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Abstract: The covering graphs and the comparability graphs of ordered sets have received
a lot of attention. In this paper, we study the comparability graph of lattices. We discuss the
basic properties of the comparability graphs, such as connectedness, diameter, girth, etc. We
also use these results to unify many results of the inclusion graph of algebraic structures like
vector spaces, modules, rings, semigroups, etc.

1 Introduction

The covering graphs Cov(P ) and the comparability graphs Com(P ) are widely studied graphs
associated with a poset P . Note that the covering graph Cov(P ) and the comparability graph
Com(P ) do not determine the poset P up to isomorphism. However, on the other hand, there
are some special classes of posets (e.g., modular lattices) whose covering graph Cov(P ) still
contains important information about the poset P . In [13], Ward proved that a modular lattice
of finite length is distributive if and only if its covering graph contains no subgraph isomorphic
to K2,3 (the covering graph of M3). Further, Dilworth [7] proved that the covering graph of
a modular lattice of finite length and of breadth n contains a subgraph isomorphic to the n-
dimensional hypercube, i.e., 2n.

In general, a comparability graph is a simple unoriented graph, and two vertices are adjacent
if and only if they are comparable with respect to some partial order on its vertices.

Recently, there has been an ever-growing interest in the graph associated with algebraic struc-
tures, for example, zero-divisor graphs of rings and ordered sets, ideal intersection graphs of
rings, ideal inclusion graphs of rings (semigroups), etc. A generic definition of an inclusion
graph can be done as follows. Let X be an algebraic structure. Then, the inclusion graphs of
substructures of X are denoted by In(X), where the vertex set is the collection of all nontrivial
substructures of X , and two substructures M and N are adjacent if and only if either M ⊆ N
or N ⊆ M . The following are examples of the inclusion graphs associated with the various
algebraic structures.

(i) The subspace inclusion graph In(V ) of a finite-dimensional vector space V (see [5]).

(ii) The submodule inclusion graph In(M) of a module M (see [8]) .

(iii) The ideal inclusion graph In(R) of a ring R (see [1]).

(iv) The ideal inclusion graph In(S) of a semigroup S (see [2]).

(v) The subgroup inclusion graph In(G) of a group G (see [6]).

We have noted that there is a unifying pattern in the results of the inclusion graph of sub-
structures of algebraic structures (cf. [1, Theorem 1], [4, Theorem 4.1], [8, Proposition 2.5]).
Furthermore, we observe that the comparability graph of the lattice of substructures of an alge-
braic structure is a tool for studying these graphs. Hence, it is necessary to know the properties
of the lattice of substructures of an algebraic structure. In the Remark 1.1, we have listed the
known properties.

Remark 1.1. (i) If V is a finite-dimensional vector space over a field F , then the lattice L(V )
of subspaces of V is bounded, modular, atomistic, dual atomistic, complemented and self-
dual.
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(ii) The lattice L(M) of submodules of a module M is a bounded, modular lattice.

(iii) The lattice L(R) of left ideals of a ring R is a bounded, modular lattice.

(iv) The lattice L(S) of ideals of a semigroup S is a bounded, distributive lattice.

(v) The lattice L(G) of subgroups of a group G is a bounded lattice. If G is abelian, then L(G)
is a bounded, modular lattice.

We, now quote the formal definition of the comparability graph.

Definition 1.2. Let L be a bounded lattice. The comparability graph of L is an undirected, simple
graph denoted by Com(L), where the vertex set is L ∖ {0L,1L} and two vertices a and b are
adjacent if and only if a and b are comparable, i.e., a < b or b < a.

From the definitions of the comparability graph and the inclusion graph, we have the follow-
ing remark.

Remark 1.3. (i) If V is a finite dimensional vector space over the field F , then the subspace
inclusion graph In(V ) is the comparability graph of the lattice L(V ) of subspaces of V ,
i.e., In(V ) = Com(L(V )).

(ii) The submodule inclusion graph In(M) of a module M is the comparability graph of the
lattice L(M) of submodules of M , i.e., In(M) = Com(L(M)).

(iii) The inclusion ideal graph In(R) of a ring (semigroup) R is the comparability graph of the
lattice L(R) of ideals of R, i.e., In(R) = Com(L(R)).

(iv) The inclusion graph I(G) of subgroups of a group G is the comparability graph of the
lattice L(G) of subgroups of G, i.e., In(G) = Com(L(G)).

2 Preliminaries

Let (L;≤) be a lattice. The least element and greatest element (if they exist) will be denoted by
0L and 1L, respectively. A subset L′ of L is said to be a sublattice of L if it satisfies the property
that a, b ∈ L′ implies that a ∨ b, a ∧ b ∈ L′ with the ∨ and the ∧ of L′ are restrictions to L′ of the
∨ and the ∧ of L. A lattice L is said to be bounded if it has both 0L and 1L. A 0-1-sublattice
of a bounded lattice L is a sublattice containing the 0L and 1L of L. If two elements a, b are
incomparable, we denote it by a∥b. If any two elements in L are comparable, then L is said to
be a chain. Cn denotes a chain with n elements, and the length of Cn is n − 1. If L has 0L and
every chain in L is finite, then the height h(a) of an element a ∈ L is the maximum length of
a maximal chain from 0L to a. The length of L, denoted by ℓ(L), is defined as the maximum
length of a maximal chain in L. If L has 1L, then ℓ(L) = h(1L).

For x, y ∈ L we write y � x (y is covered by x or x covers y) if y < x and y < z ≤ x implies
that x = z. A sublattice L′ of L is said to a cover preserving sublattice if it satisfies the property
that a � b in L if and only if a � b in L′ for any a, b ∈ L′.

ad

b

1L

c

0L
Fig.1 Cover preserving

0-1-sublattice N5

Example 2.1. Consider the lattice L depicted in the adjacent
figure. Clearly, L′ = {0L, a, b, c,1L} is a cover preserving 0-1-
sublattice of L whereas L′′ = {0L, c, d,1L} is a sublattice of L,
in fact, a 0-1-sublattice of L but not a cover preserving. The
lattice L′ is isomorphic to a nonmodular lattice N5.

An element a of a bounded lattice L is an atom if 0L � a, and it is a dual atom if a � 1L. A
bounded lattice L is called atomic if for every non-zero element b, there exists an atom a ∈ L
such that a ≤ b. A bounded lattice L is called dual atomic if for every non-unit element b, there
exists a dual atom a ∈ L such that b ≤ a. An atomic lattice L is called atomistic if every non-zero
element is a join of atoms contained in it, and it is called dual atomistic if every non-unit element
is a meet of dual atoms above it.
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Let (L,≤) be a lattice with a partial order ≤. Then the dual lattice (L,≥) of L is the lattice,
where the partial order ≥ is defined as x ≥ y if and only if x ≤ y in L for x, y ∈ L. The dual lattice
of L is denoted by L∗. A lattice is said to be self-dual if L ≅ L∗.

A lattice is called upper semimodular if and only if it satisfies the upper covering condition,
i.e., a� b implies that a∨ c� b∨ c or a∨ c = b∨ c. The upper semimodular lattices are also known
as semimodular lattices. The dual notion of upper semimodular lattice is lower semimodular
lattice. A lattice L is called modular, if for a, b, c ∈ L, c ∨ (a ∧ b) = (c ∨ a) ∧ b for all c ≤ b.
Clearly, a modular lattice is upper semimodular as well as lower semimodular. A lattice L is said
to be distributive if it satisfies a∧(b∨ c) = (a∧ b)∨(a∧ c) or a∨(b∧ c) = (a∨ b)∧(a∨ c) for all
a, b, c ∈ L. In a bounded lattice L, an element a is a complement of an element b if a∨ b = 1L and
a ∧ b = 0L and the lattice L is said to be complemented if every element in L has a complement.
A Boolean lattice is a lattice that is complemented and distributive. Any undefined concepts
related to lattice theory can be found in [3], [9], [12].

Let G be a graph with the vertex set V (G) and the edge set E(G). A graph G is an edgeless
graph if E(G) is empty. A simple graph has no loops and multiple edges. A graph H is said
to be a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If all the vertices of
G are pairwise adjacent, then G is said to be complete. Two graphs G1 and G2 are said to be
isomorphic if there exists a bijective map, ϕ, from V (G1) to V (G2) such that (u, v) ∈ E(G1)
if and only if (ϕ(u), ϕ(v)) ∈ E(G2), for any u, v ∈ V (G1). A finite graph G is a path if its
vertices can be ordered so that two vertices are adjacent if and only if they are consecutive in the
list and its length is the number of edges in it. A path G is a cycle if its initial and end vertices
coincide. A graph G is said to be triangulated (hyper-triangulated) if each vertex (edge) of G
is a vertex (edge) of a triangle. A graph G is connected if each pair of vertices in G belongs to
a path; otherwise, G is disconnected. If G is a connected graph, then the distance between two
vertices u, v ∈ V (G), denoted by d(u, v), is defined as the length of a shortest path joining u and
v; otherwise, it is infinity. The diameter of G is the maximum number in the set of distances
between the pairs of vertices of G. The girth of a graph G is the length of a shortest cycle if it
exists; otherwise, it is infinity. Any undefined concepts related to graph theory can be found in
[14].

Throughout the paper, L is a bounded lattice.

3 Basic results

In this section, we quote a few immediate results from the definitions.

Remark 3.1. (i) Com(L) is a complete graph if and only if L is a chain.

(ii) If L is a lattice, then there is a one-to-one correspondence between (maximal) chains in
L ∖ {0L,1L} and (maximal) cliques in Com(L).

(iii) If L is an atomistic lattice of length at least 2, then Com(L) is not a complete graph.

The following corollary is immediate from Remark 3.1 and Remark 1.1.

Corollary 3.2 ([4, Corollary 3.3]). The subspace inclusion graph In(V ) of a vector space V is
not complete for dim(V ) ≥ 2.

Lemma 3.3. If L1 is a sublattice of a lattice L, then Com(L1) is an induced subgraph of
Com(L).

Remark 3.4. The converse of Lemma 3.3 is not generally true.

Lemma 3.5. Let V be a vector space. If W is a subspace of V with a dimension greater than 1,
then the lattice L(W ) of subspaces of W is a sublattice of L(V ).

Corollary 3.6 ([4, Theorem 3.1]). If V is a vector space over a field F and W is a subspace of
V with a dimension greater than 1, then In(W ) is a subgraph of In(V ).

Corollary 3.7 ([8, Proposition 2.1]). Let M be an R-module. If K is a submodule of M , then
In(K) is a subgraph of In(M).
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Corollary 3.8 ([4, Theorem 3.1]). If G is a group and N is a subgroup of G, then In(N) is a
subgraph of In(G).

Lemma 3.9. Let L be a lattice and a, b ∈ L such that h(a) = h(b) = k <∞. Then a and b are not
adjacent in Com(L).

Proof. Let a, b ∈ L such that h(a) = h(b) = k < ∞. Assume that a and b are comparable.
Without loss of generality, let a < b. Since h(a) = k, there exists a maximal chain, 0L � a1 � a2 �
⋯ � ak = a. Also, a < b implies that there is a maximal chain a � ak+1 �⋯ � am = b. Clearly,
0L�a1 �a2 �⋯�ak(= a)�ak+1 �⋯�am = b is a chain from 0L to b. This gives k = h(b) ≥m > k,
a contradiction. Thus, a and b are incomparable and are not adjacent in Com(L).

Remark 3.10. In the case of graded lattices, all maximal chains between any two elements are of
the same length. Hence, in the above proof, the inequality h(b) ≥m is equality, that is, h(b) =m.

Now, we relate the dimension of a subspace and the height of that subspace in the subspace
lattice. Note that the subspace lattice is modular; hence, the height function is well-defined.

Lemma 3.11. Let V be a vector space. If W is a subspace of V , then dim(W ) = h(W ) in L(V ).

Proof. Let V be a vector space and W be a subspace of V . Suppose that dim(W ) = k. Let
{w1, w2,⋯, wk} be a basis of W . Consider the subspace Wi generated by {w1, w2,⋯, wi} and
W0 is the subspace generated by 0. Clearly, we have a chain of subspaces Wi (i = 0,1,⋯, k) of
V such that W0 ⫋ W1 ⫋ W2 ⫋ ⋯ ⫋ Wk−1 ⫋ Wk and dim(Wi) = i, for i = 0,1,2,⋯, k. Clearly,
this is a maximal chain of length k in L(V ) from 0L(V ) to W . Since L(V ) is modular and hence
graded, we have h(W ) = k in L(V ). Thus, dim(W ) = h(W ) in L(V ).

Corollary 3.12 ([4, Lemma 3.1]). If W1 and W2 are two distinct subspaces of V of the same
dimension, then W1 and W2 are not adjacent in In(V ).

Proof. Follows from Lemma 3.11 and Lemma 3.9.

4 Connectedness of the comparability graphs

In this section, we study the connectedness of the comparability graph of lattices. In particular,
we study the comparability graph of 0-modular lattices, a general class than the class of modular
lattices and atomic lattices with the covering property. We need the following definitions and
results.

Definition 4.1 ([12, p. 133]). A lattice L with the least element 0L is said to be 0-modular if for
a, b, c ∈ L, we have a ≤ c and b ∧ c = 0L implies (a ∨ b) ∧ c = a.

Theorem 4.2 ([12, p. 134, Theorem 3.4.1]). A lattice L with 0 is 0-modular if and only if for
a, b, c ∈ L with a < c, b ∧ c = 0L, and b ∨ a = b ∨ c together imply a = c. In other words, L is
0-modular if and only if there exists in L no pentagon sublattice N5 (Fig. 1) containing the least
element 0L of L.

The Hasse diagrams of Mn and M∞ are shown below.

0L

1L

a1 a2 an

Mn

0L

1L

a1 a2 an

M∞

Theorem 4.3. Let L be a 0-modular lattice with at least two non-zero, non-unit elements. Then
the following statements are equivalent.



ON THE COMPARABILITY GRAPHS OF LATTICES 39

(i) Com(L) is a disconnected graph.

(ii) L ≅Mn or L ≅M∞.

(iii) Com(L) is an edgeless graph.

(iv) L contains a cover preserving 0-1-sublattice isomorphic to C2 × C2, where C2 is the two-
element chain.

Proof. (1) ⇒ (2): Suppose that Com(L) is a disconnected graph. So there exist two vertices
a and b that are not connected in Com(L). Clearly, a, b ∈ L ∖ {0L,1L} with a ∧ b = 0L and
a ∨ b = 1L. Otherwise, if a ∧ b ≠ 0 or a ∨ b ≠ 1L, then we get a path a ∼ a ∧ b ∼ b or a ∼ a ∨ b ∼ b
in Com(L), a contradiction. So a∥b in L.

First, we show that a and b are atoms in L. On the contrary, suppose that a is not an atom in
L. Let a1 < a for some a1 in L ∖ {0L}. If a1 ∧ b ≠ 0L, then we get a path a ∼ a1 ∼ a1 ∧ b ∼ b, a
contradiction. Thus, we have a1 ∧ b = 0L. Similarly, a1 ∨ b = 1L. Hence a1∥b in L. Thus, from
the above discussion, we conclude that {0L, a, a1, b,1L} forms a sublattice of L isomorphic to
N5 containing 0L, a contradiction to the fact that L is 0-modular. Hence a must be an atom. On
similar lines, we can show that b is an atom.

We show that a and b are dual atoms. On the contrary, suppose that a is not a dual atom in L.
Let a < a2 for some a2 in L such that a2 ≠ 1L. If a2∨b ≠ 1L, then we get a path a ∼ a2 ∼ a2∨b ∼ b,
a contradiction. Thus, we have a2 ∨ b = 1L. Similarly, a2 ∧ b = 0L. Hence a2∥b in L. Therefore,
from the above discussion, we conclude that {0L, a, a2, b,1L} forms a sublattice of L isomorphic
to N5 containing 0L, a contradiction to the fact that L is 0-modular. Hence a must be a dual atom.
Using similar arguments, we can show that b is a dual atom.

If there is no non-zero, non-unit element other than a, b, then we see that L ≅ M2. Thus, in
this case, we are through. Now, if c is any other non-zero, non-unit element of L ∖ {a, b}, then
we show that c is an atom that is also a dual atom.

On the contrary, suppose that c is not an atom of L. As a and b, both are atoms as well
as dual atoms; we have a ∨ c = 1L, a ∧ c = 0L, b ∨ c = 1L and b ∧ c = 0L, i.e., a∥c and b∥c.
Since c is not an atom, there exists c1 such that c1 < c and c1 ≠ 0L. Again, we have c1 ≁ a and
c1 ≁ b, as a and b both are atoms as well as dual atoms. Therefore a∥c1 and b∥c1. This gives
a ∨ c1 = 1L, a ∧ c1 = 0L, b ∨ c1 = 1L and b ∧ c1 = 0L. Thus, we conclude that {0L, c, c1, a,1L}
forms a sublattice isomorphic to N5 containing 0L, a contradiction to 0-modularity of L. Hence
c must be an atom. Using similar arguments, we can also show that c is a dual atom.

Thus, we observe that every non-zero, non-unit element in L is an atom, which is also a dual
atom of L. Hence if L is finite, then L ≅Mn and, if L is infinite, then L ≅M∞.
(2)⇒ (3): It is quite straightforward.
(3) ⇒ (4): Since L has at least two non-zero, non-unit elements, ∣V (G(L))∣ ≥ 2. Let a, b

be two vertices of Com(L). As Com(L) is an edgeless graph, a ≁ b and hence a ∨ b = 1L and
a ∧ b = 0L. If there exists a non-zero, non-unit element c (say) such that 0L < c < a, then a ∼ c,
i.e., there is an edge between a and c, a contradiction. Hence 0L�a. Using similar arguments, we
can show that 0L � b, a � 1L and b � 1L. This gives a cover preserving 0-1-sublattice isomorphic
to C2 ×C2.
(4)⇒ (1): Since L contains a cover preserving 0-1-sublattice isomorphic to C2 × C2, there

are at least two non-zero, non-unit elements a, b (say) in L such that 0L � a� 1L and 0L � b� 1L.
Clearly, a and b are not connected in Com(L), i.e., Com(L) is a disconnected graph.

Theorem 4.4 ([9, p. 59]). A modular lattice L is distributive if and only if it does not contain a
sublattice isomorphic to M3.

Definition 4.5 ([11, p. 31]). In a lattice with 0L, the following property is called the covering
property: If p is an atom and a ∧ p = 0L, then a � a ∨ p.

We can prove the following result using similar arguments as in Theorem 4.3. Note that every
atomic 0-modular lattice satisfies the covering property.

Theorem 4.6. Let L be an atomic lattice with at least two non-zero, non-unit elements. If L
satisfies the covering property, then the following statements are equivalent.

(i) Com(L) is a disconnected graph.
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(ii) L ≅Mn or L ≅M∞.

(iii) Com(L) is an edgeless graph.

(iv) L contains a cover preserving 0-1-sublattice isomorphic to C2 ×C2.

Proof. (1)⇒ (2): Since Com(L) is disconnected, there exists at least two vertices a and b such
that a and b are not connected in Com(L) . Clearly, a∧ b = 0L and a∨ b = 1L; otherwise, we get
a path a ∼ a ∧ b ∼ b or a ∼ a ∨ b ∼ b, a contradiction.

We show that L ≅Mn or L ≅M∞.
First, we show that a and b are atoms and dual atoms. Since L is atomic, there exists atoms

a1 and b1 such that a1 ≤ a and b1 ≤ b. Since a1 and b1 both are two distinct atoms, we have
a1 ∧ b1 = 0L. If a1 ∨ b1 ≠ 1L, then we get a path a ∼ a1 ∼ a1 ∨ b1 ∼ b1 ∼ b, a contradiction.
Thus, we must have a1 ∨ b1 = 1L. Now, as a1 is an atom and a1 ∧ b1 = 0L, by using the covering
property, we have b1 � a1 ∨ b1, i.e., b1 � 1L. Hence b1 is a dual atom of L, but b1 ≤ b. This implies
b1 = b. Thus, b is an atom as well as a dual atom of L. Similarly, we get a as an atom as well as
a dual atom of L.

If there is no non-zero, non-unit element other than a, b, then we see that L ≅ M2. Thus, in
this case, we are through.

Now, if c is any other non-zero, non-unit element of L∖{a, b}, then we show that c is an atom
and a dual atom. Clearly, c ≁ a and c ≁ b, i.e., a∨ c = b∨ c = 1L and a∧ c = b∧ c = 0L. As L is an
atomic lattice, an atom c1 exists, such as c1 ≤ c. Clearly, c1 ∧ a = 0L, as both are distinct atoms
and c1 ∨ a = 1L as a is a dual atom. Also, since a is an atom and a ∧ c1 = 0L, by the covering
property, we get c1 � a ∨ c1, i.e., c1 � 1L. This implies c1 is a dual atom, but c1 ≤ c, i.e., c1 = c.
This proves that c is an atom as well as a dual atom of L.

Thus, every non-zero, non-unit element of L is an atom as well as a dual atom of L. So if L
is finite, then L ≅Mn and, if L is infinite, then L ≅M∞.
(2)⇒ (3): is straightforward.
(3)⇒ (4): Since L has at least two non-zero, non-unit elements, ∣V (G(L))∣ ≥ 2. Let a, b be

two vertices of Com(L). As Com(L) is an edgeless graph, a ≁ b and a ∨ b = 1L and a ∧ b = 0L.
If there exists a non-zero, non-unit element c (say) such that 0L < c < a, then a ∼ c, i.e., there is
an edge between a and c, a contradiction. Hence 0L � a. Using similar arguments, we can show
that 0L � b, a � 1L and b � 1L. This gives a cover preserving sublattice containing 0L and 1L

isomorphic to C2 ×C2.
(4)⇒ (1): Since L contains a cover preserving sublattice containing 0L and 1L isomorphic

to C2 ×C2, there are at least two non-zero, non-unit elements a, b (say) in L such that 0L �a�1L

and 0L � b � 1L. Clearly, a and b are not connected in Com(L), i.e., Com(L) is a disconnected
graph.

The following remark follows from Theorem 4.3, which is also valid if the lattice is an atomic
lattice with the covering property.

Remark 4.7. Let L be a 0-modular lattice. Then, the following statements hold.

(i) If L has at least three non-zero, non-unit elements and Com(L) is disconnected, then L is
not distributive.

(ii) Com(L) is connected if and only if for any two atoms a, b and for any two dual atoms c, d
in L, we have, a ∨ b ≠ 1L and c ∧ d ≠ 0L.

Corollary 4.8 ([4, Corollary 3.2]). If dim(V ) = 2, then In(V ) is an edgeless graph.

Proof. As the lattice L(V ) of subspaces of a vector space V is a 0-modular lattice, and if
dim(V ) = 2, then L(V ) is isomorphic to Mn or M∞. Hence, by Theorem 4.3, In(V ) is an
edgeless graph.

Corollary 4.9 ([8, Proposition 2.5]). Let M be a R-module. Then In(M) is disconnected if and
only if M is a direct sum of two simple R-modules.
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Proof. Suppose that In(M) is disconnected, i.e., Com(L(M)) is disconnected. By Theorem
4.3, the lattice L(M) of submodules of M contains a cover preserving sublattice containing 0L

and 1L isomorphic to C2 ×C2. Hence there exists two non-trivial submodules M1 and M2 of M
such that M1⋂M2 = 0L(M) and M1 +M2 = M . Hence, we have M = M1⊕M2. The converse
follows again by Theorem 4.3 and the fact that M is a direct sum of two simple R-modules.

Theorem 4.10 ([10, p. 232]). Let D be a division ring and n be a positive integer number. Then
for every left ideal I of a matrix ring Mn(D) over D, there exists an invertible matrix P and
integer r, 0 ≤ r ≤ n, such that I = PHr(D)P−1, where Hr(D) denotes the left ideal of Mn(D)
containing all matrices whose jth column is zero, for every r < j ≤ n.

Theorem 4.11. If a ring R is isomorphic to any one of the following

(i) Mn1(D1) ×Mn2(D2) ×⋯ ×Mnk
(Dk), where k ≥ 2;

(ii) D1 ×D2 ×⋯ ×Dk, where k ≥ 3;

(iii) Mn(D), where n ≥ 3,

where D,D1,⋯,Dk are division rings and Mni
(Di) is a matrix ring, then L(R) ≇ Mn or

L(R) ≇M∞.

Proof. To prove the claim, it is enough to show that R has two nontrivial left ideals I1 and I2
such that I1 ⫋ I2. Let Hr(D) denotes the set of all left ideals of Mn(D) containing all matrices
whose jth column is zero, for every r < j ≤ n.

(1) If R ≅Mn1(D1)×Mn2(D2)×⋯×Mnk
(Dk), for k ≥ 2, then take I1 = H1(D1)×0×⋯×0

and I2 = H1(D1) ×H1(D2) × 0 ×⋯ × 0.
(2) If R ≅ D1×D2×⋯×Dk, for k ≥ 2, then take I1 = D1×0×⋯×0 and I2 = D1×D2×0×⋯×0.
(3) If R ≅Mn(D), then take I1 = H1(D) and I2 = H2(D).

Theorem 4.12. Wedderburn-Artin Theorem: Let R be any left semisimple ring. Then R =
Mn1(D1) × ⋯ ×Mnr

(Dr) for suitable division rings D1,⋯,Dr and positive integers n1,⋯, nr.
The number r is uniquely determined, as are the pairs {(n1,D1),⋯, (nr,Dr)} (up to a permu-
tation). There are exactly r mutually non-isomorphic left simple modules over R.

Corollary 4.13 ([1, Theorem 1]). Let R be a ring. Then In(R) is not connected if and only if
R ≅M2(D) or D1 ×D2, for some division rings D,D1,D2.

Proof. First, suppose that In(R) is not connected, i.e., Com(L(R)) is disconnected. By The-
orem 4.3, we have L(R) ≅ Mn or L(R) ≅ M∞, i.e., every nontrivial left ideal in R is minimal
as well as maximal left ideal of R. Hence for any two nontrivial left ideals I and J of R, we
have I⋂J = {0} and I + J = R. Thus, R is a semisimple ring. By Wedderburn–Artin Theorem,
R ≅ Mn1(D1) ×Mn2(D2) × ⋯ ×Mnk

(Dk), where D1,D2,⋯,Dk are division rings. Thus, by
Theorem 4.11 and as L(R) ≅Mn or L(R) ≅M∞, we must have R ≅M2(D) or D1 ×D2. Con-
versely, Suppose that R ≅M2(D) or D1 ×D2, for some division rings D,D1,D2. Theorem 4.10
shows that every non-zero left ideal is a minimal ideal of R. Thus, by Theorem 4.3, Com(L(R))
is disconnected.

Corollary 4.14 ([2, Theorem 3.1]). The graph In(S) of a semigroup S is disconnected if and
only if S contains at least two minimal left ideals, and every nontrivial left ideal of S is minimal
as well as maximal.

Corollary 4.15 ([2, Theorem 3.4]). The graph In(S) of a semigroup S is disconnected if and
only if S is the union of exactly two minimal left ideals.

5 Diameter of the comparability graphs

Theorem 5.1. Let L be a 0-modular lattice. If Com(L) is connected, then diam(Com(L)) ≤ 3.

Proof. Suppose that Com(L) is connected. Let a, b ∈ L ∖ {0L,1L}. We consider the following
cases.
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Case(1): If a and b are comparable, i.e., a ∼ b, then d(a, b) = 1
Case(2): Suppose that a∥b. If either a ∧ b ≠ 0L or a ∨ b ≠ 1L, then we get a path a ∼ a ∧ b ∼ b

or a ∼ a ∨ b ∼ b that gives d(a, b) = 2. Suppose that a ∧ b = 0L and a ∨ b = 1L. Since Com(L)
is connected, there exists c ∈ L ∖ {0L,1L} such that c ∼ a or c ∼ b. Without loss of generality,
assume that c ∼ a. If c ∼ b, then we get d(a, b) = 2. Suppose that c ≁ b, i.e., c∥b. If c ∧ b = 0L and
c ∨ b = 1L, then the set {0L, a, c, b,1L} will forms a sublattice isomorphic to N5 containing 0L,
a contradiction to the fact that L is 0-modular. Therefore, either c ∧ b ≠ 0L or c ∨ b ≠ 1L. Then
we have a path a ∼ c ∼ c ∧ b ∼ b or a ∼ c ∼ c ∨ b ∼ b. Hence d(a, b) ≤ 3. Thus, from all the above
cases, we get diam(G(L)) ≤ 3.

0L

a

b

1L

d

c

Example 5.2. The lattice depicted in the adjacent figure is a 0-modular
lattice. From the path, a ∼ b ∼ c ∼ d, we have d(a, b) = 3. Hence the
diameter of the corresponding comparability graph is 3. This shows that
the bound in Theorem 5.1 is sharp.

Theorem 5.3. Let L be an atomic lattice that satisfies the covering property. If Com(L) is
connected, then diam(Com(L)) ≤ 4.

Proof. Let Com(L) be a connected graph. We consider the following cases.
Case(1): If a ∼ b, then d(a, b) = 1.
Case(2): If a and b are not adjacent and a∧b ≠ 0L or a∨b ≠ 1L then we have either a ∼ a∧b ∼ b

or a ∼ a ∨ b ∼ b. Thus, in either case, d(a, b) = 2.
Case(c): If a and b are not adjacent and a∧ b = 0L and a∨ b = 1L. Since L is atomic, an atom

a1 exists, such as a1 ≤ a. If a1 ∧ b ≠ 0L, then a1 ≤ b, as a1 is an atom. So, a ∼ a1 ∼ b and hence
d(a, b) = 2. If a1 ∧ b = 0L, then as L satisfies the covering property, b�a1 ∨ b. If a1 ∨ b ≠ 1L, then
we get a path a ∼ a1 ∼ a1 ∨ b ∼ b and d(a, b) ≤ 3. If a1 ∨ b = 1L, then b will be a dual atom, as
b�a1∨b = 1L. Since L is atomic, consider an atom b1 such that b1 ≤ b. If a1 = b1, then d(a, b) ≤ 2,
as we have a path a ∼ a1 = b1 ∼ b. Let a1 ∧ b1 = 0L. Since a1 is an atom, using the covering
property, b1 � a1 ∨ b1. Now, if a1 ∨ b1 ≠ 1L, then we have a path a ∼ a1 ∼ a1 ∨ b1 ∼ b1 ∼ b and
d(a, b) ≤ 4. If a1 ∨ b1 = 1L, then by the covering property, both a1 and b1 are dual atoms. In this
case, a = a1 and b = b1. Thus {0L, a, b,1L} forms a cover preserving sublattice of L isomorphic
to C2 ×C2. Hence, Com(L) is not connected, a contradiction.

Thus, from the above cases, d(a, b) ≤ 4, for any a, b ∈ L ∖ {0L,1L}. Hence diam(G(L)) ≤
4.

0L

b

a
c

d

e

1L Example 5.4. The lattice depicted in the adjacent figure satisfies the cov-
ering property. From the path, a ∼ b ∼ c ∼ d ∼ e, we have d(a, e) = 4.
Hence the diameter of the corresponding comparability graph is 4. This
shows that the bound in Theorem 5.3 is sharp. Also, it is an example of
an atomic lattice that satisfies the covering property but is not 0-modular.

Corollary 5.5 ([4, Lemma 4.1]). If dim(V ) ≥ 3, then In(V ) is connected and diam(In(V )) ≤
3.

Proof. This follows from the fact that L(V ) is 0-modular and Theorem 5.1.

Corollary 5.6. If L is a complemented, 0-modular lattice of length at least 3 and Com(L) is
connected, then diam(Com(L)) = 3.

Proof. By Theorem 5.1, we have diam(G(L)) ≤ 3. Let a ∈ L∖{0L,1L}. Note that such a exists
as ℓ(L) ≥ 3. Since L is complemented, there exists b ∈ L ∖ {0L,1L} such that a ∧ b = 0L and
a ∨ b = 1L. Assume that either a or b is not an atom. Without loss of generality, assume that a
is not an atom. Then there exists c ∈ L ∖ {0L,1L} such that c < a, then by 0-modularity of L,
we get c = (c ∨ b) ∧ a. Clearly, c ∨ b ≠ 1L, otherwise c = a, a contradiction. Hence, we get a
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path a ∼ c ∼ c ∨ b ∼ b with c ∨ b ≠ b, as a ∧ b = 0L and c ≠ 0L. Thus in this case d(a, b) = 3 and
hence diam(Com(L)) = 3. Now, we can assume that a and b are atoms. Now, without loss of
generality, if there exists d ∉ {0L,1L} such that d > a, then d ∨ b = 1L, as a ∨ b = 1L. We claim
that d ∧ b ≠ 0L. Suppose d ∧ b = 0L. Then by 0-modularity, a = (a ∨ b) ∧ d = d, a contradiction.
Hence, d ∧ b ≠ 0L. Thus, we get a path a ∼ d ∼ d ∧ b ∼ b, which is a minimal path between a and
b. Hence, d(a, b) = 3. Thus diam(L) = 3.

Corollary 5.7. If L is an atomistic, dual atomic, 0-modular lattice of length at least 3 and
Com(L) is connected, then diam(Com(L)) = 3.

Proof. Since ℓ(L) ≥ 3 and L is dual atomic, a dual atom b ∈ L exists, which is not an atom.
Further, as b < 1L and L is an atomistic lattice, there exists an atom p ∈ L such that p < 1L and
p ≰ b. Since L is atomistic, there exists an atom q ∈ L such that q < b. So we have distinct atoms
p and q with p � p ∨ q and q � p ∨ q. By Remark 4.7, we have q ∨ p ≠ 1L. So we get a path
b ∼ q ∼ q ∨ p ∼ p. We claim that this path is a minimal path in Com(L). For this, if b ∼ c ∼ p,
then we have p < c and, b < c or c < b. The possibility c < b is not possible; otherwise, p < b,
a contradiction. Hence b < c. As c ≠ 1L, and b is a dual atom, we have b = c, a contradiction.
Hence, b ∼ q ∼ q ∨ p ∼ p is a minimal path. Therefore, d(b, p) = 3. Thus, we get the result by
Theorem 5.1.

Corollary 5.8 ([4, Theorem 4.1]). If dim(V ) ≥ 3, then diam(In(V )) = 3.

Corollary 5.9 ([8, Proposition 2.5]). If In(M) is connected graph, then diam(In(M)) ≤ 3.

Corollary 5.10 ([1, Theorem 1]). If In(R) is connected graph, then diam(In(R)) ≤ 3.

Corollary 5.11 ([2, Theorem 3.5]). If In(S) is a connected graph, then diam(In(S)) ≤ 3.

Corollary 5.12. If G is an abelian group and the graph Com(L(G)) is connected, then
diam(Com(L(G))) ≤ 3.

Proof. As G is abelian, the subgroup lattice L(G) is modular. By Theorem 5.1, we get the
result.

This shows that our result improves the following result.

Corollary 5.13 ([6, Theorem 2.11]). If G is a finite abelian group and I(G) be the subgroup
inclusion graph, then diam(I(G)) ∈ {1,2,3,4,∞}.

6 Girth of the comparability graphs

Lemma 6.1. If L is a lattice of length 3 with at most two atoms or dual atoms, then Com(L)
does not contain any cycle.

Proof. Let c1−c2−c3−⋯−ck −c1 be a cycle in Com(L). As ℓ(L) = 3, every non-zero, non-unit
element of L is either an atom or a dual atom of L, i.e., each ci is either an atom or a dual atom
for i = 1,2,3,⋯, k. Without loss of generality, suppose c1 is an atom. Then we observe that,
k ≤ 4. Suppose k ≥ 5. Then we will have c1, c3, c5 are three atoms, a contradiction to the fact
that L has at most two atoms. Hence, the cycle is c1 − c2 − c3 − c4 − c1. Further observe that
c1, c3 ≤ c2 and hence c1∨c3 ≤ c2. As ℓ(L) = 3 and 0L�c1 < c1∨c3 ≤ c2 �1L, we have c1∨c3 = c2.
Similarly, c1∨c3 = c4. This implies that c2 = c4, a contradiction. Thus, Com(L) does not contain
a cycle. On similar lines, we can prove that if L has at most two dual atoms, then Com(L) does
not contain any cycle.

Lemma 6.2. If L is a lattice of length 3 with at least three atoms, then Com(L), does not contain
a 4-cycle as well as a cycle of odd length.

Proof. Suppose that c1 − c2 − c3 − c4 − c1 is a 4-cycle in Com(L). Using the arguments as in
Lemma 6.1, we can say that Com(L) does not contain a 4-cycle.

Now, suppose we have a cycle of odd length c1 − c2 − c3 − ⋯ − c2k − c2k+1 − c1 in Com(L).
Without loss of generality, suppose that c1 is an atom. Arguing as above, we have c2k+1 as an
atom. Since c1 and c2k+1 both are atoms in L, a contradiction, as they can not be adjacent in
Com(L). Thus, Com(L) does not contain a cycle of odd length.
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Remark 6.3. From Lemma 6.2, it is clear that, if ℓ(L) = 3, then
girth(G(L)) ≥ 2k for some k ≥ 3. Consider a lattice L depicted in
the adjacent figure. Clearly, Com(L) contains a 10-cycle. More-
over, there exists a lattice of length 3 containing a 2k-cycle, where
k ≥ 3.

Lemma 6.4. If Com(L) contains a cycle of odd length, then it contains a triangle.

Proof. Suppose that we have a cycle of odd length c1 − c2 − c3 −⋯− c2k − c2k+1 − c1 in Com(L).
Since c1 ∼ c2, either c1 < c2 or c1 > c2. Without loss of generality, assume that c1 < c2. If
c2 < c3, then c1, c2, c3 forms a triangle. Let c2 > c3. Again if c3 > c4, then c2, c3, c4 forms a
triangle. Therefore, on similar arguments, we have c3 < c4, c4 > c5 and so on. And lastly we
have c2k > c2k+1. Now, if c1 < c2k+1, then c1, c2k, c2k+1 forms a triangle and if c1 > c2k+1, then
c1, c2, c2k+1 forms a triangle.

Thus, if Com(L) contains a cycle of odd length, then it must contain a triangle.

Lemma 6.5. Let L be a lattice. If Com(L) contains a 4-cycle, then it contains a triangle.

Proof. Suppose that c1 − c2 − c3 − c4 − c1 is 4-cycle in Com(L). Since c1 ∼ c2, without loss of
generality, assume that c1 < c2. If c2 < c3, then c1 < c2 < c3, and we get a triangle. Let c2 > c3. If
c3 > c4, then c2 > c3 > c4 and again, we get a triangle. Let c3 < c4. If c4 < c1, then c3 < c4 < c1
gives a triangle. Let c4 > c1.

So far we have c1 < c2, c2 > c3, c3 < c4 and c4 > c1. Clearly, c1 ≤ c1 ∨ c3 ≤ c2 and
c3 ≤ c1 ∨ c3 ≤ c2. If c1 = c1 ∨ c3 or c3 = c1 ∨ c3, then c1 ∼ c3 and we get a triangle. Let c1 ≠ c1 ∨ c3
and c3 ≠ c1∨c3. This gives c1 < c1∨c3 ≤ c2 and c3 < c1∨c3 ≤ c2. Similarly, we get c1 < c1∨c3 ≤ c4
and c1 < c1 ∨ c3 ≤ c4. If c1 ∨ c3 = c2, then c1 < c2 < c4 and also if c1 ∨ c3 = c4, then c1 < c4 < c2.
Let c1 ∨ c3 ≠ c2 and c1 ∨ c3 ≠ c4. Then c1 < c1 ∨ c3 < c2 gives a triangle. Thus, Com(L) contains
a triangle.

Corollary 6.6 ([4, Lemma 4.2]). If dim(V ) = 3, then In(V ) does not contain any cycle of
length 3, 4 or 5.

Proof. In L(V ), the dimension of V is the length of that lattice. As dim(V ) = 3, ℓ(L(V )) = 3.
Since L(V ) is an atomistic lattice and ℓ(L(V )) = 3, over any field, finite or infinite, the number
of atoms in L(V ) is at least 3. Hence, the result follows from Lemma 6.2.

Corollary 6.7 ([1, Lemma 2][8, Proposition 2.6]). Let M be a ring (R-module). If In(M) has a
cycle of length 4 or 5, then In(M) has a triangle.

Theorem 6.8. If L is a 0-modular lattice, then girth(Com(L)) = 3 if ℓ(L) > 3; otherwise 6 or
∞.

Proof. Let L be a 0-modular lattice. We consider the following cases.
Case(1): Assume that, ℓ(L) > 3. Clearly, there exists a chain of length 3 of non-zero, non-

unit elements of L, which yields a cycle of length 3 in Com(L). Thus, in this case girth(G(L)) =
3.

Case(2): Assume that, ℓ(L) = 3. From Lemma 6.1, it is clear that if L has at most two atoms
or at most two dual atoms, then Com(L) does not contain a cycle. In such cases, girth(G(L)) =
∞. Suppose that L has at least three atoms and at least three dual atoms. By Lemma 6.2,
Com(L) does not contain cycles of length 3, 4 and 5. Therefore, it is clear that girth(G(L)) ≥ 6.

Since ℓ(L) = 3, each vertex in Com(L) is either an atom or a dual atom. Let a1, a2 and a3 be
any three atoms in L.

Suppose that a1 ∨ a2, a1 ∨ a3, a2 ∨ a3 all are distinct.
If at least one of them is equal to 1L, then we get N5 as a sublattice, a contradiction to

0-modularity.
Therefore, a1 ∨ a2, a1 ∨ a3 and a2 ∨ a3 are distinct dual atoms in L. Hence a1 ∼ a1 ∨ a2 ∼ a2 ∼

a2 ∨ a3 ∼ a3 ∼ a1 ∨ a3 ∼ a1 is a 6-cycle and we are done.
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Now, suppose that a1∨a2 = a1∨a3. Since a2 < a1∨a2 and a3 < a1∨a3, we have a2∨a3 ≤ a1∨a3.
As ℓ(L) = 3, the chain 0L � a2 < a2 ∨ a3 ≤ a1 ∨ a3 � 1L has the length at most 3. Clearly,
a2 ∨ a3 = a1 ∨ a3. Using similar arguments, we can show that a1 ∨ a2 ∨ a3 = a1 ∨ a2 = a2 ∨ a3. As
L contains at least three dual atoms, a dual atom, say c, exists, such that c ≠ a1 ∨ a2 ∨ a3.

If c∥a for all atoms a contained in a1∨a2∨a3, then {0L, a, a1∨a2∨a3, c,1L} forms a sublattice
isomorphic to N5 containing 0L, a contradiction. Therefore, without loss of generality, assume
that a1 < c.

We claim that if every dual atom other than a1 ∨ a2 ∨ a3 contains exactly one atom, then in
such cases, we get a sublattice isomorphic to N5 consisting of two dual atom and an atom below
any one of the dual atom. This contradicts 0-modularity. Thus, this case does not arise.

So, there exists an atom a′ (say) below c. Then as ℓ(L) = 3 and a1 < c, we have c = a1 ∨ a′.
Now assume that if a′ ∼ a1 ∨ a2 ∨ a3, then we can easily get c = a1 ∨ a2 ∨ a3, a contradiction.
Hence, a′∥a1 ∨ a2 ∨ a3. Clearly, a′ ∨ a2 ≠ c and a′ ∨ a2 ≠ a1 ∨ a2 ∨ a3, otherwise, we get

c = a1 ∨ a2 ∨ a3, a contradiction. Thus, it gives a′ ∼ a′ ∨ a2 ∼ a2 ∼ a1 ∨ a2 ∨ a3 ∼ a1 ∼ c ∼ a′ a
6-cycle. Thus, girth(G(L)) = 6, when ℓ(L) = 3.

Case(3): Assume that, ℓ(L) < 3. Clearly, Com(L) will be empty or edgeless, as L is of
length either 1 or 2. Therefore, we can say girth(G(L)) =∞.

Theorem 6.9. Let L be a lattice and ℓ(L) = 3. Then girth(Com(L)) = 6 if and only if L
contains a sublattice isomorphic to 23 (Boolean lattice with three atoms).

Proof. Since ℓ(L) = 3, each vertex in Com(L) is either an atom or a dual atom.
Part(A): Suppose that girth(Com(L)) = 6. Therefore, there exist a smallest 6-cycle a1 −

b1 − a2 − b2 − a3 − b3 − a1 in Com(L). Clearly, all ai’s and bj’s are distinct. Without loss of
generality, assume that a1 is an atom. Hence b1 is a dual atom. Also, a2, a3 are atoms and b2, b3
are dual atoms. Clearly, a1 < b1 and a2 < b1 and hence a1 ∨ a2 ≤ b1. Then we have a chain
0L � a1 < a1 ∨ a2 ≤ b1 � 1L. However, ℓ(L) = 3 gives a1 ∨ a2 = b1. On the similar lines, we
get a2 ∨ a3 = b2 and a1 ∨ a3 = b3. If a1 ∨ a2 = a1 ∨ a2 ∨ a3, then we get a3 ≤ a1 ∨ a2 = b1,
a contradiction. Hence, we have a1 ∨ a2 < a1 ∨ a2 ∨ a3. This together with ℓ(L) = 3 gives
a1 ∨ a2 ∨ a3 = 1L. Also, we have a1 < b1 and a1 < b3 which gives a1 ≤ b1 ∧ b3. Since ℓ(L) = 3,
the chain 0L � a1 ≤ b1 ∧ b3 < b1 � 1L gives a1 = b1 ∧ b3. On the similar lines, we get a2 = b1 ∧ b2,
a3 = b2∧b3 and 0L = b1∧b2∧b3. Thus, {0L, a1, a2, a3, b1, b2, b1,1L} forms a sublattice isomorphic
to 23.

Part(B): Suppose that L contains a sublattice isomorphic to 23. Since ℓ(23) = 3 = ℓ(L), the
sublattice contains 0L and 1L and hence induces a 6-cycle in Com(L). Thus, the result follows
from Lemma 6.2.

Lemma 6.10. Let V be a vector space. If dim(V ) = 3, then L(V ) contains 23 as a sublattice.

Proof. Since dim(V ) = 3, it has a basis containing three vectors and ℓ(L(V )) = 3. Let
{w1, w2, w3} be a basis. By Lemma 3.11, it is clear that < w1 >,< w2 >,< w3 > are atoms
and < w1, w2 >,< w2, w3 >, < w1, w3 > are dual atoms in L(V ). Thus, {{0L(V )},< w1 >,< w2 >
,< w3 >,< w1, w2 >,< w2, w3 >,< w1, w3 >, V } forms a sublattice isomorphic to 23.

Corollary 6.11 ([4, Theorem 4.2]). If V be an n-dimensional vector space, then

girth(In(V )) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3, if n > 3;
6, if n = 3;
∞, if n < 3.

Proof. Follows from Theorem 6.8, Theorem 6.9 and Lemma 6.10.

Corollary 6.12 ([8, Proposition 2.8]). Let M be an R-module. Then girth(In(M)) ∈ {3,6,∞}.

Corollary 6.13 ([1, Theorem 5][2, Theorem 3.5]). Let R be a ring (semigroup). Then girth(In(R)) ∈
{3,6,∞}.

Theorem 6.14. Let L be a graded lattice. If ℓ(L) > 3, then Com(L) is hyper-triangulated and
hence triangulated.
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Proof. Let a − b be an edge in Com(L). Clearly, a and b are non-zero, non-unit elements of L.
Since L is graded and ℓ(L) ≥ 4, there exists a maximal chain containing 0L, a, b,1L of length at
least 4. So, there is a non-zero, non-unit element c such that c ∼ a and c ∼ b. Thus, a, b and c
forms a triangle in Com(L).

Corollary 6.15 ([4, Theorem 4.3]). If dim(V ) ≥ 4, then In(V ) is triangulated.

7 Conclusions

In this paper, we have studied the comparability graph of a lattice and discussed some basic
properties such as connectedness, diameter, girth, triangulation, etc. Using this result, we unified
many more results of the inclusion graphs of algebraic structures. It is easy to observe that if
lattices are isomorphic, then the corresponding comparability graphs are isomorphic. However,
the converse need not be true. Hence, finding the class of lattices in which the converse is
true will be an interesting problem. Furthermore, some known results are available for other
graphs, such as cover graphs, zero-divisor graphs, etc. In the future, we will be interested in this
Isomorphism Problem for comparability graphs.
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