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Abstract. In the current study, we provide a general Norton-Massagué tumor growth model
on time scales that is nonlinear and of first order. The Cobb-Douglas production function is
defined on time scales after which it is used to provide the solution for the model. There are
specific examples mentioned.

1 Introduction

Mathematical models are powerful tools that are often used to describe real-world problems,
illuminating different scientific and technical disciplines [17, 15, 12, 1]. In the literature, we
find several mathematical models of tumor growth that have been proposed, each with its own
details and parameters [2]. We mention, among them, a plethora of macroscopic tumor growth
models [4]. In 1960, Bertalanffy derived the equation that can be used to describe a tumor
growth process

dV

dt
= aV

2
3 (t)− bV (t) (1.1)

where a and b are proportionality constants. The solution to the equation (1.1) is the following
form:

V (t) =

[
a

b
− (

a

b
− c)exp(−bt

3
)

]3

,where c ∈ R.

In 2005, L. Norton introduced the model.

dV

dt
= aV

d
3 (t)− bV (t) (1.2)

V (t0) = V0, (1.3)

where d > 0. We point out that the Norton-Massagué equation (1.2)-(1.3) may be solved in
closed form, namely,

V (t) = V (0)
[a
b
V (0)

d
3−1 + e(b(

d
3−1)t)(1− a

b
V (0)

b
3−1))

] 3
d−3

.

In 2006, L. Norton and J. Massagué [10] introduced the general model

dV (t)

dt
= aV α(t)− bV (t) (1.4)

where 0 < α < 1 and a, b are constants of anabolism (growth) and catabolism (death), respec-
tively. In this article, we will focus on solving the general Norton-Massagué model on arbitrary
time scales T

V ∆(t) = a(t)V α(t)− b(t)V (t) (1.5)
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where 0 < α < 1 and a(t) > 0, b(t) > 0. To our knowledge, this is the first study that considers
the resolution of the so-called general Norton-Massagué tumor growth model on time scales. The
study of dynamical systems on time scales is today an active field of research. Recently, Martin
Bohner et al [7] studied solow models on time scales. Motivated by the work as mentioned
above, we study the general tumor growth model on time scales.

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. For t ∈ T, we
define the forward jump operator σ : T → T by σ(t) = inf{s ∈ T : s > t} and the backward
jump operator ρ : T → T is defined by ρ(t) := sup{s ∈ T : s < t}. Then, one defines the
graininess function µ : T → [0,+∞[ by µ(t) = σ(t) − t. If σ(t) > t, then we say that t is
right-scattered; if ρ(t) < t, then t is left-scattered. Moreover, if t < supT and σ(t) = t, then t is
called right-dense; if t > infT and ρ(t) = t, then t is called left-dense. If T has a left-scattered
maximum m, then we define Tκ = T \ {m}; otherwise Tκ = T. If f : T→ R, then fσ : T→ R
is given by fσ(t) = f(σ(t)) for all t ∈ T.

Definition 2.1 (The Hilger derivative [8]). Let f : T → R and t ∈ T. We define f∆(t) to be the
number (provided it exists) with the property that given any ε > 0 there is a neighborhood U of
t (it means, U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ U . We call f∆(t) the Hilger (or delta) derivative of f at t.

We denote the set of rd-continuous functions by Crd = Crd(T) = Crd(T,R). Next, f is
considered regressive since

1 + µ(t)f(t) 6= 0 for all t ∈ T

holds. The set of all regressive functions is denoted by R = R(T) = R(T,R). We also define
the set R+ of all positively regressive elements by

R+ = R+(T,R) = {f ∈ R : 1 + µ(t)f(t) > 0 for all t ∈ T}.

Let now p and q ∈ R. We define the circle plus addition ⊕ on R by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ T,

and the circle minus subtraction 	 on R by

(p	 q)(t) :=
p(t)− q(t)

1 + µ(t)q(t)
for all t ∈ T.

We put R(α) =

{
R if α ∈ N,
R+ if α ∈ R \N,

for α ∈ R and p ∈ R(α). We define:

(α� p)(t) := αp(t)

∫ 1

0
(1 + µ(t)p(t)τ)α−1dτ. (2.1)

The time scales exponential function ep(., t0) is defined for p ∈ R and t0 ∈ T as the unique
solution of the initial value problem

y∆ = p(t)y and y(t0) = 1 on T.

We have

ep(., t0)eq(., t0) = ep⊕q(., t0) and
ep(., t0)

eq(., t0)
= ep	q(., t0).
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If α ∈ R and p ∈ R(α), then
eα�p = eαp .

Let α ∈ R \ {1} and g ∈ Crd. We say that see([8])

x∆ = [q 	 (
1

α− 1
� (gxα−1))]x, (2.2)

is a Bernoulli equation on time scales.

3 General tumor growth model on time scales

In this section, we consider the general Norton-Massagué tumor growth model on time scales

V ∆(t) = a(t)V α(t)− b(t)V (t), (3.1)

V (t0) = V0, (3.2)

where 0 < α < 1 and a, b ∈ Crd with a(t) > 0, b(t) > 0 for all t ∈ T.
Let f(x) = xα, w(t) = ( 1

α−1 �
bg
a )(t) and g(t) = (1− α)a(t).

Definition 3.1. [7]we define the generalized Cobb-Douglas production function on time scales
by f(x) = xf̃(x). Provided that

f̃(x) :=
b(t) + (w 	 ( 1

α−1 � (gxα−1))(t)

a(t)
(3.3)

is independent of t ∈ T.

Lemma 3.2. If µ(t) = 0 at t then

b(t) + (w 	 ( 1
α−1 � (gxα−1)))(t)

a(t)
= xα−1. (3.4)

Proof. Suppose µ(t) = 0 at t then we have

b(t) +
(
w 	 ( 1

α−1 � (gxα−1))
)
(t)

a(t)
=

b(t) + w(t)− g(t)xα−1

α−1

a(t)

=
b(t) + b(t)g(t)

(α−1)a(t) −
g(t)xα−1

α−1

a(t)

=
b(t)− b(t) + a(t)xα−1

a(t)

= xα−1.

The proof is complete.

Example 3.3. If T = R, then f̃(x) = xα−1, and thus (3.3) holds. Hence the Cobb-Douglas
production function is defined and equals

f(x) = xf̃(x) = xxα−1 = xα.

Lemma 3.4. Let t ∈ T. If µ(t) > 0, suppose A = b(t) + (w 	 ( 1
α−1 � (gxα−1)))(t) then

A =
1
µ(t)

{
b(t)µ(t)− 1 +

(
1 + (1− α)µ(t)a(t)xα−1

1 + (1− α)µ(t)b(t)

) 1
1−α
}

(3.5)
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Proof. Let µ(t) > 0 at t ∈ T then, we have

1
α− 1

� (gxα−1)(t) =
1

α− 1
(gxα−1)(t)

∫ 1

0
(1 + µ(t)g(t)xα−1τ)

1
α−1−1dτ

=
1

α− 1
gxα−1

(
1 + µ(t)(gxα−1)(t)τ

) 1
α−1 ]10

1
α−1µ(t)gx

α−1

=
1
µ(t)

(
(1 + µ(t)gxα−1) 1

α−1 − 1).

Again, we have

w(t) =
1

α− 1
� (bg)(t)

a(t)

=
1

α− 1
� (b(t)(1− α))

=
1

α− 1
b(t)(1− α)

∫ 1

0
(1 + µ(t)b(t)(1− α)τ)

1
α−1−1

dτ

= b(t)(1− α)

[
(1 + µ(t)b(t)(1− α)τ)

1
α−1

µ(t)b(t)(1− α)

]1

0

=
1
µ(t)

[
(1 + µ(t)b(t)(1− α))

1
α−1 − 1

]
;

hence

w 	
(

1
α− 1

� (gxα−1)

)
=

w − (1+µ((gx)α−1)
1

α−1−1
µ

1 + µ (1+µgxα−1)
1

α−1−1
µ

=
w − (1 + µgxα−1)

1
α−1 − 1

(1 + µgxα−1)
1

α−1

=

(1+µb(1−α))
1

α−1−1
µ − (1+µgxα−1)

1
α−1−1

µ

(1 + µgxα−1)
1

α−1

=
1
µ

{
−1 +

(
1 + µb(1− α)

1 + µ(1− α)axα−1

) 1
α−1
}

=
1
µ

{
−1 +

(
1 + µ(1− α)axα−1

1 + µb(1− α)

) 1
1−α
}
.

Which ends the proof.

We assume the following additional hypothesis:
H(1): Let a(t) > 0 and b(t) > 0, for all t ∈ T and suppose ã = a(t)µ(t), b̃ = b(t)µ(t) are
independents of t ∈ T

Theorem 3.5. Let µ(t) > 0 assumeH(1) hold then, (3.3) hold and the Cobb-Douglas production
is defined by:

f(x) =
x

ã

{
b̃− 1 +

(
1 + (1− α)ãxα−1

1 + (1− α)b̃

) 1
1−α
}
.
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Proof. In view of lemma 3.4, we obtain

b(t) +
(
w 	 ( 1

α−1 � (gxα−1))
)
(t)

a(t)
=

1
µ(t)a(t)

{
b(t)µ(t)− 1

+

(
(1 + (1− α)µ(t)a(t)xα−1)

1 + (1− α)µ(t)b(t)

) 1
1−α }

=
1
ã

{
b̃− 1 +

(
1 + (1− α)ãxα−1

1 + (1− α)b̃

) 1
1−α
}

is independent of t and therefore equals f̃(x) hence, f(x) = xf̃(x)

Example 3.6. Assuming T = Z and that a and b are constants then, the cobb-Douglas production
function is defined and equals

f(x) =
x

a

{
b− 1 +

(1 + (1− α)axα−1

1 + (1− α)b
) 1

1−α
}
.

Example 3.7. Assuming T = qN0 with q > 1 and If ã(t) := (q − 1)ta(t) and b̃ := (q − 1)tb(t)
are independent of t ∈ T then, the cobb-Douglas production function is defined and equals

f(x) =
x

ã

{
b̃− 1 +

(1 + (1− α)ãxα−1

1 + (1− α)b̃
) 1

1−α
}
.

Theorem 3.8. Suppose H(1) and (3.3) holds. Let f be defined by f(x) = xf̃(x) then, (3.1)
holds if and only if

V ∆(t) = {w 	 (
1

α− 1
� (gV α−1))}(t)V (t), (3.6)

where g = (1− α)a and w = 1
α−1 �

bg
a .

Remark 3.9. The general Norton-Massagué equation is a special case of a Bernoulli equation
on time scales.

Corollary 3.10. Suppose (α−1) ∈ R−{0}, w = 1
α−1�

bg
a ∈ R(α−1) and g = (1−α)a ∈ Crd.

Let V0 6= 0 if,
1

V α−1
0

+

∫ t

0
eα−1
w (τ, 0)g(τ)∆τ > 0 for all t ∈ T

then

V (t) =
ew(t, 0)[

1
V α−1

0
+
∫ t

0 e
α−1
w (τ, 0)g(τ)∆τ

] 1
α−1

(3.7)

solves the general Norton-Massagué equation (3.1)-(3.2).

Theorem 3.11. Assume that a(t) > 0, b(t) > 0 for all t ∈ T and λ :=
a(t)

b(t)
is independent of

t ∈ T. If we define p ∈ R by

p(t) = (1− α)b(t) for all t ∈ T, (3.8)

then the solution of (3.1)-(3.2) is given by

V (t) =

{
λ+

V 1−α
0 − λ
ep(t, t0)

} 1
1− α

for all t ∈ T (3.9)

provided that λ+
V 1−α

0 − λ
ep(t, t0)

> 0.
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Proof. Suppose V solves (3.1) such that V (t0) = V0. Let x̃ := V α−1 by [[8], theorem 2.37], we
have:

x̃∆

x̃
= (α− 1)� V ∆

V

= (α− 1)� {ω 	 [
1

α− 1
� (gV α−1)]}

= [(α− 1)� ω]	 (gV α−1)

= (b(α− 1)	 (gV α−1));

so
x̃∆ = (p	 (gx̃))x̃.

Let z := 1
x̃ , we get

z∆ = (
1
x̃
)∆

= −(x̃)
∆

x̃x̃σ

= −(p	 (gx̃))zσ

=
gx̃− p

1 + µgx̃
zσ,

hence
(1 + µgx̃)z∆ = gx̃zσ − pzσ;

it means
z∆ + µz∆gx̃ = gx̃zσ − pzσ.

Using the simple useful formula

z∆ + gx̃(zσ − z) = gx̃zσ − pzσ.

Seen that,

g = (1− α)a
= (1− α)bλ
= λp,

we get
z∆ = −pzσ + g (3.10)

the variation of constants in the formula [[9] Theorem 2.74]. The solution to 3.10 is given by

z(t) = z0e	p(t, t0) +

∫ t

t0

g(τ)e	p(t, τ)∆τ

= z0e	p(t, t0) +

∫ t

t0

λp(τ)ep(τ, t)∆τ

= z0e	p(t, t0) + λ

∫ t

t0

p(τ)ep(τ, t)∆τ

= z0e	p(t, t0) + λep(τ, t) |tt0

= z0e	p(t, t0) + λ(1− e	p(t, t0)).

We have z0 = V 1−α
0 as well as V (t) = 1

z(t)
1

α−1
which shows (3.9). Conversely, V given by (3.9)

is easily seen to be a solution to (3.1)-(3.2)
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Example 3.12. Let T = mZ with m > 0, considering the following equation

V ∆(t) =
√

2V
2
3 (t)− 5V (t), t ∈ T (3.11)

V (0) = 1 (3.12)

here b(t) = 5, a(t) =
√

2, α = 2
3 , g(t) = (1− α)a(t) = (1− 2

3)
√

2 =
√

2
3

and w(t) =
(

1
α−1 �

bg
a

)
(t).

We taking

w(t) =
1

2
3 − 1

� 5
√

2
3
√

2

= (−3)� 5
3

= (−3)
5
3

∫ 1

0
(1 + µ(t)

5
3
τ)−3−1dτ

=
1
m

(
(1 +

5
3
m)−3 − 1

)
also, 1 + µ(t)w(t) = (1 + 5

3m)−3 > 0 hence w ∈ R+. In addition

w 	 (
1

α− 1
� (gxα−1))(t) =

1
m

((1 + 5
3m)−3 − 1)−

√
2m
3 x−

1
3

1 +m
√

2
3 x
− 1

3

;

so

f̃(x) =
b(t) + (w 	 ( 1

α−1 � (gxα−1)))(t)

a(t)

=
1√
2m

{
5m+ (1 + 5

3m)−3 −
√

2
3 mx

− 1
3 − 1

1 +
√

2
3 mx

− 1
3

}

is independent of t. Let λ(t) = a(t)
b(t) =

√
2

5 and according to theorem 3.11 the solution of equation
(3.11)-(3.12) is

V (t) =

{√
2

5
+

1−
√

2
5

e 5
3
(t, 0)

}3

seen that

e 5
3
(t, o) = exp

(∫ t

0
ζµ(t)(

5
3
)∆t

)
= exp

∑
τ∈[0,t]T

1
m
log(1 +

5
3
m)τ

= (1 +
5
3
m)

t
2m (t+1)

where ∑
τ∈I

τ = m(0 + 1 + 2 + ..+
t

m
)

=
m

2
(
t

m
+ 1)(

t

m
)

=
t

2
(
t

m
+ 1)
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here I = {0,m, 2m, 3m, ..., t}, we get

V (t) =

{√
2

5
+

1−
√

2
5

(1 + 5
3m)

t
2m (t+1)

}3

. (3.13)

It is clear that b̃(t) = mb(t) = 5m > 0 and ã(t) = ma(t) =
√

2m > 0 are independent of t.
On the other hand, according to theorem 3.8 the system(3.11)-(3.12) equivalent to system(3.14)-
(3.15)

V ∆(t) = (w 	 (
1

α− 1
� (gV α−1)))(t)N(t), t ∈ T (3.14)

V (0) = 1 (3.15)

we have

1 +

√
2

3

∫ t

0
eα−1
w (τ, 0)dτ > 0 for all t ∈ T

according to theorem 3.10, the general solution of Norton-Massagué equation (3.11)-(3.12) gives

V (t) =
ew(t, 0)[

1
V α−1

0
+
∫ t

0 e
α−1
w (τ, 0)g(τ)dτ

] 1
α−1

=
ew(t, 0)[

1 +
√

2
3

∫ t
0 e
−3
w (τ, 0)dτ

]−3

where

ew(t, 0) = exp

(∫ t

0
ζµ(τ)(w(τ))∆τ

)
(3.16)

since T = mZ with µ(t) = m

ew(t, 0) = exp

(∫ t

0
ζµ(τ)(w(τ))∆τ

)
= exp

(
1
m

t

2
(
t

m
+ 1)log(1 +mw)

)
where ζµ(τ)(w(τ)) = 1

µ(τ) log(1 + µ(τ)w(τ)) and

∑
τ∈[0,t]T

τ =
t

2
(
t

m
+ 1)

therefore

V (t) =
exp

( 1
m
t
2(

t
m + 1)log(1 +mw)

)[
1 +

√
2

3

∫ t
0 exp

−1
3 ( 1

m
τ
2 (

τ
m + 1)log(1 +mw))∆τ

]−3

=
exp

( 1
m
t
2(

t
m + 1)log(1 + 5

3m)
)[

1 +
√

2
3

∫ t
0 exp

−1
3 ( 1

m
τ
2 (

τ
m + 1)log(1 + 5

3m))∆τ
]−3

=
exp

( 1
m
t
2(

t
m + 1)log(1 + 5

3m)
)[

1 +
√

2
3
∑t
τ=0 exp(

τ
−6m( τm + 1)log(1 + 5

3m))
]−3

=
(1 + 5

3m)
t

2m ( tm+1)[
1 +

√
2

3
∑ t

m

ρ=0(1 + 5
3m)

ρ(ρ+1)
−6

]−3
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it means

V (t) = (1 +
5
3
m)

t
2m ( tm+1)

1 +

√
2

3

t
m∑
ρ=0

(1 +
5
3
m)

ρ(ρ+1)
−6

3

(3.17)

.

Conclusion

A new system of general nonlinear first-order Norton-Massagué tumor growth on time scales has
been introduced. Using a resolved Cobb-Douglas production function on time scales to solve the
proposed system and obtain the desired results generalize the continuous and discrete spaces.
The results presented can be used to assess the solvability of some different classes of problems
in the literature.
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