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Abstract The commuting graph of a finite non-commutative ring R with center Z(R) is a
simple undirected graph whose vertex set isR\Z(R) and two distinct vertices x, y are adjacent if
and only if xy = yx. In this paper, we compute the common neighborhood spectrum and energy
of commuting graphs of some classes of finite rings. Our computations show that commuting
graphs of the rings considered in this paper are CN-integral but not CN-hyperenergetic.

1 Introduction

Let G be a simple graph whose vertex set is V (G) = {v1, v2, . . . , vn}. For i 6= j, consider
the set C(vi, vj) = {vk : k 6= i, j and vk is adjacent to both vi and vj} is called the common
neighborhood of vi and vj . Let CN(G) be the common neighborhood matrix of G. We write
CN(G)(vi, vj) to denote the (i, j)th entry of CN(G) and

CN(G)(vi, vj) =

{
0, if i = j

|C(vi, vj)|, if i 6= j.

The set of all the eigenvalues of CN(G), denoted by CN-spec(G), is called the common neigh-
borhood spectrum (in short CN-spectrum) of G. A graph G is called CN-integral if CN-spec(G)
contains only integers. If α1, α2, . . . , αk are the eigenvalues of CN(G) with multiplicities
a1, a2, . . . , ak respectively then we write CN-spec(G) = {αa1

1 , α
a2
2 , . . . , α

ak

k }. The common
neighborhood energy (abbreviated as CN-energy) of a graph G is given by

Ecn(G) =
k∑

i=1

ai|αi|.

It is well-known that

CN-spec(Kn) =
{
(−(n− 2))n−1, ((n− 1)(n− 2))1}

and hence
Ecn(Kn) = 2(n− 1)(n− 2), (1.1)

where Kn is the complete graph on n vertices. We also have the following useful result.

Theorem 1.1. ([20, Theorem 2.3] and [25, Theorem 2.3]) Let G= l1Km1t l2Km2t · · · t lkKmk
,

where liKmi
= Kmi

t · · · tKmi
(li-times) for 1 ≤ i ≤ k. Then

CN-spec(G) =
{
(−(m1 − 2))l1(m1−1),((m1 − 1)(m1 − 2))l1 , . . . ,

(−(mk − 2))lk(mk−1), ((mk − 1)(mk − 2))lk
}

and Ecn(G) = 2
∑k

i=1 li(mi − 1)(mi − 2).
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A graph G is called CN-hyperenergetic if Ecn(G) > Ecn(K|V (G)|). In 2011, the notion of
CN-energy of a graph was introduced by Alwardi, Soner and Gutman [3]. Various properties
of Ecn(G) can be found in [3, 4]. However, CN-spectrum and CN-energy of algebraic graphs
are yet to be explored. So far, only commuting graphs and commuting conjugacy class graphs
of some finite groups are considered in [20, 25] and [21] to compute their CN-spectrum and
CN-energy respectively. However, there are many graphs defined on finite groups (see [10]).
Let R be a non-commutative ring with center Z(R). The commuting graph of R, denoted by
Γc(R), is a simple undirected graph whose vertex set is R \ Z(R) and two distinct vertices x, y
are adjacent if and only if xy = yx. In recent years, many mathematicians have considered
commuting graphs (and generalized commuting graphs) of non-commutative rings and studied
various graph theoretic aspects (see [1, 2, 5, 6, 14, 15, 18, 19, 23, 24, 26, 27]). More graphs
defined on commutative rings can be found in [7].

In this paper, we compute the CN-spectrum and CN-energy of commuting graphs of some
classes of finite rings. We show that the commuting graph of a finite CC-ring is CN-integral.
We also show that the commuting graph of a finite ring whose central factor is isomorphic to
Zp × Zp, for any prime p, is CN-integral but not CN-hyperenergetic. As a consequence of this
result it is shown that commuting graphs of non-commutative rings of orders p2 and p3 for any
prime p are CN-integral but not CN-hyperenergetic. We shall also show that commuting graphs
of non-commutative rings of orders pq, p2q, p3q, p4 and p5 for any two primes p and q (considered
in [27, 28]) are CN-integral but not CN-hyperenergetic.

For any element r of a ring R, the set CR(r) = {s ∈ R : rs = sr} is called the centralizer of
r in R. Let |Cent(R)| = |{CR(r) : r ∈ R}|, that is the number of distinct centralizers in R. A
ring R is called n-centralizer ring if |Cent(R)| = n. This class of rings is studied in [11, 12, 16].
As a consequence of our results, we show that commuting graphs of 4, 5-centralizer finite rings
are CN-integral but not CN-hyperenergetic. Further, we show that the commuting graph of a
finite (p+2)-centralizer ring of order pk is CN-integral but not CN-hyperenergetic for any prime
p. We conclude this paper by computing CN-spectrum and CN-energy of commuting graphs of
finite rings with some specific commuting probabilities. Recall that, the commuting probability
of a ring R is the probability that a randomly chosen pair of elements of R commute (see [22]).

A non-commutative ring R is called a CC-ring if all the centralizers of its non-central el-
ements are commutative. We conclude this section with the following two useful theorems
regarding CC-rings from [15].

Theorem 1.2. Let R be a finite CC-ring with distinct centralizers S1, S2, . . . , Sn of non-central
elements of R. Then Γc(R) =

n
t
i=1
K|Si|−|Z(R)|.

Theorem 1.3. Let R be a finite ring such that the additive quotient group R
Z(R) is isomorphic to

Zp × Zp, where p is a prime. Then Γc(R) = (p+ 1)K(p−1)|Z(R)|.

2 CN-spectrum and CN-energy

In [18], Erfanian et al. computed the diameter of the complement of Γc(R) and showed that
the clique number and chromatic number of the complement of Γc(R) are same for a CC-ring
R. Also, the spectrum and genus of Γc(R) were computed in [15] recently. In the following
theorem we compute CN-spectrum and CN-energy of Γc(R) for a finite CC-ring R.

Theorem 2.1. Let R be a finite CC-ring with distinct centralizers S1, S2, . . . , Sn of non-central
elements of R. Then CN-spec(Γc(R)) is given by the set{

(−(|S1|−|Z(R)| − 2))|S1|−|Z(R)|−1, ((|S1| − |Z(R)| − 1)(|S1| − |Z(R)|−2))1, . . . ,

(−(|Sn| − |Z(R)| − 2))|Sn|−|Z(R)|−1, ((|Sn| − |Z(R)| − 1)(|Sn| − |Z(R)|−2))1
}

and Ecn(Γc(R)) = 2
∑n

i=1(|Si| − |Z(R)| − 1)(|Si| − |Z(R)| − 2).

Proof. By Theorem 1.2, we have Γc(R) =
n
t
i=1
K|Si|−|Z(R)|. Hence, the result follows from

Theorem 1.1 considering k = n, li = 1 and mi = |Si| − |Z(R)| for 1 ≤ i ≤ n.
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Corollary 2.2. Let R be a finite CC-ring and A be any finite commutative ring. Then
CN-spec(Γc(R×A)) is given by the set{

(−((|S1| − |Z(R)|)|A| − 2))(|S1|−|Z(R)|)|A|−1,

(((|S1| − |Z(R)|)|A| − 1)((|S1| − |Z(R)|)|A| − 2))1, . . . ,

(−((|Sn| − |Z(R)|)|A| − 2))(|Sn|−|Z(R)|)|A|−1,

(((|Sn| − |Z(R)|)|A| − 1)((|Sn| − |Z(R)|)|A| − 2))1
}

andEcn(Γc(R×A)) = 2
∑n

i=1((|Si|−|Z(R)|)|A|−1)((|Si|−|Z(R)|)|A|−2), where S1, . . . , Sn

are the distinct centralizers of non-central elements of R.

Proof. Note that Z(R × A) = Z(R) × A and S1 × A,S2 × A, . . . , Sn × A are the distinct
centralizers of non-central elements of R × A, where S1, . . . , Sn are the distinct centralizers of
non-central elements of R. Therefore, if R is a CC-ring then R × A is also a CC-ring. Hence,
the result follows from Theorem 2.1.

Theorem 2.1 shows that the commuting graph of a finite CC-ring is CN-integral. Further, if
R is a finite CC-ring and A is any finite commutative ring then, by Corollary 2.2, the commuting
graph of R×A is also CN-integral. In the next result we consider a particular class of CC-rings
and compute the CN-spectrum and CN-energy of its commuting graph.

Theorem 2.3. Let R be a finite ring such that the additive quotient group R
Z(R) is isomorphic to

Zp × Zp, where p is a prime. Then CN-spec(Γc(R)) is given by{
(−((p− 1)|Z(R)| − 2))(p+1)((p−1)|Z(R)|−1), (((p− 1)|Z(R)| − 1)((p− 1)|Z(R)| − 2))p+1}

and Ecn(Γc(R)) = 2(p+ 1)((p− 1)|Z(R)| − 1)((p− 1)|Z(R)| − 2).

Proof. By Theorem 1.3, we have Γc(R) = (p+ 1)K(p−1)|Z(R)|. Hence, the result follows from
Theorem 1.1 considering k = 1, l1 = p+ 1 and m1 = (p− 1)|Z(R)|.

If R is a non-commutative ring of order p2 or p3 for any prime p then |Z(R)| = 1 or p
respectively. Therefore, R

Z(R)
∼= Zp × Zp and hence we have the following corollary.

Corollary 2.4. Let R be a non-commutative ring and p be any prime. Then the following state-
ments hold.

(a) If |R| = p2 then CN-spec(Γc(R)) = {(−(p − 3))(p+1)(p−2), ((p − 2)(p − 3))p+1} and
Ecn(Γc(R)) = 2(p+ 1)(p− 2)(p− 3).

(b) If |R| = p3 then CN-spec(Γc(R)) = {(−(p2 − p− 2))(p+1)(p2−p−1), ((p2 − p− 1)(p2 − p−
2))p+1} and Ecn(Γc(R)) = 2(p+ 1)(p2 − p− 1)(p2 − p− 2).

Now we consider non-commutative rings of order p4 and p5 for any prime p.

Theorem 2.5. Let |R| = p4 and R has unity.

(a) If |Z(R)| = p then CN-spec(Γc(R)) = {(−(p2−p−2))(p
2+p+1)(p2−p−1), ((p2−p−1)(p2−

p − 2))p
2+p+1} or {(−(p2 − p − 2))l1(p

2−p−1), ((p2 − p − 1)(p2 − p − 2))l1 , (−(p3 − p −
2))l2(p

3−p−1), ((p3 − p − 1)(p3 − p − 2))l2} and Ecn(Γc(R)) = 2(p2 + p + 1)(p2 − p −
1)(p2 − p − 2) or 2l1(p2 − p − 1)(p2 − p − 2) + 2l2(p3 − p − 1)(p3 − p − 2), where
l1 + l2(p+ 1) = p2 + p+ 1.

(b) If |Z(R)| = p2 then CN-spec(Γc(R)) = {(−(p3−p2−2))(p+1)(p3−p2−1), ((p3−p2−1)(p3−
p2 − 2))p+1} and Ecn(Γc(R)) = 2(p+ 1)(p3 − p2 − 1)(p3 − p2 − 2).

Proof. The result follows from Theorem 1.1 and [28, Theorem 2.5] recalling that Γc(R) =
(p2 + p+ 1)K(p2−p) or l1K(p2−p) t l2K(p3−p), where l1 + l2(p+ 1) = p2 + p+ 1, if |Z(R)| = p;
and Γc(R) = (p+ 1)K(p3−p2) if |Z(R)| = p2.
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Theorem 2.6. Let |R| = p5, R has unity and Z(R) is not a field.

(a) If |Z(R)| = p2 then CN-spec(Γc(R)) = {(−(p3 − p2 − 2))(p
2+p+1)(p3−p2−1), ((p3 − p2 −

1)(p3−p2−2))p
2+p+1} or {(−(p3−p2−2))l1(p

3−p2−1), ((p3−p2−1)(p3−p2−2))l1 , (−(p4−
p2 − 2))l2(p

4−p2−1), ((p4 − p2 − 1)(p4 − p2 − 2))l2} and Ecn(Γc(R)) = 2(p2 + p+ 1)(p3 −
p2− 1)(p3− p2− 2) or 2l1(p3− p2− 1)(p3− p2− 2)+ 2l2(p4− p2− 1)(p4− p2− 2), where
l1 + l2(p+ 1) = p2 + p+ 1.

(b) If |Z(R)| = p3 then CN-spec(Γc(R)) = {(−(p4−p3−2))(p+1)(p4−p3−1), ((p4−p3−1)(p4−
p3 − 2))p+1} and Ecn(Γc(R)) = 2(p+ 1)(p4 − p3 − 1)(p4 − p3 − 2).

Proof. The result follows from Theorem 1.1 and [28, Theorem 2.7] recalling that Γc(R) =
(p2+p+1)K(p3−p2) or l1K(p3−p2)t l2K(p4−p2), where l1+ l2(p+1) = p2+p+1, if |Z(R)| = p2;
and Γc(R) = (p+ 1)K(p4−p3) if |Z(R)| = p3.

In the next three theorems p, q denote distinct primes.

Theorem 2.7. Let R be a non-commutative ring of order p2q such that Z(R) = {0}.

(a) If t ∈ {p, q, p2, pq} and (t− 1) | (p2q − 1) then

CN-spec(Γc(R)) =

{
(−(t− 3))

(p2q−1)(t−2)
(t−1) , ((t− 2)(t− 3))

p2q−1
(t−1)

}
and

Ecn(Γc(R)) =
2(p2q − 1)(t− 2)(t− 3)

(t− 1)
.

(b) If l1(p− 1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1 then

CN-spec(Γc(R)) =

{
(−(p− 3))l1(p−2), ((p− 2)(p− 3))l1 , (−(q − 3))l2(q−2),

((q − 2)(q − 3))l2 , (−(p2 − 3))l3(p
2−2), ((p2−2)(p2−3))l3 ,

(−(pq − 3))l4(pq−2), ((pq − 2)(pq − 3))l4

}
and Ecn(Γc(R)) = 2l1(p− 2)(p− 3) + 2l2(q− 2)(q− 3) + 2l3(p2 − 2)(p2 − 3) + 2l4(pq−
2)(pq − 3).

Proof. Parts (a) and (b) follow from Theorem 1.1, recalling the facts (proved in [27, Theo-
rem 2.9]) that Γc(R) = p2q−1

t−1 Kt−1 or l1Kp−1 t l2Kq−1 t l3Kp2−1 t l4Kpq−1 according as
t ∈ {p, q, p2, pq} and (t−1) | (p2q−1); or l1(p−1)+l2(q−1)+l3(p2−1)+l4(pq−1) = p2q−1.

We would like to remark that the conditions in [27, Theorem 2.9] were stated incorrectly. We
conclude this section with the following two results.

Theorem 2.8. Let R be a non-commutative ring with unity having order p3q. If |Z(R)| = pq
then CN-spec(Γc(R)) is given by{

(−(p2q − pq − 2))(p+1)(p2q−pq−1), ((p2q − pq − 1)(p2q − pq − 2))p+1
}

and Ecn(Γc(R)) = 2(p+ 1)(p2q − pq − 1)(p2q − pq − 2).

Proof. The result follows from Theorem 1.1, recalling the fact (proved in [27, Theorem 2.12])
that Γc(R) = (p + 1)Kp2q−pq if R is a non-commutative ring with unity having order p3q and
|Z(R)| = pq.

Theorem 2.9. Let R be a non-commutative ring with unity having order p3q and |Z(R)| = p2.
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(a) If (q − 1) | (pq − 1) then CN-spec(Γc(R)) is given by{
(−(p2q − p2 − 2))

(pq−1)(p2q−p2−1)
q−1 , ((p2q − p2 − 1)(p2q − p2 − 2))

pq−1
q−1

}
and Ecn(Γc(R)) =

2(pq−1)(p2q−p2−1)(p2q−p2−2)
q−1 .

(b) If (p− 1) | (pq − 1) then CN-spec(Γc(R)) is given by{
(−(p3 − p2 − 2))

(pq−1)(p3−p2−1)
p−1 , ((p3 − p2 − 1)(p3 − p2 − 2))

pq−1
p−1

}
and Ecn(Γc(R)) =

2(pq−1)(p3−p2−1)(p3−p2−2)
p−1 .

(c) If l1(p− 1) + l2(q − 1) = pq − 1 then CN-spec(Γc(R)) is given by{
(−(p3−p2 − 2))l1(p

3−p2−1), ((p3 − p2 − 1)(p3 − p2 − 2))l1 ,

(−(p2q − p2 − 2))l2(p
2q−p2−1), ((p2q − p2 − 1)(p2q − p2 − 2))l2

}
and Ecn(Γc(R)) = 2l1(p3 − p2 − 1)(p3 − p2 − 2) + 2l2(p2q − p2 − 1)(p2q − p2 − 2).

Proof. Parts (a), (b) and (c) follow from Theorem 1.1, recalling the facts (proved in [27, Theorem
2.12]) that Γc(R) =

pq−1
q−1 Kp2q−p2 , pq−1

p−1 Kp3−p2 and l1Kp3−p2 t l2Kp2q−p2 if (q − 1) | (pq − 1),
(p−1) | (pq−1) and l1(p−1)+ l2(q−1) = pq−1 respectively, where R is a non-commutative
ring with unity having order p3q and |Z(R)| = p2.

3 Some consequences

In this section, we derive some consequences of the results obtained in Section 2.

Proposition 3.1. Let R be a finite ring such that the additive quotient group R
Z(R) is isomorphic

to Zp × Zp, where p is a prime. Then Γc(R) is CN-integral but not CN-hyperenergetic.

Proof. If R
Z(R)

∼= Zp × Zp then, by Theorem 2.3, it follows that Γc(R) is CN-integral.
We also have

Ecn(Γc(R)) = 2(p+ 1)((p− 1)|Z(R)| − 1)((p− 1)|Z(R)| − 2).

Since |V (Γc(R))| = (p2 − 1)|Z(R)|, by (1.1) we have

Ecn(K(p2−1)|Z(R)|) = 2((p2 − 1)|Z(R)| − 1)((p2 − 1)|Z(R)| − 2).

Clearly

((p2 − 1)|Z(R)| − 1)((p2 − 1)|Z(R)| − 2)

> ((p2 − 1)|Z(R)| − (p+ 1))((p2 − 1)|Z(R)| − 2(p+ 1))

= (p+ 1)((p− 1)|Z(R)| − 1)((p− 1)|Z(R)| − 2).

Thus Ecn(K(p2−1)|Z(R)|) > Ecn(Γc(R)).

As an immediate consequence of Proposition 3.1 we have the following corollary.

Corollary 3.2. If R is a non-commutative ring of order p2 or p3 then Γc(R) is CN-integral but
not CN-hyperenergetic.

Proposition 3.3. Let |R| = p4 and R has unity. Then Γc(R) is CN-integral but not CN-hyper-
energetic.
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Proof. By Theorem 2.5, it follows that Γc(R) is CN-integral.
If |Z(R)| = p then V (Γc(R)) has order p4 − p and so, by (1.1), we have

Ecn(Kp4−p) = 2(p4 − p− 1)(p4 − p− 2).

We also have

(p4 − p− 1)(p4 − p− 2) = (p4 − p)(p4 − p− 3) + 2

> p(p3 − 1)(p4 − p− 3)

= (p2 + p+ 1)(p2 − p)(p4 − p− 3)

> (p2 + p+ 1)(p2 − p− 1)(p2 − p− 2)

and

(p4 − p− 1)(p4 − p− 2) > (p2 + p+ 1)(p2 − p)(p4 − p− 3)

= l1(p
2 − p)(p4 − p− 3) + l2(p+ 1)(p2 − p)(p4 − p− 3)

= l1(p
2 − p)(p4 − p− 3) + l2(p

3 − p)(p4 − p− 3)

> l1(p
2 − p− 1)(p2 − p− 2) + l2(p

3 − p− 1)(p3 − p− 2),

where l1 + l2(p+ 1) = p2 + p+ 1. Therefore, by Theorem 2.5, it follows that

Ecn(Kp4−p) > Ecn(Γc(R)).

If |Z(R)| = p2 then V (Γc(R)) has order p4 − p2 and so, by (1.1), we have

Ecn(Kp4−p2) = 2(p4 − p2 − 1)(p4 − p2 − 2).

Since

(p4 − p2 − 1)(p4 − p2 − 2) = (p4 − p2)(p4 − p2 − 3) + 2

> (p+ 1)(p3 − p2)(p4 − p2 − 3)

> (p+ 1)(p3 − p2 − 1)(p3 − p2 − 2),

by Theorem 2.5, it follows that

Ecn(Kp4−p2) > Ecn(Γc(R)).

Hence, Γc(R) is not CN-hyperenergetic.

Proposition 3.4. Let |R| = p5, R has unity and Z(R) is not a field. Then Γc(R) is CN-integral
but not CN-hyperenergetic.

Proof. By Theorem 2.6, it follows that Γc(R) is CN-integral.
If |Z(R)| = p2 then V (Γc(R)) has order p5 − p2 and so, by (1.1), we have

Ecn(Kp5−p2) = 2(p5 − p2 − 1)(p5 − p2 − 2).

We also have

(p5 − p2 − 1)(p5 − p2 − 2) = (p5 − p2)(p5 − p2 − 3) + 2

> (p2 + p+ 1)(p3 − p2)(p5 − p2 − 3)

and

(p5 − p2 − 1)(p5−p2 − 2) > (p2 + p+ 1)(p3 − p2)(p5 − p2 − 3)

> l1(p
3 − p2)(p5 − p2 − 3) + l2(p+ 1)(p3 − p2)(p5 − p2 − 3)

= l1(p
3 − p2)(p5 − p2 − 3) + l2(p

4 − p2)(p5 − p2 − 3)

> l1(p
3 − p2 − 1)(p3 − p2 − 2) + l2(p

4 − p2 − 1)(p4 − p2 − 2),
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where l1 + l2(p+ 1) = p2 + p+ 1. Therefore, by Theorem 2.6, it follows that

Ecn(Kp5−p2) > Ecn(Γc(R)).

If |Z(R)| = p3 then V (Γc(R)) has order p5 − p3 and so, by (1.1), we have

Ecn(Kp5−p3) = 2(p5 − p3 − 1)(p5 − p3 − 2).

Since

(p5 − p3 − 1)(p5 − p3 − 2) = (p5 − p3)(p5 − p3 − 3) + 2

> (p+ 1)(p4 − p3)(p5 − p3 − 3)

> (p+ 1)(p4 − p3 − 1)(p4 − p3 − 2),

by Theorem 2.5, it follows that

Ecn(Kp5−p3) > Ecn(Γc(R)).

Hence, Γc(R) is not CN-hyperenergetic.

Proposition 3.5. Let R be a non-commutative ring of order p2q such that Z(R) = {0}. Then
Γc(R) is CN-integral but not CN-hyperenergetic.

Proof. By Theorem 2.7, it follows that Γc(R) is CN-integral. Note that V (Γc(R)) has order
p2q − 1 and so, by (1.1), we have

Ecn(Kp2q−1) = 2(p2q − 2)(p2q − 3).

We shall complete the proof considering the following cases.

Case 1: (t− 1) | (p2q − 1) where t ∈ {p, q, p2, pq}.
Let p2q − 1 = n(t− 1) for some positive integer n > 2. We have

(p2q − 2)(p2q − 3) = (n(t− 1)− 1)(n(t− 1)− 2)

= n2
(
t− n+ 1

n

)(
t− n+ 2

n

)
> n(t− 2)(t− 3),

since n+1
n , n+2

n < 2. Therefore, by Theorem 2.7(a), we have

Ecn(Kp2q−1) > Ecn(Γc(R)).

Case 2: l1(p− 1) + l2(q − 1) + l3(p2 − 1) + l4(pq − 1) = p2q − 1.
We have

(p2q − 2)(p2q − 3) =(p2q − 1− 1)(p2q − 1− 2)

=(p2q − 1)2 − 3(p2q − 1) + 2

>(p2q − 1)2 − 3(p2q − 1)

=(p2q − 1)(p2q − 4)

=l1(p− 1)(p2q − 4) + l2(q − 1)(p2q − 4) + l3(p
2 − 1)(p2q − 4)

+ l4(pq − 1)(p2q − 4)

>l1(p− 2)(p− 3) + l2(q − 2)(q − 3) + l3(p
2 − 2)(p2 − 3)

+ l4(pq − 2)(pq − 3),

since p − 1 > p − 2, q − 1 > q − 2, p2 − 1 > p2 − 2, pq − 1 > pq − 2 and p2q − 4 >
p− 3, q − 3, p2 − 3, pq − 3. Therefore, by Theorem 2.7(b), we have

Ecn(Kp2q−1) > Ecn(Γc(R)).

This completes the proof.
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Proposition 3.6. Let R be a non-commutative ring with unity having order p3q such that |Z(R)|
is not a prime. Then Γc(R) is CN-integral but not CN-hyperenergetic.

Proof. By Theorem 2.8 and Theorem 2.9, it follows that Γc(R) is CN-integral. If |Z(R)| = pq
then V (Γc(R)) has order p3q − pq and so, by (1.1), we have

Ecn(Kp3q−pq) = 2(p3q − pq − 1)(p3q − pq − 2).

Note that
p3q − pq − 1 > p3q − pq − 1− p = (p+ 1)(p2q − pq − 1)

and
p3q − pq − 2 > p3q − pq − 2− 2p = (p+ 1)(p2q − pq − 2).

Therefore,

(p3q − pq − 1)(p3q − pq − 2) >(p+ 1)2(p2q − pq − 1)(p2q − pq − 2)

>(p+ 1)(p2q − pq − 1)(p2q − pq − 2).

Hence, by Theorem 2.8, we have

Ecn(Kp3q−pq) > Ecn(Γc(R)).

If |Z(R)| = p2 then V (Γc(R)) has order p3q − p2 and so, by (1.1), we have

Ecn(Kp3q−p2) = 2(p3q − p2 − 1)(p3q − p2 − 2).

We shall complete the proof considering the following cases.
Case 1: (p− 1) | (pq − 1).

Let pq − 1 = n(p− 1) for some positive integer n > 2. We have

p3q − p2 − 1 = p2(pq − 1)− 1 = n(p3 − p2)− 1 > n(p3 − p2 − 1)

and
p3q − p2 − 2 = p2(pq − 1)− 2 = n(p3 − p2)− 2 > n(p3 − p2 − 2).

Therefore,

(p3q − p2 − 1)(p3q − p2 − 2) >n2(p3 − p2 − 1)(p3 − p2 − 2)

>n(p3 − p2 − 1)(p3 − p2 − 2).

Hence, by Theorem 2.9(a), we have

Ecn(Kp3q−p2) > Ecn(Γc(R)).

Case 2: (q − 1) | (pq − 1).
Let pq − 1 = n(q − 1) for some positive integer n > 2. We have

p3q − p2 − 1 = p2(pq − 1)− 1 = n(p2q − p2)− 1 > n(p2q − p2 − 1)

and
p3q − p2 − 2 = p2(pq − 1)− 2 = n(p2q − p2)− 2 > n(p2q − p2 − 2).

Therefore,

(p3q − p2 − 1)(p3q − p2 − 2) >n2(p2q − p2 − 1)(p2q − p2 − 2)

>n(p2q − p2 − 1)(p2q − p2 − 2).

Hence, by Theorem 2.9(b), we have

Ecn(Kp3q−p2) > Ecn(Γc(R)).
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Case 3: l1(p− 1) + l2(q − 1) = pq − 1.
We have l1(p3 − p2) + l2(p2q − p2) = p3q − p2 and

(p3q − p2 − 1)(p3q − p2 − 2) = (p3q − p2)2 − 3(p3q − p2) + 2

>(p3q − p2)2 − 3(p3q − p2)

=(p3q − p2)(p3q − p2 − 3)

=l1(p
3 − p2)(p3q − p2 − 3) + l2(p

2q − p2)(p3q − p2 − 3)

>l1(p
3 − p2 − 1)(p3 − p2 − 2) + l2(p

2q − p2 − 1)(p2q − p2 − 2),

since p3 − p2 > p3 − p2 − 1, p3q − p2 − 3 > p3 − p2 − 2, p2q − p2 > p2q − p2 − 1 and
p3q − p2 − 3 > p2q − p2 − 2. Therefore, by Theorem 2.9(c), we have

Ecn(Kp3q−p2) > Ecn(Γc(R)).

This completes the proof.

Proposition 3.7. If R is a finite 4-centralizer ring then Γc(R) is CN-integral but not CN-hyper-
energetic.

Proof. If R is a finite 4-centralizer ring then, by [11, Theorem 3.2], we have that the additive
quotient group R

Z(R) is isomorphic to Z2 × Z2. Hence, the result follows from Proposition 3.1
considering p = 2.

Proposition 3.8. If R is a finite 5-centralizer ring then Γc(R) is CN-integral but not CN-hyper-
energetic.

Proof. If R is a finite 5-centralizer ring then, by [11, Theorem 4.3], we have that the additive
quotient group R

Z(R) is isomorphic to Z3 × Z3. Hence, the result follows from Proposition 3.1
considering p = 3.

Proposition 3.9. If R is a finite (p+ 2)-centralizer ring of order pk, for any prime p, then Γc(R)
is CN-integral but not CN-hyperenergetic.

Proof. IfR is a finite (p+2)-centralizer ring of order pk then, by [11, Theorem 2.12], the additive
quotient group R

Z(R) is isomorphic to Zp×Zp. Hence, the result follows from Proposition 3.1.

The commuting probability of a finite ring R is the probability that a randomly chosen pair
of elements of R commute. Let Pr(R) be the commuting probability of R. Then

Pr(R) :=
|{(r, s) ∈ R×R : rs = sr}|

|R|2
.

The study of Pr(R) was initiated by MacHale [22] in 1976. Recent results on Pr(R) can be found
in [8, 9, 13, 17]. The following result shows that Γc(R) is CN-integral but not CN-hyperenergetic
if Pr(R) = 5

8 .

Proposition 3.10. Let R be a finite ring with Pr(R) = 5
8 then

CN-spec(Γc(R)) =
{
(−(|Z(R)| − 2))3|Z(R)|−1, ((|Z(R)| − 1)(|Z(R)| − 2))3

}
and Ecn(Γc(R)) = 6(|Z(R)| − 1)(|Z(R)| − 2) < Ecn(K3|Z(R)|).

Proof. If Pr(R) = 5
8 then, by [22, Theorem 1], we have R

Z(R)
∼= Z2 × Z2. Therefore, putting

p = 2 in Theorem 2.3 we get the required result.

Proposition 3.11. Let R be a finite ring and p the smallest prime divisor of |R|. If Pr(R) =
p2+p−1

p3 then Γc(R) is CN-integral but not CN-hyperenergetic.
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Proof. If p the smallest prime divisor of |R| and Pr(R) = p2+p−1
p3 , by [22, Theorem 3], we have

R
Z(R)

∼= Zp × Zp. Hence, the result follows from Proposition 3.1.

Notice that all the rings considered in this paper are finite CC-rings. By Theorem 2.1, it
follows that the commuting graph of a finite CC-ring is CN-integral. We conclude this paper
with the following conjecture.

Conjecture 3.12. If R is a finite CC-ring then Γc(R) is not CN-hyperenergetic.
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