles of length 3, 4 and 5. Therefore, it is clear that $\operatorname{girth}(G(L)) \geq 6$.

Since $\ell(L)=3$, each vertex in $\operatorname{Com}(L)$ is either an atom or a dual atom. Let a_{1}, a_{2} and a_{3} be any three atoms in L.

Suppose that $a_{1} \vee a_{2}, a_{1} \vee a_{3}, a_{2} \vee a_{3}$ all are distinct.
If at least one of them is equal to 1_{L}, then we get N_{5} as a sublattice, a contradiction to 0 -modularity.

Therefore, $a_{1} \vee a_{2}, a_{1} \vee a_{3}$ and $a_{2} \vee a_{3}$ are distinct dual atoms in L. Hence $a_{1} \sim a_{1} \vee a_{2} \sim a_{2} \sim$ $a_{2} \vee a_{3} \sim a_{3} \sim a_{1} \vee a_{3} \sim a_{1}$ is a 6-cycle and we are done.

Now, suppose that $a_{1} \vee a_{2}=a_{1} \vee a_{3}$. Since $a_{2}<a_{1} \vee a_{2}$ and $a_{3}<a_{1} \vee a_{3}$, we have $a_{2} \vee a_{3} \leq a_{1} \vee a_{3}$. As $\ell(L)=3$, the chain $0_{L} \prec a_{2}<a_{2} \vee a_{3} \leq a_{1} \vee a_{3} \prec 1_{L}$ has the length at most 3. Clearly, $a_{2} \vee a_{3}=a_{1} \vee a_{3}$. Using similar arguments, we can show that $a_{1} \vee a_{2} \vee a_{3}=a_{1} \vee a_{2}=a_{2} \vee a_{3}$. As L contains at least three dual atoms, a dual atom, say c, exists, such that $c \neq a_{1} \vee a_{2} \vee a_{3}$.

If $c \| a$ for all atoms a contained in $a_{1} \vee a_{2} \vee a_{3}$, then $\left\{0_{L}, a, a_{1} \vee a_{2} \vee a_{3}, c, 1_{L}\right\}$ forms a sublattice isomorphic to N_{5} containing 0_{L}, a contradiction. Therefore, without loss of generality, assume that $a_{1}<c$.

We claim that if every dual atom other than $a_{1} \vee a_{2} \vee a_{3}$ contains exactly one atom, then in such cases, we get a sublattice isomorphic to N_{5} consisting of two dual atom and an atom below any one of the dual atom. This contradicts 0 -modularity. Thus, this case does not arise.

So, there exists an atom a^{\prime} (say) below c. Then as $\ell(L)=3$ and $a_{1}<c$, we have $c=a_{1} \vee a^{\prime}$.
Now assume that if $a^{\prime} \sim a_{1} \vee a_{2} \vee a_{3}$, then we can easily get $c=a_{1} \vee a_{2} \vee a_{3}$, a contradiction.
Hence, $a^{\prime} \| a_{1} \vee a_{2} \vee a_{3}$. Clearly, $a^{\prime} \vee a_{2} \neq c$ and $a^{\prime} \vee a_{2} \neq a_{1} \vee a_{2} \vee a_{3}$, otherwise, we get $c=a_{1} \vee a_{2} \vee a_{3}$, a contradiction. Thus, it gives $a^{\prime} \sim a^{\prime} \vee a_{2} \sim a_{2} \sim a_{1} \vee a_{2} \vee a_{3} \sim a_{1} \sim c \sim a^{\prime}$ a 6 -cycle. Thus, $\operatorname{girth}(G(L))=6$, when $\ell(L)=3$.

Case(3): Assume that, $\ell(L)<3$. Clearly, $\operatorname{Com}(L)$ will be empty or edgeless, as L is of length either 1 or 2 . Therefore, we can say $\operatorname{girth}(G(L))=\infty$.

Theorem 6.9. Let L be a lattice and $\ell(L)=3$. Then $\operatorname{girth}(\operatorname{Com}(L))=6$ if and only if L contains a sublattice isomorphic to 2^{3} (Boolean lattice with three atoms).

Proof. Since $\ell(L)=3$, each vertex in $\operatorname{Com}(L)$ is either an atom or a dual atom.
$\operatorname{Part}(\mathbf{A}):$ Suppose that $\operatorname{girth}(\operatorname{Com}(L))=6$. Therefore, there exist a smallest 6-cycle $a_{1}-$ $b_{1}-a_{2}-b_{2}-a_{3}-b_{3}-a_{1}$ in $\operatorname{Com}(L)$. Clearly, all a_{i} 's and b_{j} 's are distinct. Without loss of generality, assume that a_{1} is an atom. Hence b_{1} is a dual atom. Also, a_{2}, a_{3} are atoms and b_{2}, b_{3} are dual atoms. Clearly, $a_{1}<b_{1}$ and $a_{2}<b_{1}$ and hence $a_{1} \vee a_{2} \leq b_{1}$. Then we have a chain $0_{L} \prec a_{1}<a_{1} \vee a_{2} \leq b_{1} \prec 1_{L}$. However, $\ell(L)=3$ gives $a_{1} \vee a_{2}=b_{1}$. On the similar lines, we get $a_{2} \vee a_{3}=b_{2}$ and $a_{1} \vee a_{3}=b_{3}$. If $a_{1} \vee a_{2}=a_{1} \vee a_{2} \vee a_{3}$, then we get $a_{3} \leq a_{1} \vee a_{2}=b_{1}$, a contradiction. Hence, we have $a_{1} \vee a_{2}<a_{1} \vee a_{2} \vee a_{3}$. This together with $\ell(L)=3$ gives $a_{1} \vee a_{2} \vee a_{3}=1_{L}$. Also, we have $a_{1}<b_{1}$ and $a_{1}<b_{3}$ which gives $a_{1} \leq b_{1} \wedge b_{3}$. Since $\ell(L)=3$, the chain $0_{L} \prec a_{1} \leq b_{1} \wedge b_{3}<b_{1} \prec 1_{L}$ gives $a_{1}=b_{1} \wedge b_{3}$. On the similar lines, we get $a_{2}=b_{1} \wedge b_{2}$, $a_{3}=b_{2} \wedge b_{3}$ and $0_{L}=b_{1} \wedge b_{2} \wedge b_{3}$. Thus, $\left\{0_{L}, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{1}, 1_{L}\right\}$ forms a sublattice isomorphic to 2^{3}.
$\operatorname{Part}(\mathbf{B}):$ Suppose that L contains a sublattice isomorphic to $\mathbf{2}^{3}$. Since $\ell\left(\mathbf{2}^{3}\right)=3=\ell(L)$, the sublattice contains 0_{L} and 1_{L} and hence induces a 6-cycle in $\operatorname{Com}(L)$. Thus, the result follows from Lemma 6.2.

Lemma 6.10. Let V be a vector space. If $\operatorname{dim}(V)=3$, then $L(V)$ contains 2^{3} as a sublattice.
Proof. Since $\operatorname{dim}(V)=3$, it has a basis containing three vectors and $\ell(L(V))=3$. Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be a basis. By Lemma 3.11, it is clear that $\left\langle w_{1}\right\rangle,\left\langle w_{2}\right\rangle,\left\langle w_{3}\right\rangle$ are atoms and $\left\langle w_{1}, w_{2}\right\rangle,\left\langle w_{2}, w_{3}\right\rangle,\left\langle w_{1}, w_{3}\right\rangle$ are dual atoms in $L(V)$. Thus, $\left\{\left\{0_{L(V)}\right\},\left\langle w_{1}\right\rangle,\left\langle w_{2}\right\rangle\right.$ $\left.,\left\langle w_{3}\right\rangle,\left\langle w_{1}, w_{2}\right\rangle,\left\langle w_{2}, w_{3}\right\rangle,\left\langle w_{1}, w_{3}\right\rangle, V\right\}$ forms a sublattice isomorphic to $\mathbf{2}^{3}$.

Corollary 6.11 ([4, Theorem 4.2]). If V be an n-dimensional vector space, then
$\operatorname{girth}(\operatorname{In}(V))= \begin{cases}3, & \text { if } n>3 ; \\ 6, & \text { if } n=3 ; \\ \infty, & \text { if } n<3 .\end{cases}$
Proof. Follows from Theorem 6.8, Theorem 6.9 and Lemma 6.10.
Corollary 6.12 ([8, Proposition 2.8]). Let M be an R-module. Then $\operatorname{girth}(\operatorname{In}(M)) \in\{3,6, \infty\}$.
Corollary 6.13 ([1, Theorem 5][2, Theorem 3.5]). Let R be a ring (semigroup). Then girth $(\operatorname{In}(R)) \in$ $\{3,6, \infty\}$.

Theorem 6.14. Let L be a graded lattice. If $\ell(L)>3$, then $\operatorname{Com}(L)$ is hyper-triangulated and hence triangulated.

Proof. Let $a-b$ be an edge in $\operatorname{Com}(L)$. Clearly, a and b are non-zero, non-unit elements of L. Since L is graded and $\ell(L) \geq 4$, there exists a maximal chain containing $0_{L}, a, b, 1_{L}$ of length at least 4. So, there is a non-zero, non-unit element c such that $c \sim a$ and $c \sim b$. Thus, a, b and c forms a triangle in $\operatorname{Com}(L)$.

Corollary 6.15 ([4, Theorem 4.3]). If $\operatorname{dim}(V) \geq 4$, then $\operatorname{In}(V)$ is triangulated.

7 Conclusions

In this paper, we have studied the comparability graph of a lattice and discussed some basic properties such as connectedness, diameter, girth, triangulation, etc. Using this result, we unified many more results of the inclusion graphs of algebraic structures. It is easy to observe that if lattices are isomorphic, then the corresponding comparability graphs are isomorphic. However, the converse need not be true. Hence, finding the class of lattices in which the converse is true will be an interesting problem. Furthermore, some known results are available for other graphs, such as cover graphs, zero-divisor graphs, etc. In the future, we will be interested in this Isomorphism Problem for comparability graphs.

Acknowledgments: The authors are thankful to the referee for his/her remarks which improved the presentation of the paper.

The first author is financially supported by the Council of Scientific and Industrial Research, New Delhi, via Senior Research Fellowship Award Letter No. 09/137(0625)/2020-EMR-I.

References

[1] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat, The inclusion ideal graph of rings, Electron. Notes Discrete Math., 45, 73-78, (2014).
[2] B. Baloda and J. Kumar, On the inclusion ideal graph of semigroups, Algebra Colloquium (to appear).
[3] G. Birkhoff, Lattice Theory, Third edition, American Mathematical Society Colloquium Publication, (1973).
[4] A. Das, Subspace inclusion graph of a vector space, Commun. Algebra, 44(11), 4724-4731, (2016).
[5] A. Das, On subspace inclusion graph of a vector space, Linear Multilinear Algebra, 66(3), 554-564, (2018).
[6] P. Devi and R. Rajkumar, Inclusion graph of subgroups of a group, arXiv preprint arXiv:1604.08259, (2016).
[7] R. P. Dilworth, Lattices with unique irreducible decompositions, Ann. of Math., 41, 771-777, (1940).
[8] J. Goswami, Submodule inclusion graph of a module, Adv. Math. Sci. J., 11, 9877-9886, (2020).
[9] G. Grätzer, General Lattice Theory, Birkhauser Verlag, Basel and Stuttgart, (1978).
[10] N. Jacobson, Lectures in Abstract Algebra, Linear Algebra Princeton, 2, (1964)
[11] F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer-Verlag New York Heidelberg Berlin, (1970).
[12] M. Stern, On the covering graph of balanced lattices, Discrete Math., 156, 311-316, (1996).
[13] M. Ward, A characterization of Dedekind structures, Bull. Amer. Math. Soc., 45, 448-451, (1939).
[14] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, (2001).

Author information

Rahul Jejurkar and Vinayak Joshi, Department of Mathematics, Savitribai Phule Pune University, Pune-411007, INDIA.
E-mail: rahuljejurkar111@gmail.com, vvjoshi@unipune.ac.in, vinayakjoshi111@yahoo.com

```
Received: 2022-03-29
Accepted: 2023-11-04
```

