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Abstract Let L be a lattice with 1 and 0. A filter F of a lattice L is called an identity-filter
if there exists a ∈ L \ {1} such that a ∨ F = {1}. The identity-filter graph IG(L) of L is a
graph whose vertices are all identity-filters F ̸= {1} of L and two distinct filters F and G are
adjacent if and only if F ∩ G = {1}. The basic properties and possible structures of the graph
IG(L) and its subgraph IGfg(L) induces by vertices which are finitely generated as filters of L
are investigated.

1 Introduction

Associating a graph to an algebraic structure is a research subject and has attracted consider-
able attention. In fact, the research in this subject aims at exposing the relationship between
algebra and graph theory and at advancing the application of one to the other. There has been
a lot of activity over the past several years in associating a graph to an algebraic system such
as a ring, module or lattice, for instance see [1,3, 4, 7, 10, 12, 14]. The main aim of this article
is that of extending some results obtained for ring theory to in lattice theory. The main difficulty
is figuring out what additional hypotheses the lattice or filter must satisfy to get similar results.
Nevertheless, growing interest in developing the algebraic theory of lattices can be found in
several papers and books (see for example [5, 6, 7, 8, 9, 10, 11, 13]).

Let L be a distributive lattice with 0 and 1 with I(L) its set of identity-filters. In the present
paper, we are interested in investigating the identity-filter graphs of lattices to use other notions
of the annihilating-ideal graphs, and associate which exist in the literature as laid forth in [4,
14]. The purpose of this paper is to investigate a graph associated to a lattice L called the
identity-filter graph of L. This will result in characterization of lattices in terms of some specific
properties of those graphs. The identity-filter graph of L is a simple graph IG(L) with vertices
I(L)∗ = I(L) \ {1}, and two distinct vertices are adjacent if and only if the intersection of
the corresponding filters is {1}. We also study the graph of IGfg(L) which is a subgraph of
IG(L) generated by vertices which, as filters of L are finitely generated. The concept of the
annihilating-ideal graph of a commutative ring R was introduced and studied by Behboodi and
Rakeei in [4]. The annihilating-ideal graph ofR, denoted by AG(R), is a graph whose vertex set
is the set of all nonzero annihilator ideals of R and two vertices I and J are adjacent whenever
IJ = (0). Finitely generated annihilating-ideal graph of a commutative ring R was investigated
by Taheri and Tehranian in [14].

Here is a brief outline of the article. Among many results in this paper, the first, introduction
section contains elementary observations needed later on. In Section 2, we investigate some
finiteness conditions and connectivity of identity-filter graphs. For instance, it is proved that if L
is not a L-domain and an element x ̸= 1 of L has a complement y ̸= 1 in L, then IG(L) has ACC
(resp. DCC) on vertices if and only if L is a Noetherian (resp. an Artinian) lattice (Theorem
2.6). Also, it is shown that If L is a complemented lattice, then IG(L) has n (n ≥ 1) vertices
if and only if L has only n nontrivial filters (Corollary 2.10). It is shown in Theorem 2.17 that
IG(L) is connected with diam(IG(L)) ≤ 3 and if IG(L) contains a cycle, then gr(IG(L)) ≤ 4.
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An element x of L is called identity join of lattice L ̸= {1}, if there exists 1 ̸= y ∈ L such that
x∨ y = 1. The set of all identity join of a lattice L is denoted I(L). It is proved in Theorem 2.18
that if L is a complemented lattice which is not a L-domain, then IG(L) is a complete graph if
and only if I(L) is a simple filter of L and L = I(L) ⊙ (1 :L I(L)), where (1 :L I(L)) is a
simple filter.

In Section 3, we study some finiteness conditions and connectivity of finitely generated identity-
filter graphs and establish some basic connections between IG(L) and IGfg(L). It is shown in
Theorem 3.2 that if L is not a L-domain and an element x ̸= 1 of L has a complement y ̸= 1
in L, then IGfg(L) has ACC on vertices if and only if L is a Noetherian lattice. Also, we show
that if L is a complemented lattice which is not a L-domain, then IGfg(L) contains a universal
vertex if and only if IG(L) contains a universal vertex (Theorem 3.5) and IG(L) is a complete
(star) graph if and only if IGfg(L) is a complete (star) graph (Theorem 3.8 and Theorem 3.14).
In this section, diameter and girth of the graph IGfg(L) are studied (Theorem 3.1, Proposition
3.11, Theorem 3.12 and Corollary 3.13). It is show that if L is a complemented lattice which is
not a L-domain such that gr(IGfg(L)) = 4, then IG(L) is a complete bipartite graph if and only
if IGfg(L) is a complete bipartite graph (Theorem 3.17). Consequently, if L is a complemented
lattice which is not a L-domain, then IG(L) is a bipartite graph if and only if IGfg(L) is a
bipartite graph (Theorem 3.19).

Let G be a simple graph with vertex set V (G) and edge set E (G). For every vertex v ∈ V
(G), the degree of v, denoted by degG(v), is defined the cardinality of the set of all vertices which
are adjacent to v. A graph G is said to be connected if there exists a path between any two dis-
tinct vertices, G is a complete graph if every pair of distinct vertices of G are adjacent and Kn

will stand for a complete graph with n vertices. Let u, v ∈ V (G). We say that u is a universal
vertex of G if u is adjacent to all other vertices of G and write u ∽ v if u and v are adjacent.
The distance d(u, v) is the length of the shortest path from u to v if such path exists, otherwise,
d(a, b) = ∞. The diameter of G is diam(G) = sup{d(a, b) : a, b ∈ V(G)}. The girth of a graph
G, denoted by gr(G), is the length of a shortest cycle in G. If G has no cycles, then gr(G) = ∞.
A subset S ⊆ V(G) is independent if no two vertices of S are adjacent. For a positive integer
k, a k-partite graph is a graph whose vertices can be partitioned into k nonempty independent
sets. For terminology and notation not defined here, the reader is referred to [15].

By a lattice we mean a poset (L,≤) in which every couple elements x, y has a g.l.b. (called
the meet of x and y, and written x ∧ y) and a l.u.b. (called the join of x and y, and written
x ∨ y). A lattice L is complete when each of its subsets X has a l.u.b. and a g.l.b. in L. Setting
X = L, we see that any nonvoid complete lattice contains a least element 0 and greatest element
1 (in this case, we say that L is a lattice with 0 and 1). A lattice L is called a distributive
lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in L (equivalently, L is distributive if
(a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in L). A non-empty subset F of a lattice L is called a
filter, if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if L is a lattice
with 1, then 1 ∈ F and {1} is a filter of L). A proper filter P of L is called prime if x ∨ y ∈ P ,
then x ∈ P or y ∈ P . The set of all prime filters of L is denoted Spec(L). A proper filter m of L
is said to be maximal if E is a filter in L with m ⫋ E, then E = L. The set of all maximal filters
of L is denoted Max(L). If L is a lattice, then L is Noetherian (resp. Artinian) if any non-empty
set of filters of L has a maximal member (resp. minimal member) with respect to set inclusion.
This definition is equivalent to the ascending chain condition (resp. descending chain condition)
on filters of L. L is called L-domain if a ∨ b = 1, then either a = 1 or b = 1. For terminology
and notation not defined here, the reader is referred to [5].

Lemma 1.1. Let L be a lattice [5, 6].
(1) A non-empty subset F of L is a filter of L if and only if x ∨ z ∈ F and x ∧ y ∈ F for all

x, y ∈ F , z ∈ L. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F
gives x, y ∈ F for all x, y ∈ L.

(2) If F1, F2 are filters of L and a ∈ L, then F1 ∨ F2 = {a1 ∨ a2 : a1 ∈ F1, a2 ∈ F2} and
a ∨ F1 = {a ∨ a1 : a1 ∈ F1} are filters of L and F1 ∩ F2 = F1 ∨ F2 ⊆ F1, F2.

(3) If L is distributive, F is a filter of L and a ∈ L, then (1 :L F ) = {x ∈ L : x ∨ F = {1}}
and (1 :L T ({a}) = (1 :L a) = {x ∈ L : a ∨ x = 1} are filters of L.
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(4) If L is distributive and F1, F2 are filters of L, then F1 ∧ F2 = {a ∧ b : a ∈ F1, b ∈ F2} is
a filter of L, F1, F2 ⊆ F1 ∧ F2 (for if x ∈ F1, then x = x ∧ 1 ∈ F1 ∧ F2) and if F1 ⊆ F2, then
F1 ∧ F2 = F2.

Let H be subset of a lattice L. Then the filter generated by H , denoted by T (H), is the
intersection of all filters that is containing H . A filter F is called finitely generated (resp cyclic)
if there is a finite subset H (resp. a ∈ F ) of F such that F = T (H) (resp. T ({a})).

Lemma 1.2. Let L be a lattice [8, 9].
(1) Let A be an arbitrary non-empty subset of L. Then T (A) = {x ∈ L : a1 ∧a2 ∧ · · ·∧an ≤

x for some ai ∈ A (1 ≤ i ≤ n)}. Moreover, if F is a filter and A is a subset of L with A ⊆ F ,
then T (A) ⊆ F and T (F ) = F .

(2) If F and G are filters of L, then T (G ∪ F ) = F ∧G;
(3) (modular law) If F ,G andH are filters of L with F ⊆ G, thenG∩(F ∧H) = F ∧(G∩H).

A lattice L is called semisimple, if for each proper filter F of L, there exists a filter G of L
such that L = F ∧G and F ∩G = {1}). In this case, we say that F is a direct meet of L, and we
write L = F ⊙ G. A filter F of L is called a semisimple filter, if every subfilter of F is a direct
meet. A simple filter is a filter that has no filters besides the {1} and itself.

Let Λ = {Fi : i ∈ I} be a set of filters of L. Then it is easy to see that
∧

i∈I Fi = {
∧

i∈I′ fi :
fi ∈ Fi, I

′ ⊂ I, I ′ is finite} is a filter of L (if Λ = ∅, then we set
∧

i∈I Fi = {1}). L =
⊙

i∈I Fi is
said to be a direct decomposition of L into the meet of the filters {Fi : i ∈ I} if (1) L =

∧
i∈I Fi

and (2) {Fi : i ∈ I} is independent i.e for each j ∈ I , Fj ∩
∧

j ̸=i∈I Fi = {1}. For each filter F
of L, Soc(F ) =

∧
i∈Λ

Fi, where {Fi}i∈Λ is the set of all simple filters of L contained in F .
Quotient lattices are determined by equivalence relations rather than by ideals as in the ring

case. If F is a filter of a lattice (L,≤), we define a relation on L, given by x ∼ y if and only if
there exist a, b ∈ F satisfying x ∧ a = y ∧ b. Then ∼ is an equivalence relation on L, and we
denote the equivalence class of a by a ∧ F and these collection of all equivalence classes by L

F .
We set up a partial order ≤Q on L

F as follows: for each a∧F, b∧F ∈ L
F , we write a∧F ≤Q b∧F

if and only if a ≤ b. It is straightforward to check that (LF ,≤Q) is a poset. The following notation
below will be kept in this paper: Let a∧F, b∧F ∈ L

F and set X = {a∧F, b∧F}. By definition
of ≤Q, (a ∨ b) ∧ F is an upper bound for the set X . If c ∧ F is any upper bound of X , then we
can easily show that (a ∨ b) ∧ F ≤Q c ∧ F . Thus (a ∧ F ) ∨Q (b ∧ F ) = (a ∨ b) ∧ F . Similarly,
(a ∧ F ) ∧Q (b ∧ F ) = (a ∧ b) ∧ F . Thus (LF ,≤Q) is a lattice. We need the following Lemma
proved in [9, Lemma 4.3].

Lemma 1.3. Let G be a a subfilter of a filter F of L.
(1) If a ∈ F , then a ∧ F = F . By the definition of ≤Q, it is easy to see that 1 ∧ F = F is the

greatest element of L
F .

(2) If a ∈ F , then a ∧ F = b ∧ F (for every b ∈ L) if and only if b ∈ F . In particular,
c ∧ F = F if and only if c ∈ F . Moreover, if a ∈ F , then a ∧ F = F = 1 ∧ F .

(3) By the definition ≤Q, we can easily show that if L is distributive, then L
F is distributive.

(4) F
G = {a ∧G : a ∈ F} is a filter of L

G .
(5) If K is a filter of L

G , then K = F
G for some filter F of L.

(6) If H is a filter of L such that G ⊆ H and F
G = H

G , then F = H .
(7) If H and V are filters of L containing G, then F

G ∩ H
G = V

G if and only if V = H ∩ F .
(8) If H is a filter of L containing G, then F

∧
H

G = H
G

∧
F
G .

2 Finiteness conditions and connectivity of IG(L)

Throughout this paper, we shall assume unless otherwise stated, that L is a distributive lattice
with 1 and 0. In this section, we collect basic properties concerning the graph IG(L). Our
starting point is the following proposition:

Proposition 2.1. If F is a filter of L, then the following conditions hold:
(1) L is Noetherian if and only if both F and L

F are Noetherian;
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(2) L is Artinian if and only if both F and L
F are Artinian;

(3) L is Noetherian if and only if every filter of L is finitely generated.

Proof. (1) Let L be a Noetherian lattice. Since every subfilter of F is a filter of L, it is clear
from the definition that F is Noetherian. By Lemma 1.3, as ascending chain of filters of L

F must
have the form H1

F ⊆ H2
F ⊆ · · · , where H1 ⊆ H2 ⊆ · · · is an ascending chain of filters of L all of

which contain F . Since the latter chain must eventually become stationary, so must the former
by Lemma 1.3. Conversely, let H1 ⊆ H2 ⊆ · · · be an ascending chain of filters of L. Then
H1 ∩F ⊆ H2 ∩F ⊆ · · · is an ascending chain of subfilters of F , and so there is a positive integer
s such that Hs ∩F = Hs+i ∩F for all positive integer i. By Lemma 1.3, H1

∧
F

F ⊆ H2
∧

F
F ⊆ · · ·

is a chain of filters of L
F . Then there exists a positive integer t such that Ht

∧
F

F = Ht+i
∧

F
F for

all positive integer i, so that Ht ∧ F = Ht+i ∧ F for all i. Let u = max{s, t}. We show that for
each positive integer i, Hu = Hu+i. It suffices to show that Hu+i ⊆ Hu. Let x ∈ Hu+i. Then
x = a ∧ b ∈ Hu+i ∧ F = Hu ∧ F for some a ∈ Hu and b ∈ F . Now Hu+i is a filter gives
b ∈ Hu+i; so b ∈ Hu+i ∩ F = Hu ∩ F which implies that x = a ∧ b ∈ Hu, as required.

(2) This can be proved in a very similar manner to the way in which (1) was proved above,
and we omit it.

(3) Assume that L is Noetherian and let G be a filter of L. Suppose to the contrary, that G
is not finitely generated. Let Ω be the set of all subfilters of G which are finitely generated (so
Ω ̸= ∅ since T ({1}) = {1} ∈ Ω). It follows from the maximal condition that Ω has a maximal
member with respect to inclusion, H = T ({x1, · · · , xn}) say; so H ⫋ G. Let x ∈ G \H . Then
H ∧ T ({x}) = T ({x1, · · ·xn, x}) is a finitely generated subfilter of G with H ⫋ H ∧ T ({x}),
a contradiction. Thus G must be finitely generated. Conversely, let F1 ⊆ F2 ⊆ · · · be an
ascending chain of filters of L. Then G =

⋃
i∈N Fi is a filter of L. By assumption, suppose that

it is generated by f1, · · · , fn. For each i = 1, · · ·n, there exists positive integer mi such that
fi ∈ Fmi . If k = max{m1, · · ·mn}, then fi ∈ Fk for all i = 1, · · ·n. Hence Fk = Fk+i for all
i ∈ N, as needed.

Lemma 2.2. For the lattice L, the following conditions hold:
(1) If F1 and F2 are nontrivial filters of L such that L = F1 ∧F2, then G is a filter of L if and

only if G = G1 ∧G2 for some subfilter G1 of F1 and subfilter G2 of F2;
(2) A filter F ̸= {1} is an identity-filter if and only if there exists a filter G ̸= {1} of L such

that G ∨ F = G ∩ F = {1}.

Proof. (1) Let G be a filter of L and set

G1 = {x ∈ F1 : x ∧ y ∈ G for some y ∈ F2}.

If x, z ∈ G1 and a ∈ L, then x ∧ c, z ∧ d ∈ G for some c, d ∈ F2 gives (x ∧ z) ∧ (c ∧ d) ∈ G
and (x ∨ a) ∧ c = (x ∧ c) ∨ (c ∧ a) ∈ G; hence G1 is a subfilter of F1. Similarly, G2 = {x ∈
F2 : x ∧ y ∈ G for some y ∈ F1} is a subfilter of F2. Since the inclusion G ⊆ G1 ∧ G2 is clear
we will prove the reverse inclusion. If x ∈ G1, then x ∧ y ∈ G for some y ∈ F2. Now G is a
filter gives x ∈ G by Lemma 1.1; so G1 ⊆ G. Similarly, G2 ⊆ G. Thus G1 ∧ G2 ⊆ G and so
we have equality. Conversely, assume that G1 and G2 are subfilters of F1 and F2, respectively.
We show that G1 ∧G2 is a filter of L. Clearly, if X,Y ∈ G1 ∧G2, then X ∧ Y ∈ G1 ∧G2. Let
a∧b ∈ G1∧G2 for some a ∈ G1, b ∈ G2 and c ∈ L. Then c∨(a∧b) = (c∨a)∧(c∨b) ∈ G1∧G2
by Lemma 1.1. This completes the proof.

(2) If a∨F = {1} for some 1 ̸= a ∈ L, then T ({a})∩F = {1}. Conversely, if G∩F = {1}
for some filter G ̸= {1} of L, then there is an element 1 ̸= b ∈ G such that b ∨ F = {1}, as
needed.

If x ∈ L, then a complement of x in L is an element y ∈ L such that x∨ y = 1 and x∧ y = 0.
The lattice L is complemented if every element of L has a complement in L.

Lemma 2.3. If L is not a L-domain and an element x ̸= 1 of L has a complement y ̸= 1 in L,
then L

(1:LT ({x})
∼= T ({x}).

Proof. Set F = (1 :L x) (so (1 :L x) ̸= {1}). We show that the mapping φ : L → T ({x})
for which φ(a) = a ∨ x for all a ∈ L is a lattice morphism. Let a, b ∈ L. Then φ(a ∧ b) =
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(a∧b)∨x = (a∨x)∧(b∨x) = φ(a)∧φ(b). Similarly, φ(a∨b) = φ(a)∨φ(b). If a∧F = b∧F ,
then there are elements f, f ′ ∈ F such that f ′ ∧ a = f ∧ b. Hence φ(b) = b ∨ x = (b ∨ x) ∧ 1 =
(b ∨ x) ∧ (f ∨ x) = x ∨ (f ∧ b) = x ∨ (f ′ ∧ a) = x ∨ a = φ(a). It follows that there is indeed
a mapping ψ : L

F → T ({x}) by the formula ψ(a ∧ F ) = φ(a), and it is clear that ψ is serjective.
Next note that, for all a∧F, b∧F ∈ L

F , we have ψ((a∧F )∧Q(b∧F )) = ψ((a∧b)∧F ) = φ(a∧b) =
φ(a)∧φ(b) = ψ(a∧F )∧Qψ(b∧F ). Similarly, ψ((a∧F )∨Q (b∧F )) = ψ(a∧F )∨Qψ(b∧F ).
It remains to show that ψ is injective. If ψ(a ∧ F ) = ψ(b ∧ F ), then a ∨ x = b ∨ x. It follows
that (a ∨ x) ∧ y = (b ∨ x) ∧ y, and so (a ∧ y) ∨ 0 = (b ∧ y) ∨ 0; hence a ∧ y = b ∧ y. Thus
a ∧ F = b ∧ F .

Proposition 2.4. For the lattice L the following conditions hold:
(1) The graph IG(L) is a null graph if and only if L is a simple lattice;
(2) If F is a filter of L, then F ∩ (1 :L F ) = {1};
(3) If V(IG(L)) ̸= ∅, then IG(L) is not an empty graph.

Proof. (1) The proof is clear.
(2) If x ∈ F ∩ (1 :L F ), then x ∨ F = {1} gives x = x ∨ x ∈ x ∨ F = {1}. Thus

F ∩ (1 :L F ) = {1}.
(3) If G ∈ V(IG(L)), then H = (1 :L G) ̸= {1}. Since by (2), G ∩H = G ∨H = {1}, we

get {1} ≠ G ⊆ (1 :L H) which implies that H ∈ V(IG(L)). Now the assertion follows from
(2).

Henceforth we will assume that all considered lattices L are not simple since all definitions
of graph theory are for non-null graph [15].

Proposition 2.5. Let S be a simple filter of a complemented lattice L which is not a L-domain.
Then the following conditions hold:

(1) (1 :L S) is a maximal filter of L.
(2) L = S ⊙ (1 :L S).

Proof. (1) Let x ∈ S \ {1}. Since S is simple, we conclude that S = T ({x}). It follows from
Lemma 2.3 that L

(1:LT ({x})
∼= T ({x}); hence L

(1:LT ({x}) is a simple lattice. Thus (1 :L S) is a
maximal filter of L.

(2) By Proposition 2.4 (2), S ∩ (1 :L S) = {1}. As

(1 :L S) ⫋ S ∧ (1 :L S) ⊆ L,

we get L = S ∧ (1 :L S); hence L = S ⊙ (1 :L S).

Let L be a lattice. We say that the identity-filter graph IG(L) has ACC (resp. DCC) on
vertices if L has ACC (resp. DCC) on I(L)∗. Let F(L) be the set of all filters of L and set
F(L)∗ = F(L) \ {1}.

Compare the next theorem with Theorem 1.1 in [4].

Theorem 2.6. If L is not a L-domain and an element x ̸= 1 of L has a complement y ̸= 1 in L,
then IG(L) has ACC (resp. DCC) on vertices if and only if L is a Noetherian (resp. an Artinian)
lattice.

Proof. Let IG(L) has ACC (resp. DCC) on vertices and set F = (1 :L x),

A = {G ∈ F(L) : G ⊆ T ({x})}

and B = {G ∈ F(L) : G ⊆ F}. If z ∈ G ∈ A, then there exists a ∈ L such that z = x ∨ a;
so y ∨ z = y ∨ (x ∨ a) = 1 which implies that y ∈ (1 :L G) ̸= {1}. Thus A ⊆ V(IG(L)). If
G ∈ B, then x ∨ G = {1} gives x ∈ (1 :L G) ̸= {1}; hence B ⊆ V(IG(L)). It follows that
the filters T ({x}) and F have ACC (resp. DCC) on subfilters i.e. T ({x}) and F are Noetherian
(resp Artinian) filters. Now Propositions 2.1 and Lemma 2.3 gives R is a Noetherian (resp. an
Artinian) lattice. The other implication is clear.
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A filter F ̸= {1} of L is called L-second if for each a ∈ L, either a∨F = {1} or a∨F = F .
By [6, Proposition 2.1], F is L-second if and only if the only subfilters of F are {1} and F itself
(i.e. F is simple) and in this case, |F | = 2. Moreover, if L is a Artinian lattice and F is a filter of
L with F ̸= {1}, then F contains only a finite number of simple filters by [6, Theorem 2.2 (i)].

Proposition 2.7. (1) If L is an Artinian complemented lattice, then every proper filter F of L
with F ̸= {1} is a vertex of IG(L).

(2) If L is an Artinian complemented L-domain, then L is a simple lattice.

Proof. (1) By [6, Theorem 2.2 (iii)], L = S1 ∧ · · · ∧ Sn, where S1, · · · , Sn are distinct simple
filters of L (i.e. L is semisimple). As Si ∩ Sj = Si ∨ Sj = {1}, we get {1} ⫋ Sj ⊆ (1 :L Si)
for all 1 ≤ i ̸= j ≤ n. Let G be a nontrivial filter of L (i.e. different from {1} and L). There is a
simple filter S of L such hat S ⊈ G (otherwise, L = G which is impossible). Then S is a simple
filter gives S ∩G = S ∨G = {1}; hence {1} ⫋ S ⊆ (1 :L G). This completes the proof.

(2) Assume to the contrary, that L is not simple. So we can write L = S1 ⊙ S2, where
S1 = T ({x}) and S2 = T ({y}) are distinct simple filters of L by [6, Theorem 2.2 (iii)]. Since
S1 ∩ S2 = S1 ∨ S2 = {1}, x ∨ y = 1; so either x = 1 or y = 1 which is impossible. Thus L is
simple.

LetR be a non-domain. In [4], the following questions were investigated: (1) When |A(R)∗| <
|I(R)∗| and (2) |A(R)∗| = |I(L)∗|, as a conjecture? In that paper, the conjecture above is true
for all Artinian rings as well as all decomposable rings (see [4, Propositions 1.3 and 1.6]). In
the following example, it is shown that the conjecture above is not true for all Artinian lattices
and the condition " L is a complemented lattice" in Proposition 2.7 (1) cannot be omitted.

Example 2.8. (1) Let L = {0, a, b, c, d, 1} be a lattice with 0 ≤ d ≤ c ≤ a ≤ 1, 0 ≤ d ≤ c ≤ b ≤
1, a∨b = 1 and a∧b = c. An inspection will show that the nontrivial filters of L are S1 = {1, a},
S2 = {1, b}, S3 = {1, a, b, c} and S4 = {1, a, b, c, d} with (1 :L S1) ̸= {1}, (1 :L S2) ̸= {1},
(1 :L S3) = {1} and (1 :L S4) = {1}. Moreover, L is Artinian which is not a complemented
L-domain, but 2 = |I(L)∗| < |F(L)∗| = 4. This provides an answer to a question (1) which
is investigated in [4]. Also, this show that the condition " L is a complemented lattice" is not
superficial in Proposition 2.7 (1).

(2) Let L = {0, a, b, c, 1} be a lattice with 0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ c ≤ 1, a ∨ b = c and
a∧b = 0. An inspection will show that the nontrivial filters of L are S1 = {1, a, c}, S2 = {1, b, c}
and S3 = {1, c} with (1 :L S1) = {1}, (1 :L S2) = {1} and (1 :L S3) = {1}. Moreover, L is
Artinian which is not a complemented L-domain, but 0 = |I(L)∗| < |F(L)∗| = 3.

(3)Let D = {a, b, c}. Then L(D) = {X : X ⊆ D} forms a distributive lattice under
set inclusion greatest element D and least element ∅ (note that if x, y ∈ L(D), then x ∨ y =
x ∪ y and x ∧ y = x ∩ y). It can be easily seen that the set of all nontrivial filters L(D) is
{{D}, F1, F2, F3, F4, F5, F6}, where F1 = {D, {a, b}}, F2 = {D, {a, c}}, F3 = {D, {b, c}},

F4 = {D, {a, c}, {a, b}{a}},

F5 = {D, {b, c}, {a, b}{b}} and F6 = {D, {a, c}, {c, b}{c}} with (1 :L Si) ̸= {1} for 1 ≤ i ≤
6. Moreover, L is an Artinian complemented lattice which is not a L-domain with |I(L)∗| =
|F(L)∗|.

Compare the next theorem with Theorem 1.4 in [4].

Theorem 2.9. If L is a complemented lattice which is not a L-domain, then the following condi-
tions are equivalent:

(1) IG(L) is a finite graph;
(2) L has only finitely many filters;
(3) Every vertex of IG(L) has finite degree.

Proof. (1) ⇒ (2) Let |V(IG(L))| = n (n ≥ 1). Then by Theorem 2.6, L is an Artinian lattice
which implies that every nontrivial filter of L is a vertex of IG(L) by Proposition 2.7. Hence L
has only n nontrivial filters.

The implication (2) ⇒ (3) is clear.
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(3) ⇒ (1) Let every vertex of IG(L) has finite degree. Assume to the contrary, that IG(L) is
an infinite graph. Let G = T ({x}) be a vertex of IG(L) and F = (1 :L G). Then G ∩ F = {1}
by Proposition 2.4. Let H be an arbitrary subfilter of G. Then H ∩ F ⊆ G ∩ F = {1} gives
H and F are adjacent in IG(L). Thus if the set of subfilters of G (respectively F) is infinite,
then F (receptively G) has infinite degree which is impossible. Hence the set of subfilters of G
and F are finite and so they are Artinian filters. Since L

F
∼= G by Lemma 2.3, we get L is an

Artinian lattice by Proposition 2.1. It follows that every nontrivial filter of L is a vertex of IG(L)
by Proposition 2.7. We split the proof into two cases:

Case 1. |max(L)| = 1. SinceG has finite number of subfilters, L has a minimal (simple) filter
T ({y}) = K. If m = (1 :L K), then m is a maximal filter of L by Proposition 2.5 and so every
proper filter of L is contained in m. So if H is any vertex of IG(L), then K ∩H ⊆ m∩K = {1}
gives K is adjacent to H i.e K is adjacent to all other vertices of ΓM (L). Since K has finite
degree, IG(L) is a finite graph.

Case 2. |max(L)| ≥ 2. Let m1 and m2 be different maximal filters of L. Without loss of
generality, let y ∈ m1 and y /∈ m2; so L = T ({y})∧m2 with m2 ∩T ({y}) = {1}. Then for each
subfilter G of T ({y}), G ∩m2 ⊆ m2 ∩ T ({y}) = {1} gives the vertex G of IG(L) is adjacent to
m2. Thus the set of subfilters of T ({y}) is finite. Similarly, the set of subfilters of m2 is finite. It
follows that the set of filters of L is finite by Lemma 2.2. Hence IG(L) is a finite graph.

Corollary 2.10. If L is a complemented lattice, then IG(L) has n (n ≥ 1) vertices if and only if
L has only n nontrivial filters.

Proof. By Proposition 2.7 and Theorem 2.9, we have IG(L) has n vertices if and only if L has
only n nontrivial filters.

Lemma 2.11. If F1, · · · , Fn are filters of L, then

n⋂
i=1

(1 :L Fi) = (1 :L
n∧

i=1

Fi).

Proof. Since Fi ⊆
∧n

i=1 Fi for all 1 ≤ i ≤ n, (1 :L
∧n

i=1 Fi) ⊆ (1 :L Fi), i.e. (1 :L
∧n

i=1 Fi) ⊆⋂n
i=1(1 :L Fi) holds. For the other inclusion, let x ∈

⋂n
i=1(1 :L Fi). Then x ∨ Fi = {1} for all

1 ≤ i ≤ n; so x ∨
∧n

i=1 Fi =
∧n

i=1(x ∨ Fi) = {1}, and so we have equality.

Theorem 2.12. Let L be a Noetherian lattice. If all nontrivial filters of L are vertices of IG(L),
then L has only finitely many maximal filters.

Proof. Assume to the contrary, that {mi : i ∈ N} are distinct maximal filters of L. By assump-
tion, (1 :L mi) ̸= {1} for all i ∈ N. Then there exist 1 ̸= ai ∈ L such that ai ∨mi = {1} which
implies that mi = (1 :L ai) by maximality of mi for all i ∈ N. If i ̸= t, then mi ∧mt = L gives
0 = a∧b for some a ∈ mi and b ∈ mt. It follows that ai = ai∨0 = (ai∨a)∧(ai∨b) = ai∨b ∈ mt

which gives for each i ∈ N, ai is in every maximal filter mt for i ̸= t. Since L is Noethe-
rian, the chain T ({a1}) ⫋ T ({a1}) ∧ T ({a2}) ⫋ · · · ⫋

∧n
i=1 T ({ai}) · · · must stabilize, and

each step is proper since
⋂s

i=1 mi = (1 :L
∧s

i=1 T ({ai})) for each s by Lemma 2.10. Thus
|max(L)| <∞.

Lemma 2.13. Let F be a filter of L that is maximal among all (1 :L x) of elements x ̸= 1 of L.
Then F is a prime filter.

Proof. Let a ̸= 1 be an element of L such that F = (1 :L a). If x ∨ y ∈ F for some x, y ∈ L
with x /∈ F , then a ∨ x ̸= 1 gives F ⊆ (1 :L a ∨ x); so y ∈ (1 :L a ∨ x) = F by maximality of
F . Thus F is prime.

Lemma 2.14. For the lattice L, the following conditions hold:
(1) I(L)∗ ̸= ∅ if and only if L is not a L-domain;
(2) I(L)∗ ̸= ∅ if and only if |I(L)| ≥ 2.

Proof. (1) Let I(L)∗ ̸= ∅. Then there exists a nontrivial filter F of L such that (1 :L F ) ̸= {1}.
Take 1 ̸= y ∈ F , as F ̸= {1}. By assumption, there is an element 1 ̸= x ∈ L such that
x ∨ F = {1} which implies that x ∨ y = 1, i.e. the result holds. Conversely, suppose that L is
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not a L-domain. Then there are elements x ̸= 1 and y ̸= 1 such that x∨ y = 1. Set G = T ({x}).
Then G ∈ I(L)∗ since 1 ̸= y ∈ (1 :L G).

(2) If G is a vertex of IG(L), then there exists 1 ̸= x ∈ L such that x∨G = {1}; so x∨y = 1
for some 1 ̸= y ∈ G which implies that x, y ∈ I(L). Conversely, if 1 ̸= a ∈ I(L), then a∨b = 1
for some 1 ̸= b ∈ L which implies that T ({a}) ∈ I(L)∗, as required.

Theorem 2.15. If L is a Noetherian lattice, then either I(L)∗ = ∅ or at least one of the vertices
of IG(L) is a prime filter.

Proof. Suppose I(L)∗ ̸= ∅. Then L is not a L-domain by Lemma 2.14. It is easy to see that
the set of all (1 :L a) of elements a ̸= 1 of L is a subset of I(L)∗. Since L is Noetherian, there
is a filter F = (1 :L z) of L which is maximal among all (1 :L a) of elements a ̸= 1 of L. It
follows from Lemma 2.13 that F is prime. Moreover, since L is not a L-domain, F ̸= {1} and
so F ∈ I(L)∗.

Theorem 2.16. Let m be a maximal filter of a complemented lattice L which is not a L-domain.
Then m ∈ I(L)∗ if and only if Soc(L) ̸= {1}.

Proof. Let m ∈ I(L)∗ be a maximal filter and set G = (1 :L m). Then G ∨ m = {1}. Take
1 ̸= a ∈ G, as G ̸= {1}. Now a ∨m = {1} gives m = (1 :L a) by maximality of m. By Lemma
2.3, L

m
∼= T ({a}) which gives T ({a}) is a simple filter of L, i.e. Soc(L) ̸= {1}. Conversely,

assume that Soc(L) ̸= {1} and S is a simple filter of L. Then S = T ({s}) for some s ∈ S. Set
H = (1 :L S). Since L

H
∼= S and S is a simple filter of L, H ̸= {1} is a maximal filter of L

which is not a L-domain and so S ∨H = G ∩H = {1} gives H ∈ I(L)∗.

Theorem 2.17. For the lattice L, the following conditions hold:
(1) IG(L) is connected graph of diameter not bigger than 3;
(2) If IG(L) contains a cycle, then gr(IG(L)) ≤ 4.

Proof. (1) Let F and G be vertices in IG(L) with F ̸= G. Then Z = (1 :L F ) ̸= {1},
W = (1 :L G) ̸= {1}, F ∩ Z = {1} and W ∩ G = {1}. If F ∩ G = {1}, then d(F,G) = 1. If
F ∩G ̸= {1} and Z ∩W = {1}, then F,G connected by a path F ∽ Z ∽W ∽ G of length ≤ 3.
If G ∩ F ̸= {1} and W ∩ Z ̸= {1}, then F,G connected by a path F ∽ Z ∩W ∽ G of length
= 2.

(2) Suppose that IG(L) contains a cycle and let F1 ∽ · · · ∽ Fn ∽ F1 be a cycle with the
minimum length. If n ≤ 4, we are done. If n > 4, then F1 ∩ F4 ̸= {1}. We split the proof into
three cases.

Case 1. F1 ∩ F4 = F1. Then F1 ∩ F3 ⊆ F3 ∩ F4 = {1} gives F1 ∽ F2 ∽ F3 ∽ F1 is a cycle
which is impossible. The case F1 ∩ F4 = F4 is similar.

Case 2. F1∩F4 = F2. Then F2 ⊆ F1 gives F2∩Fn ⊆ F1∩Fn = {1}; so F2 ∽ · · · ∽ Fn ∽ F2
is a cycle with length n− 1, a contradiction. The case F1 ∩ F4 = F3 is similar.

Case 3. F1 ∩ F4 ̸= F1, F2, F3, F4. Since F2 ∩ (F1 ∩ F4) = {1} = F3 ∩ (F1 ∩ F4), we have
F2 ∽ F1∩F4 ∽ F3 ∽ F2 is a path which is a contradiction. Hence n ≤ 4 and gr(IG(L)) ≤ 4.

The next theorem gives a more explicit description of lattices with a complete identity-filter
graph. Compare the next theorem with Theorem 2.7 in [4].

Theorem 2.18. If L is a complemented lattice which is not a L-domain, then IG(L) is a complete
graph if and only if I(L) is a simple filter of L and L = I(L)⊙ (1 :L I(L)), where (1 :L I(L))
is a simple filter.

Proof. One side is clear. To prove the other side, Assume that IG(L) is a complete graph and
let x ∈ I(L) \ {1}. Then x ∨ y = 1 for some 1 ̸= y ∈ L. We show that I(L) = T ({x}). If
x ∨ a ∈ T ({x}) for some a ∈ L, then (x ∨ a) ∨ y = 1 gives T ({x}) ⊆ I(L). For the reverse
inclusion, suppose to the contrary, that I(L) ⊈ T ({x}). So there exists 1 ̸= z ∈ I(L) such that
T ({x}) ̸= T ({z}). Then x ∨ z = 1 and either T ({x, z}) ̸= T ({z}) or T ({x, z}) ̸= T ({x}).
If the latter, then T ({x, z}) ∩ T ({x}) = T ({x}) = {1}, a contradiction which implies that
z ∈ T ({x, z}) = T ({x}), a contradiction. If T ({x, z}) = T ({z}), then x ∈ T ({z}) gives
x = z ∨ b for some b ∈ L; hence x = x ∨ x = x ∨ (z ∨ b) = 1, a contradiction. Thus
I(L) ⊆ T ({x}) and so we have equality. It is clear that I(L) (resp. (1 :L I(L)) does not have
any nontrivial subfilter and so it is a simple filter (resp. (1 :L I(L)) is a simple filter). Now the
assertion follows from Proposition 2.5.
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Compare the next theorem with Theorem 2.10 in [4].

Theorem 2.19. Let L be a complemented lattice which is not a L-domain. If I(L)∗ ⊆ Spec(L),
then L = S1 ⊙ S2 for a pair of simple filters S1 and S2.

Proof. Let 1 ̸= x ∈ L be such that x ∨ y = 1 and x ∧ y = 0 for some 1 ̸= y ∈ L. Then
y ∈ (1 :L T ({x})) = S1 and x ∈ (1 :L T ({y})) = S2 gives S1 and S2 are prime filters of L. If
z ∈ L, the z = z ∨ (x ∧ y) = (z ∨ x) ∧ (z ∨ y) ∈ S1 ∧ S2; so L = S1 ∧ S2. If a ∈ S1 ∩ S2, then
a = x∨ c = y ∨ d for some c, d ∈ L. Thus a = a∨ a = (x∨ c)∨ (y ∨ d) = 1 gives L = S1 ⊙S2.
If {1} ̸= S ⊆ S1, then (1 :L S1) ⊆ (1 :L S) gives S is a prime filter of L. As x ∨ y = 1 ∈ S and
y /∈ S, we get x ∈ S; hence S = S1. Thus S1 is simple. Similarly, S2 is simple, as required.

Corollary 2.20. If L is a complemented lattice which is not a L-domain, then the following
conditions are equivalent:

(1) I(L)∗ ⊆ Max(L);
(2) I(L)∗ = Max(L);
(3) I(L)∗ = Spec(L);
(4) I(L)∗ ⊆ Spec(L);
(5) L = S1 ⊙ S2 for a pair of simple filters S1 and S2.

Proof. By Theorem 2.19, it suffices to show that if m is a maximal filter of L, then it is prime. Let
x∨y ∈ m with x, y /∈ m. Then T ({x})∧m = L = T ({y})∧m givesm∧(x∨a) = 0 = m′∧(y∨b)
for some a, b ∈ L and m,m′ ∈ m. It follows that y = y ∨ 0 = y ∨ (m ∧ (x ∨ a)) = (y ∨m) ∧
(x ∨ y ∨ a) ∈ m which is impossible. Thus m is prime.

We close this section with the following proposition, that gives us a characterization for
lattices L for which every nontrivial cyclic filter F of L is a vertex of IG(L).

Proposition 2.21. Every nontrivial cyclic filter of L is a vertex of IG(L) if and only if every
element in L is an identity join.

Proof. Let every nontrivial cyclic filter of L is a vertex of IG(L) and x ∈ L. Then T ({x}) is a
vertex of IG(L) which implies that (1 :L T ({x}) ̸= {1}; hence there is an element y ̸= 1 of L
such that y ∨ T ({x}) = {1}. So x ∨ y = 1. Thus x is an identity join. The proof of the other
implication is similar.

3 Finiteness conditions and connectivity of IGfg(L)

Let us begin the following theorem.

Theorem 3.1. If L is not a L-domain, then V(IGfg(L)) ̸= ∅ and IGfg(L) is a connected graph
with dim(IGfg) ≤ 3.

Proof. Since L is not a L-domain, there are elements x ̸= 1 and y ̸= 1 of L such that x ∨ y = 1.
Then y ∈ (1 :L x) gives T ({x}) ∈ V(IGfg(L)); so IGfg(L) is not empty. Suppose that G
and F are two distinct vertices of IGfg(L). If F ∩ G = {1}, we are done. So we may assume
that F ∩ G ̸= {1}. There exist K,H ∈ V(IG(L)) such that K ∩ F = {1} and H ∩ G = {1},
as F,G ∈ V(IG(L)) and IG(L) is a connected graph by Theorem 2.17 (1). If K = H , then
1 ̸= h ∈ H = K gives F ∽ T ({h}) ∽ G is a path in IGfg(L). So suppose that K ̸= H .
Without loss of generality, assume that x ∈ K \ H and y ∈ H . Then T ({x}) ̸= T ({y}). If
T ({x}) ∩ T ({y}) = {1}, then F ∽ T ({x}) ∽ T ({y}) ∽ G is a path in IGfg(L). If T ({x}) ∩
T ({y}) ̸= {1}, then F ∽ T ({x}) ∩ T ({y}) ∽ G is a path in IGfg(L). This completes the
proof.

Proposition 3.2. If L is not a L-domain and an element x ̸= 1 of L has a complement y ̸= 1 in
L, then IGfg(L) has ACC on vertices if and only if L is a Noetherian lattice.

Proof. One side is clear. To prove the other side, assume that IGfg(L) has ACC on vertices.
Suppose to the contrary, that L is not Noetherian. It follows from Theorem 2.6 that IG(L)
has not ACC on vertices. So there is a strictly ascending chain of filters F1 ⫋ F2 ⫋ · · · , where
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Fi ∈ V(IG(L)) for i ∈ N. If 1 ̸= f1 ∈ F1, then T ({f1}) ⊆ F1 gives {1} ≠ (1 :L F1) ⊆ (1 :L f1);
so T ({f1}) ∈ V(IGfg(L)). There exists f2 ∈ F2 such that f2 /∈ F1, as F1 ⫋ F2 which implies
that T ({f1}) ⫋ T ({f1}) ∧ T ({f2}). By continuing this process, we have a strictly chain

T ({f1}) ⫋ T ({f1}) ∧ T ({f2}) ⫋ T ({f1}) ∧ T ({f2}) ∧ T ({f3}) ⫋ · · ·

which is an infinite chain of elements of V(IGfg(L)) which is impossible. Thus L is Noetherian.

Theorem 3.3. If L is not a L-domain and an element x ̸= 1 of L has a complement y ̸= 1 in L,
then IGfg(L) is a finite graph if and only if IG(L) is a finite graph.

Proof. One side is clear. Suppose that IGfg(L) is a finite graph. So IGfg(L) has ACC on
vertices gives L is Noetherian by Proposition 3.2 and hence V(IGfg(L)) = V(IG(L)) by Propo-
sition 2.1 (3). Thus IG(L) is a finite graph.

Theorem 3.4. If L is a complemented lattice which is not a L-domain, then the following condi-
tions are equivalent:

(1) IGfg(L) is a finite graph;
(2) L has only finitely many filters;
(3) L has only finitely many finitely generated filters;
(4) Every vertex of IGfg(L) has finite degree.

Proof. (1) ⇒ (2) By Theorem 3.3, IG(L) is a finite graph. Now Theorem 2.9 shows that (2)
holds. The implications (2) ⇒ (3) and (3) ⇒ (4) are clear.

(4) ⇒ (1) Assume to the contrary, that IGfg(L) is not a finite graph. Then Theorem 3.3
shows that IG(L) is not a finite graph; so there exists a vertex G of IG(L) such that G is not a
finite degree. If 1 ̸= g ∈ G, then T ({g}) is a vertex of IGfg(L) with infinite degree which is
impossible. Thus IGfg(L) is a finite graph.

Compare the next theorem with Proposition 2.3 in [14].

Theorem 3.5. If L is a complemented lattice which is not a L-domain, then the following condi-
tions are equivalent:

(1) IGfg(L) contains a universal vertex;
(2) IG(L) contains a universal vertex;
(3) L = S ⊙ (1 :L S), where S is a simple filter of L and (1 :L S) is a (1 :L S)-domain.

Proof. (1) ⇒ (2) Let G be a universal vertex of IGfg(L). It suffices to show that for every
G ̸= K ∈ V(IG(L)), G ∩ K = {1}. Let there exists G ̸= H ∈ V(IG(L)), G ∩ H ̸= {1}
and look for a contradiction. So there is an element x ̸= 1 such that x ∈ G ∩ H . Since H is
not a finitely generated filter, there exists 1 ̸= y ∈ H such that y /∈ T ({x}). It follows that
T ({x}) ⫋ T ({x, y}) ⫋ H; so x ∈ T ({x, y}) ∩ G = {1}, as G is a universal vertex which is
impossible. Thus G is a universal vertex of IG(L).

(2) ⇒ (3) Suppose that S is a universal vertex of IG(L)and let H ⫋ S. Then H = H ∩
S = {1} gives S is a simple subfilter of L. Now the first part of the statement (3) is given
by Proposition 2.5. If (1 :L S) is not a (1 :L S)-domain, then there are elements a ̸= 1
and b ̸= 1 of (1 :L S) such that a ∨ b = 1. Then S ∧ T ({b}) is an identity-filter of L, as
(S ∧ T ({b})) ∩ T ({a}) = {1}, which is not adjacent to S, a contradiction. Thus (1 :L S) is a
(1 :L S)-domain.

(3) ⇒ (1) Let L = S⊙(1 :L S), where S is a simple filter of L. By Lemma 2.2, the nontrivial
filters of L are of the form S ∧ F , S and F , where F is a nontrivial subfilter of (1 :L S). By
our assumption, and since IG(L) is connected, we do not have any vertices of the form S ∧ F
such that F ̸= {1} by Lemma 2.2 (2) which implies that simple filter S is adjacent to every other
vertex of IGfg(L); so (1) holds.

Corollary 3.6. If L is a complemented lattice which is not a L-domain, then the following con-
ditions are equivalent:

(1) IG(L) contains a universal vertex;
(2) IG(L) is a star graph;
(3) L = S ⊙ (1 :L S), where S is a simple filter of L and (1 :L S) is a (1 :L S)-domain.
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Proof. The implication (2) ⇒ (1) is clear. Indeed the implication (1) ⇒ (3) is a direct conse-
quence of Theorem 3.5.

(3) ⇒ (2) By an argument like that in Theorem 3.5, S is adjacent to every other vertex, and
since (1 :L S) is a (1 :L S)-domain, none of the filters of the form F can be adjacent to each
other. Thus IG(L) is a star graph.

Corollary 3.7. If L is an Artinian complemented lattice which is not a L-domain, then IG(L)
contains a universal vertex if and only if L = S1 ⊙ S2, where S1, S2 are simple filters of L.

Proof. Suppose that there exists a vertex of IG(L) which is adjacent to every other vertex. Then
by Theorem 3.5, L = S1 ⊙ D, where S1 is a simple filter of L and D is a D-domain. Since L
is Artinian, we get D is an Artinian D-domain and so D is also simple by Proposition 2.7 (2).
Conversely, if L = S1 ⊙ S2, where S1, S2 are simple filters, then the graph IG(L) is a connected
graph with two vertices S1 and S2, as required.

Compare the next theorem with Proposition 2.4 in [14].

Theorem 3.8. If L is a complemented lattice which is not a L-domain, then the following condi-
tions are equivalent:

(1) IGfg(L) is a complete graph;
(2) IG(L) is a complete graph;
(3) L = S1 ⊙ S2, where S1, S2 are simple filters of L.

Proof. (1) ⇒ (2) Let IGfg(L) be a complete graph. It suffices to show that for every F,G ∈
V(IG(L)), F ∩ G = {1}. Assume to the contrary, that there exist two distinct filters F,G ∈
V(IG(L)) such that G ∩ F ̸= {1}, where at least one of them is not finitely generated, say G.
Thus there is an element x ̸= 1 of L such that x ∈ G ∩ F ; so T ({x}) ∈ V(IGfg(L)). As
T ({x}) ⫋ G, there exists y ∈ G such that y /∈ T ({x}) and hence T ({x, y} ∩ T ({x}) ̸= {1}, a
contradiction. Thus IGfg(L) is a complete graph. The implication (2) ⇒ (1) is clear.

(2) ⇒ (3) Let IG(L) be a complete graph (so every vertex is universal). Then by Theorem
3.5, L = S ⊙ D, where S is a simple filter of L and D is a D-domain. If D has a nontrivial
subfilter F , then F and D are vertices of IG(L) which are not adjacent, a contradiction. Thus
D does not have any nontrivial subfilter so it is a simple filter. The implication (3) ⇒ (2) is
clear.

Corollary 3.9. If L is a complemented lattice which is not a L-domain, then the following con-
ditions are hold:

(1) IG(L) is a graph with one vertex if and only if L has only one filter F ̸= {1};
(2) IG(L) is a graph with two vertices if and only if L = S1 ⊙ S2, where S1, S2 are simple

filters.

Proof. (1) By Theorem 2.9 this is clear.
(2) One side is clear. To prove the other side, let IG(L) be a graph with two vertices. As

IG(L) is connected graph, then IG(L) is a complete (or star) graph. Then by Corollary 3.7 and
Theorem 3.8, L = S1 ⊙ S2, where S1, S2 are simple filters.

Lemma 3.10. If L is a complemented lattice which is not a L-domain, then the following condi-
tions are hold:

(1) IGfg(L) ∼= K1 if and only if L has only one filter F ̸= {1};
(2) If IGfg(L) ∼= K2, then L = S1 ⊙ S2, where S1, S2 are simple filters.

Proof. (1) If IGfg(L) ∼= K1, then L is Noetherian by Proposition 3.2 and hence IG(L) ∼= K1
which implies that |F(L) \ {1}| = 1. Conversely, let L has only one filter F ̸= {1}. Then L is
Artinian gives |V(IG(L))| = 1. Since IGfg(L) is a non-empty graph, |V(IGfg(L))| = 1 and so
IGfg(L) ∼= K1.

(2) By Proposition 3.2, L is Noetherian and hence IG(L) ∼= K2. Then Corollary 3.9 shows
that (2) holds.

Proposition 3.11. If L is a complemented lattice which is not a L-domain, then the following
conditions are hold:



88 Shahabaddin Ebrahimi Atani

(1) diam(IG(L)) = 0 if and only if diam(IGfg(L)) = 0;
(2) diam(IG(L)) = 1 if and only if diam(IGfg(L)) = 1;
(3) If diam(IG(L)) = 2, then diam(IGfg(L)) = 2;
(4) If diam(IG(L)) = 3, then diam(IGfg(L)) = 2 or 3;
(5) diam(IGfg(L)) ≤ diam(IG(L)).

Proof. (1) By Lemma 3.10, it is easy to see that IG(L) ∼= K1 if and only if IGfg(L) ∼= K1, as
needed.

(2) Indeed this is a direct consequence of Theorem 3.8.
(3) By (1) and (2), diam(IGfg(L)) ̸= 0, 1 and so 2 ≤ diam(IGfg(L)) ≤ 3. Let F and G be

vertices of IGfg(L) such that F ∩ G ̸= {1}. Since F,G ∈ V(IG(L)) and diam(IG(L)) = 2,
there exists a vertex K of IG(L) such that F ∽ K ∽ G is a path in IG(L). If 1 ̸= b ∈ K, then
F ∽ T ({b}) ∽ G is a path in IGfg(L). Thus diam(IGfg(L)) = 2.

(4) By assumption, diam(IGfg(L)) ̸= 0, 1. By Theorem 3.1, diam(IGfg(L)) = 2 or 3.
(5) Parts (1), (2), (3) and (4) shows that (5) holds.

Theorem 3.12. Let L be a complemented lattice which is not a L-domain. Then gr(IG(L)) =
gr(IGfg(L)).

Proof. Since IGfg(L) is a subgraph of IG(L), we have gr(IG(L)) ≤ gr(IGfg(L)). So it
suffices to show that gr(IGfg(L)) ≤ gr(IG(L)). By Theorem 2.17, gr(IG(L)) = ∞, 3 or
4. If gr(IG(L)) = ∞, it is clear that gr(IGfg(L)) = ∞. Suppose that gr(IG(L)) = 3
and F1 ∽ F2 ∽ F3 ∽ F1 is a cycle in IG(L). If F1, F2 and F3 are finitely generated, then
gr(IGfg(L)) = 3. Now we split the proof into three cases.

Case 1. F1 is not finitely generated and F2, F3 are finitely generated. Let 1 ̸= f1 ∈ F1. If
T ({f1}) ̸= F2, F3, then T ({f1}) ∽ F2 ∽ F3 ∽ T ({f1}) is a triangle in IGfg(L) and hence
gr(IGfg(L)) = 3. If T ({f1}) = F2, then there exists f2 ∈ F1 such that f2 /∈ F2, as F2 ⫋ F1
which implies that F2 ⫋ T ({f1, f2}). If T ({f1, f2}) ̸= F3, then T ({f1, f2}) ∽ F2 ∽ F3 ∽
T ({f1, f2}) is a cycle in IGfg(L). If T ({f1, f2}) = F3, then there exists f3 ∈ F1 such that
F3 ⫋ T ({f1, f2, f3}). Then T ({f1, f2, f3}) ∽ F2 ∽ F3 ∽ T ({f1, f2, f3}) is a cycle in IGfg(L);
so gr(IGfg(L)) = 3.

Case 2. F1, F2 are not finitely generated and F3 is finitely generated. Let 1 ̸= f1 ∈ F1. If
T ({f1}) ̸= F3, then T ({f1}) ∽ F3 ∽ F2 ∽ T ({f1}) is a triangle in IG(L), where T ({f1}), F3 ∈
V(IGfg(L)) and F2 /∈ V(IGfg(L)). By an argument like that as in Case 1, the proof is com-
plete. If T ({f1} = F3, then there exists f2 ∈ F1 such that f2 /∈ F3, as F3 ⫋ F1. It follows
that F3 ⫋ T ({f1, f2}; so T ({f1, f2} ∽ F2 ∽ F3 ∽ T ({f1, f2} is a cycle in IG(L) such that
T ({f1, f2}), F3 ∈ V(IGfg(L)) and F2 /∈ V(IGfg(L)). Now by same argument in Case 1, we
have gr(IGfg(L)) = 3.

Case 3. F1, F2 and F3 are not finitely generated. Let 1 ̸= f1 ∈ F1. By using of same
argument in Case 1 for triangle T ({f1}) ∽ F2 ∽ F3 ∽ T ({f1}) where T ({f1}) ∈ V(IGfg(L))
and F2, F3 /∈ V(IGfg(L)), we have gr(IGfg(L)) = 3. If gr(IG(L)) = 4, then by a similar
argument, we get gr(IGfg(L)) ≤ 4. Hence in every case, gr(IG(L)) = gr(IGfg(L)).

Corollary 3.13. If L is a complemented lattice which is not a L-domain, then gr(IGfg(L)) ≤ 4.

Proof. This is a consequence of Theorem 2.17 and Theorem 3.12.

Proposition 3.14. If L is a complemented lattice which is not a L-domain, then IG(L) is a star
graph if and only if IGfg(L) is a star graph.

Proof. If IG(L) is a star graph, then IGfg(L) is also a star graph, as IGfg(L) is an induced
subgraph of IG(L). Conversely, assume that IGfg(L) is a star graph and let G be a universal
vertex of IGfg(L). Let G ̸= H ∈ V(IG(L)). We claim that H is only adjacent to G. Assume
to the contrary, that H ∩ G ̸≠= {1}. So there is an element a ̸= 1 such that a ∈ G ∩H . Since
H is not a finitely generated filter, there exists 1 ̸= b ∈ H such that b /∈ T ({a}). It follows
that T ({a}) ⫋ T ({a, b}) ⫋ H; so a ∈ T ({a, b}) ∩ G = {1}, as G is a universal vertex which
is impossible. Thus G ∩ H = {1}. Now suppose that there exists G ̸= F ∈ V(IG(L)) such
that F ∩ H = {1}. Thus G ∽ H ∽ F ∽ G is a triangle in IG(L) and so gr(IG(L)) = 3; so
gr(IGfg(L)) = 3 by Theorem 3.12, a contradiction, as IGfg(L) is star graph.
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Theorem 3.15. If L is a complemented lattice which is not a L-domain, then the following con-
ditions are equivalent:

(1) IGfg(L) contains a universal vertex;
(2) IG(L) contains a universal vertex;
(3) L = S ⊙ (1 :L S), where S is a simple filter of L and (1 :L S) is a (1 :L S)-domain.
(4) IG(L) is a star graph;
(5) IGfg(L) is a star graph.

Proof. This is a direct consequence of Theorem 3.5, Corollary 3.6 and Proposition 3.14.

We need the following lemma proved in [2, Theorem 3.5].

Lemma 3.16. A connected graph is bipartite if and only if it contains no cycle of odd length.

Theorem 3.17. LetL be a complemented lattice which is not aL-domain such that gr(IGfg(L)) =
4. Then IG(L) is a complete bipartite graph if and only if IGfg(L) is a complete bipartite graph.

Proof. If IG(L) is a complete bipartite graph, then IGfg(L) is a complete bipartite graph, as
IGfg(L) is an induced subgraph of IG(L). Conversely, suppose that IGfg(L) is a complete
bipartite with parts V and W . We may assume that IGfg(L) ̸= IG(L). Let G ∈ V(IG(L)) with
G /∈ V(IGfg(L)). We prove that either for each H ∈ V , H ∩ G = {1} or for each K ∈ W ,
K ∩ G = {1}. As IG(L) is a connected graph with dim(IG(L)) ≤ 3 and gr(IG(L)) = 4 (see
Theorem 2.17 and Lemma 3.16), we have only one of the following cases:

Case 1. G ∩H = {1} for some H ∈ V . Now we claim that for each X ∈ V , X ∩G = {1}.
Suppose to the contrary, that there exists H1 ∈ V such that H1 ∩ G ̸= {1}. Then there exists
1 ̸= a ∈ G such that T ({a}) ∩ H1 ̸= {1}. As T ({a}) ∈ V(IGfg(L)), we get T ({a}) ∈ V and
hence T ({a}) ∩H ̸= {1}, a contradiction. Thus for each X ∈ V , X ∩G = {1}.

Case 2. G∩K = {1} for someK ∈ W . By a similar argument as in Case 1, for each Y ∈ W ,
Y ∩G = {1}.

Case 3. K ∩G = {1} for some K ∈ V(IG(L)), where either for each H ∈ V , H ∩K = {1}
or for each F ∈ W , F ∩K = {1}, and for each H ∈ V , F ∈ W , H ∩ G ̸= {1}, F ∩ G ̸= {}.
Without loss of generality, let for every H ∈ V , H ∩K = {1}. We show that for each F ∈ W ,
G ∩ F = {1}. Suppose to the contrary, that there exists F1 ∈ W such that F1 ∩G ̸= {1}. Then
there exists 1 ̸= a ∈ G such that T ({a})∩F1 ̸= {1}. Since T ({a}) ∈ V(IGfg(L)), T ({a}) ∈ W
and K ∽ H ∽ T ({a}) ∽ K form a triangle in IG(L), a contradiction. So for each F ∈ W ,
F ∩G = {1} which is impossible. Hence this case implies a contradiction in general.

Thus for every G ∈ V(IG(L)) with G /∈ V(IGfg(L)), either for each H ∈ V , H ∩ G = {1}
or for each K ∈ W , K ∩G = {1}. Set

V = V ∪ {H ∈ V(IG(L)) : for each F ∈ W, F ∩H = {1}}

and W = W ∪ {F ∈ V(IG(L)) : for each H ∈ V, H ∩ F = {1}}. It suffices to show that if
H ∈ V \ V and F ∈ W \ W , then H ∩ F = {1}. Assume to the contrary, that H ∩ F ̸= {1}. So
there exists 1 ̸= a ∈ H such that T ({a})∩F ̸= {1}. Since T ({a}) ∈ V(IGfg(L)), T ({a}) ∈ W
and a ∈ T ({a}) = H ∩ T ({a}) = {1}), a contradiction. Thus IG(L) is a complete bipartite
graph with parts V and W.

Lemma 3.18. For the lattice L, IG(L) is a bipartite graph if and only if IG(L) is a triangle-free
graph.

Proof. One side is clear since bipartite graphs are triangle-free. To prove the other side, let IG(L)
be a triangle-free graph. By contrary assume that IG(L) is not bipartite. So IG(L) contains an
odd cycle by Lemma 3.16. Let C = F1 ∽ F2 ∽ · · · ∽ F2n+1 ∽ F1 be a shortest odd cycle in
IG(L) for some n ∈ N (so n ≥ 2). As C is a shortest odd cycle in IG(L), we have F3∩F2n+1 is a
vertex. If F1 = F3 ∩F2n+1, then F4 ∩F1 = {1} which implies that F1 ∽ F4 ∽ · · · ∽ F2n+1 ∽ F1
is an odd cycle which is impossible. So F1 ̸= F3 ∩ F2n+1. If F2 = F3 ∩ F2n+1, then F2, F3 and
F4 would form a triangle, a contradiction. Hence F2 ̸= F3 ∩ F2n+1. Now F1, F2 and F3 ∩ F2n+1
form a triangle in IG(L) which is a contradiction. Thus IG(L) is a bipartite graph.

Theorem 3.19. If L is a complemented lattice which is not a L-domain, then IG(L) is a bipartite
graph if and only if IGfg(L) is a bipartite graph.
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Proof. One side is clear. Let IGfg(L) be a bipartite graph. Assume to the contrary, that IG(L) is
not a bipartite graph. Then By Theorem 3.12 and Lemma 3.18, gr(IG(L)) = gr(IGfg(L)) = 3
which implies that IGfg(L) contains an odd cycle, so IGfg(L) is not bipartite by Lemma 3.16
which is impossible. Thus IG(L) is a bipartite graph.

4 Conclusions and future work

In this work we investigated many fundamental properties of the graph IG(L) such as connec-
tivity, the diameter, the girth, and obtain some interesting results with finiteness conditions on
them. However, in future work, shall search the supplement of this graph and research on deeper
properties of them.
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