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Abstract Let S be a subset of a finite group Γ. The Cayley signed graph, denoted by Σ =
CayΣ(S, σ) has vertex set Γ and two distinct vertices x, y ∈ Γ are joined by an edge from x to y
if and only if there exists s ∈ S such that x = sy, where Σ is a signed graph whose underlying
graph is Γ and σ : E(Γ) → {+,−} is a function defined as

σ(x y) =

{
+, if x ∈ S or y ∈ S;
−, otherwise.

In this manuscript, we have characterized the Cayley set and generating sets for which Cayley
signed graphs are canonically consistent.

1 Introduction

It is well-known that the structure of Cayley graphs depends on a specific set of generators,
i.e., the same algebraic structure can have a different Cayley graph. In 1878, the notion of
Cayley graph was introduced by Cayley [1] to illustrate the concept of ‘group’ and a ‘generating’
subsets. The formal definition is as follows: The Cayley graph of group Γ, denote by Cay(Γ, S)
is a simple graph with the vertex set Γ, and two vertices x and y are adjacent if and only if there
exists s ∈ S such that x = sy, where S is a subset of Γ. From the survey of the literature it
is found that these graphs play an important role in combinatorial and geometric graph theory.
For detailed study of Cayley graphs the reader is referred to [6] and [5].

On the social psychology front; according to the Harary model [3], ‘social networks’ can
be represented by a graph often called ‘Signed graph’ introduced by the Harary in 1950’s. Ac-
cording to Harary; The graph Γ equipped with a signature σ is called a signed graph, denoted
by Σ := (Γ, σ) = (V,E, σ), where Γ = (V,E) is an underlying graph and σ : E → {+,−}
is the signature that labels each edge of Γ either by ‘+’ or ‘−’. The edge which receives a
positive(negative) sign is called a positive(negative) edge. A signed graph is an all-positive(all-
negative) if all its edges are positive(negative); further, it is said to be homogeneous if it is either
all-positive or all-negative and heterogeneous otherwise. By d−(v)(d+(v)), we mean the nega-
tive(positive) degree of a vertex v. For a signed graph Σ, the negation η(Σ) of a signed graph
Σ is a signed graph obtained from Σ by negating the sign of every edge of Σ. From the last
two decades, signed graphs have been studied a lot due to its applications in social networks,
systems biology, and integrated circuit design. Subsequently signed graphs have turned out to
be valuable in many other areas of research. For detailed study of signed graphs the reader is
referred to the bibliography paper by Zaslavsky [7]. Inspired by the applications of these two
graphs, viz., Cayley graph and signed graph, in this paper, we intend to study the Cayley graph
in the realm of signed graphs. In this regard, we have characterized the generating sets S for
which CayΣ(Γ, S) is C-consistent.
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Throughout the paper, we mean by ‘Γ’ the finite abelian group and by Zn, the group of
integers modulo n, the sets Z(Zn) and U(Zn) are defined as; U(Zn) = {x : gcd(x, n) =
1} and Z(Zn) = {y : gcd(y, n) ̸= 1}. Also, U(Zm × Zn) is defined as; U(Zm × Zn) =
{(x, y) : gcd(x,m) = 1 & gcd(y, n) = 1}. Without exception, the notation ‘Zt

2’ refers to
Z2 × Z2 × Z2 × · · · × Z2︸ ︷︷ ︸

(t−times)

. All graphs considered here are finite, simple and undirected. For

terminology and notations from group theory and graph theory not defined or mentioned in this
paper, the reader is referred to [4] and [3], respectively.

2 Cayley Sets and Generating Sets

In this section, we briefly recall the notion of Cayley set and Generating set and derived some
observations needed in the sequel of this paper.

A nonempty subset S of Γ is called Cayley set or symmetric Cayley set if e /∈ S and for
every a ∈ S, a−1 ∈ S. If Cayley set S generates a group Γ, then S is called generating set or
symmetric generating set. Consequently, for a given group Γ of order n

1 ≤ |S| ≤ n− 1. (2.1)

However, if S generates Γ, then

2 ≤ |S| ≤ n− 1. (2.2)

The following example illustrate the above concepts:

Example 2.1. Let Γ ∼= Z4. Then possible Cayley sets are S1 = {2}, S2 = {1, 3}, S3 = {1, 2, 3}
and out of them only S2 = {1, 3} is a generating set.

Observation 2.1. The following observations are straightforward and can directly be obtained
from the definition of Cayley set and generating set:

i) Let S be Cayley set and {a, a−1} ⊆ S, where a ∈ U(Γ). Then S becomes a generating set.

ii) If Γ ∼= Zp; p is a prime number, then Cayley sets and generating sets are both equal.

If |S| is either 1 or (n− 1), then such S is called an extreme Cayley set and if |S| is either 2
or (n− 1), then such S is called an extreme generating set. Notice that if |Γ| is odd, then |S| can
be even. However, if |Γ| is even, then |S| may be even or odd.

3 Canonically Consistent Cayley Signed Graphs

A marked signed graph is a signed graph each vertex of which is designated to be positive or
negative and it is consistent if every cycle in the signed graph possesses an even number of
negative vertices. Consistent marked graphs were introduced by Beineke and Harary [2], and
the concept was motivated by communication networks. A marked signed graph is an ordered
pair Σµ = (Σ, µ), where Σ = (Γ, σ) is a signed graph and µ : V (Σ) → {+,−} is a function from
the vertex set V (Σ) into the set {+,−}, called marking of Σ. In particular, σ induces a unique
marking µσ defined by

µσ(v) =
∏
e∈Ev

σ(e),

where Ev is the set of edges incident at v in Σ, is called a canonical marking of Σ. If every vertex
of a given signed graph Σ is canonically marked, then a cycle Z in Σ is said to be canonically
consistent (C-consistent) if it contains an even number of negative vertices and the given signed
graph Σ is said to be C-consistent if every cycle in it is C-consistent.

Lemma 3.1. If a signed graph Σ is an all-positive, then it is C-Consistent.

Proof. If a signed graph Σ is an all-positive, then all the vertices will receive positive signs under
canonical marking. Therefore, Σ is trivially C-consistent trivially.
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The examples of C-consistent Cayley signed graph CayΣ(Γ, S) associated with Γ are shown
in Figure 1 and Figure 2, in which dashed line represents negative edges and solid line represents
the positive edges, respectively.

Example 3.2. Let Γ ∼= Z6. Then there are total seven Cayley sets, namely, S1 = {3}, S2 =
{2, 4}, S3 = {1, 5}, S4 = {2, 3, 4}, S5 = {1, 3, 5}, S6 = {1, 2, 4, 5}, S7 = {1, 2, 3, 4, 5}, whose
canonically marked Cayley signed graphs associated with Cayley sets S1, S2, S3, S4, S5, S6 and
S7 are shown in Figure 1. From Figure 1, one can notice that CayΣ(Z6, S1) does not consist of

(a) S1={3} (b) S2={2,4} (c) S3
={1,5} (d) S4 =(2,3,4}

(e) S5
={1,3,5} (f) S6 ={1,2,4,5} (g) S7 ={1,2,3,4,5}
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Figure 1. The canonically marked Cayley signed graphs CayΣ(Z6, S)

negative cycle as the underlying graph Cay(Z6, S1) is 1-regular graph. Therefore, CayΣ(Z6, S1)
is C-consistent. Clearly, CayΣ(Z6, S2) has two components of C3 in which one of them is an all-
positive and other is an all-negative and under the canonical marking all vertices will be marked
with positive sign, which indicates that CayΣ(Z6, S2) is C-consistent. Also CayΣ(Z6, S3) is a
cycle graph C6 having exactly two negative edges. Now under the canonical marking precisely
two vertices 2 and 4 are marked with negative sign and remaining four vertices are marked posi-
tive sign. This depicts that cycle (graph) consists of even number of negatively marked vertices,
and hence CayΣ(Z6, S3) is C-consistent.

On the other hand, in CayΣ(Z6, S4) there exist a cycle Z, namely, Z = (0, 3, 1, 4, 0), under
the canonical marking among all the vertices only two vertices, namely, 1 and 5 are marked
with negative sign and rest four vertices are marked with positive sign in CayΣ(Z6, S4), this
means that there exist a cycle Z in which only one vertex has (−)ive marking which provide the
presence of cycle with odd number of negative vertices in CayΣ(Z6, S4). Thus CayΣ(Z6, S4) is
not C-consistent. For the remaining Cayley signed graph, namely, CayΣ(Z6, S5), CayΣ(Z6, S6),
and CayΣ(Z6, S7) it can easily be observed that all are homogeneous all-positive, therefore by
Lemma 3.1, all are C-consistent.

Example 3.3. Let Γ ∼= Z2 × Z2. Then there are seven possible Cayley sets, i.e. S1 = {(0, 1)},
S2 = {(1, 0)}, S3 = {(1, 1)}, S4 = {(0, 1), (1, 0)}, S5 = {(0, 1), (1, 1)}, S6 = {(1, 0), (1, 1)},
S7 = {(0, 1), (1, 0), (1, 1)}. Whose canonically marked Cayley signed graphs associated with
Cayley sets S1, S2, S3, S4, S5, S6 and S7 are shown in Figure 2.
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(a) S1={(0,1)} (b) S2={(1,0)} (c) S3
={(1,1)} (d) S4 =((0,1), (1,0)}

(e) S5
={(0,1), (1,1)} (f) S6 ={(1,0), (1,1)} (g) S7 ={(0,1), (1,0),(1,1)}
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Figure 2. The canonically marked signed Cayley graphs

Notice that the Cayley signed graphs associated with Cayley sets S1, S2 and S3 are 1-
regular graph. Therefore, there does not exist any cycle in CayΣ(Z6, S1), CayΣ(Z6, S2) and
CayΣ(Z6, S3) and hence, they are C-consistent trivially. On the other hand the Cayley signed
graphs associated with Cayley sets S4, S5, S6, and S7 are homogeneous all-positive, therefore in
light of Lemma 3.1, these are all C-consistent.

From the foregoing analysis in examples one can observe that there are some Cayley sets/Generating
sets with respect to which Cayley signed graph is C-Consistent. Therefore one can have the fol-
lowing problem:

Problem 3.1. Characterize the Cayley sets/Generating sets S with respect to which Cayley
signed graph is canonically consistent.

Towards attempting the Problem 3.1, several results have been established. First we shall
establish the result for C-Consistent Cayley signed graphs.

Theorem 3.4. Let Γ be a finite abelian group of order n ⩾ 2 and S be an extreme Cayley set.
Then CayΣ(Γ, S) is C-Consistent.

Proof. Let S be an extreme Cayley set. Now first suppose that |S| = 1, then Cay(Γ, S) is
1-regular graph and clearly there is no cycle in CayΣ(Γ, S). Therefore, CayΣ(Γ, S) is trivially
C-Consistent. Secondly, if |S| = n − 1, then it can easily be seen that all non-zero elements
belongs to S, therefore CayΣ(Γ, S) is an all-positive graph. Since all the vertices receive positive
sign under the canonical marking, so CayΣ(Γ, S) is C-Consistent.

Theorem 3.5. Let Γ be a finite abelian group of order n > 2 and S be a Cayley set with |S| = 2.
Then CayΣ(Γ, S) is C-Consistent.

Proof. Let Γ be a finite abelian group of order n > 2 and S be a Cayley set with |S| = 2. This
implies that Cay(Γ, S) is a 2-regular graph. It means either Cay(Γ, S) is a cycle graph or is
isomorphic to copies of cycles. Now these two cases arise.
Case-1: If Cay(Γ, S) is isomorphic to a cycle graph, then an edge in its corresponding signed
graph CayΣ(Γ, S) is negative if and only if none of end vertices belongs to S. Since each nega-
tive edge produces two negative vertices under the canonical marking and the underlying graph is
cycle, therefore the negative vertices will be even in number. Hence, CayΣ(Γ, S) is C-consistent.
Case-2: If Cay(Γ, S) is isomorphic to copies of cycle graph, then in its corresponding signed
graph CayΣ(Γ, S) an edge is positive if and only if both end vertices belong to S. Since |S| = 2,
so at most four edges in CayΣ(Γ, S) are positive in one component and the remaining other com-
ponents are all-negative. Also it is known that each negative edge produces two negative vertices
under the canonical marking, therefore in each component(cycle) there are even number(may be
zero) of negatively marked vertices through C-marking in CayΣ(Γ, S). Hence, CayΣ(Γ, S) is
consistent.

Theorem 3.6. Let Γ be a finite cyclic group with |Γ| = 2p, p > 2, p is a prime number and S be
a Cayley set such that S ⊆ Z∗(Γ) \ {p} and |S| = 4. Then CayΣ(Γ, S) is C-Consistent.
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Proof. Let Γ ∼= Zn with |Γ| = 2p, p > 3 and S be Cayley set such that S ⊆ Z∗(Γ) \ {p}
and |S| = 4. This implies that S contains all even positive integers. It is well-known that the
difference of two even integers or difference of two odd integers is always even. In this way one
can notice that even integer and zero are connected with positive edges and odd integer with odd
integer are connected with negative edges in CayΣ(Γ, S) but |S| = 4, so the negative degree of
odd integer is four and the negative degree of even integer is zero. Therefore, under canonical
marking all vertices receive positive signs. Hence, CayΣ(Γ, S) is C-Consistent.

Theorem 3.7. Let Γ be a finite cyclic group and S be a Cayley set. Then CayΣ(Γ, S) is C-
Consistent if one of following conditions hold:

(i) S = U(Γ) ∪ {p}, where |Γ| = 2p, p is a prime;

(ii) S = {|Γ|/4, 3|Γ|/4}, where |Γ| is multiple of 4;

(iii) S = {x : x ̸= x−1;∀x ∈ Γ}, where |Γ| is an even;

(iv) S = U(Γ), where |Γ| = pk, k ≥ 1;

(v) S = {|Γ|/4, 3|Γ|/4} ∪ U(Γ), where |Γ| is an odd multiple of 4.

Proof. (i) Let Γ be a finite cyclic group with |Γ| = 2p. If S = U(Γ) ∪ {p}, then S contains all
odd positive integer upto 2p, and hence |S| = p. This indicates that only even positive integers
remain outside S. We know in CayΣ(Γ, S) an edge is negative if and only if none of the end
vertices belongs to S. Since the difference of two even positive integers is always an even integer,
there does not exist a negative edge in CayΣ(Γ, S). Therefore, CayΣ(Γ, S) is homogenous an
all-positive, and hence in view of Lemma 3.1, CayΣ(Γ, S) is C-Consistent.

(ii) If S = {|Γ|/4, 3|Γ|/4}, where |Γ| is multiple of 4(say 4k), then CayΣ(Γ, S) is isomorphic
to C4 ∪ C4 ∪ · · · ∪ C4︸ ︷︷ ︸

k−times

in which all edges are positive in one component of CayΣ(Γ, S) formed

by vertices, namely, 0, |Γ|/4, 3|Γ|/4 and |Γ|/2. In CayΣ(Γ, S) the remaining components are
an all-negative. Therefore, every vertex will receive positive sign under the canonical marking.
Hence, CayΣ(Γ, S) is C-Consistent.

(iii) Let |Γ| is even. Then there is only one non-trivial self inverse element (say x) in Γ. If S
contains all non-zero elements except x, then each edge has an end vertex in S. This shows that
CayΣ(Γ, S) is an all-positive, and hence by Lemma 3.1, CayΣ(Γ, S) is C-Consistent.

(iv) If S = U(Γ), where |Γ| = pk, k ≥ 1, then the elements which do not belong to S
are some multiples of p. Note that in CayΣ(Γ, S) an edge is negative if and only if none of
the end vertices belongs to S. Also, the difference of multiples of p is again a multiple of p,
which ensures that no two elements outside S are adjacent in CayΣ(Γ, S) with negative edge.
This implies that there is no negative edge in CayΣ(Γ, S). Therefore in view of Lemma 3.1,
CayΣ(Γ, S) is C-Consistent.

(v) If S = {|Γ|/4, 3|Γ|/4} ∪ U(Γ), where |Γ| is an odd multiple of 4, then S contains all
odd integers upto |Γ|. This implies only even numbers are outside S and the difference of two
even numbers is always even number, so there does not exist a negative edge in CayΣ(Γ, S).
This shows that CayΣ(Γ, S) is an all-positive. Thus, in light of Lemma 3.1, CayΣ(Γ, S) is C-
Consistent.

Theorem 3.8. Let Γ ∼= Zp1
k1 ×Zp2

k2 ×· · ·×Zpt
kt be a finite abelian group, where p′is are primes,

k′is, i and t are positive integers. Assume that S = U(Γ) be a generating set of Γ. If at least one
of Z′

pi
s(≇ Z2) has Z2 as a quotient, then CayΣ(Γ, S) is C-Consistent.

Proof. Let Γ ∼= Zp1
k1 ×Zp2

k2 ×· · ·×Zpt
kt be a finite abelian group, p′is are prime numbers, k′is,

i and t are positive integers. Let S = U(Γ) be a generating set of Γ and let u = (u1, u2, . . . , ut)
and v = (v1, v2, . . . , vt) be two vertices of CayΣ(Γ, S). If u and v are adjacent, then u − v ∈ S.
Now the following two cases to be tackled:
Case:1 If at least one of vertices u or v belongs to S, then a negative edge does not occur between
them. This shows that CayΣ(Γ, S) is an all-positive. Thus, in light of Lemma 3.1, CayΣ(Γ, S) is
C-Consistent.
Case:2 If none of u and v belong to S, then only negative edge occur between them. Since
u does not belong to S, so ui ∈ U(Zpi

ki ) for some i, and uj ∈ Hj , where Hj denotes the
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maximal subgroup in Zpj
kj . Now the positive degree d+(u) of u is given by d+(u) =

∏
i[pi

ki −
2piki−1]

∏
j [pj

kj−pj
kj−1], which is even. Also |S| is even, therefore d−(u) = |S|−d+(u) is also

even. Now all the vertices of CayΣ(Γ, S) will receive positive signs under canonical marking.
Therefore, CayΣ(Γ, S) is C-Consistent.

Theorem 3.9. Let Γ ∼= Zp1
k1 ×Zp2

k2 ×· · ·×Zpt
kt be a finite abelian group, where p′is are primes,

k′is, i and t are positive integers. Assume that S = U(Γ) be a generating set of Γ. Then Cayley
signed graph CayΣ(Γ, S) is C-Consistent if and only if one of following conditions hold:

(i) t = 1.

(ii) for t > 1, none of Zpi
ki is isomorphic to Z2.

(iii) for t > 1, Γ is isomorphic to Zt−1
2 × Z2 or Zt−1

2 × Z3.

Proof. Necessity: Let CayΣ(Γ, S) is C-Consistent and each of the above listed conditions is
false. In order to violate the condition (i) we must have Γ ∼= Zp1

k1 × Zp2
k2 × · · · × Zpt

kt ; t > 1
and to violate (ii) at least one of Zkt

pi
in Γ is isomorphic to Z2, and to violate the condition (iii)

neither Γ is isomorphic to Zt−1
2 × Z2; t > 1 nor isomorphic to Zt−1

2 × Z3; t > 1. In view
of the above the order of Γ has to be even and the precise form of Γ is Γ ∼= Z2 × Γ′. Since
| Zpi

ki⧸Z
pi

k′
i
|≥ 3, so there are at least three vertices which are in the form of t-tuples, where

t > 1 and it is easy to see the presence of a cycle in CayΣ(Γ, S) in the following cases:
Case:1 Let Γ ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸

(t−1)−times

×Zpk , where prime p is either p > 3 with k ≥ 1 or

p = 3 with k > 1. Then there exist a cycle in CayΣ(Γ, S), viz., v1 − v2 − v3 − v4 − v1, where
v1 = (0, 0, 0, . . . , 0︸ ︷︷ ︸

(t−1)−times

, 1), v2 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
(t−1)−times

, u1), v3 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
t−times

) and v4 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
(t−1)−times

, u2)

and ui ∈ U(Zpk). Since vertices v2 and v4 belongs to U(Γ), so through canonical marking both
vertices receive positive sign. Note that v3 is adjacent to all the vertices which are elements of S,
and hence v3 also receive positive sign. Now, to determine C-Consistency we only have to find
the marking received by vertex v1. To do this we have to calculate the negative degree d−(v1)
of vertex v1. It can be noticed that v1 is adjacent to vertex of form (1, 1, 1, . . . , 1︸ ︷︷ ︸

(t−1)−times

, b), where

b ∈ Z(Zpk), and hence d−(v1) = pk−1, which is odd. Therefore, there exists a cycle containing
exactly one negative vertex, viz., v1 and the remaining three vertices are positive. This indicates
that the above mentioned cycle is not consistent, and hence CayΣ(Γ, S) is not C-Consistent.

Case:2 Let Γ ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
j−times

×Z
pj+1

kj+1 × Z
pj+2

kj+2 × · · · × Zpt
kt︸ ︷︷ ︸

(t−j)−times

, where primes pi >

3 and (t − j) > 1. That is Γ ∼= Γ1 × Γ2 × · · · × Γt, (t − j) > 1, where either pi > 3 or
p = 3 with k > 1. Then there exist a cycle in CayΣ(Γ, S), viz., v1 − v2 − v3 − v4 − v1, where
v1 = (0, 0, 0, . . . , 0︸ ︷︷ ︸

j−times

, 1, 1, 1, . . . , 1︸ ︷︷ ︸
(t−j)−times

), v2 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
j−times

, u1, u1, u1, . . . , u1︸ ︷︷ ︸
(t−j)−times

), v3 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
t−times

)

and v4 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
j−times

, u2, u2, u2, . . . , u2︸ ︷︷ ︸
(t−j)−times

). Now we are tempted to show the above cycle is not

consistent. To do this we will determine the negative degree of each vertex. Since v2, v4 ∈
S, so d−(v2) = d−(v4) = 0. Clearly the vertex v3 is adjacent to all the vertices which are
elements of S, and hence d−(v3) = 0. Now, we shall calculate negative degree d−(v1) of v1.
Note that v1 is adjacent to the vertices of form (1, 1, 1, · · · , 1︸ ︷︷ ︸

j−times

, b1, b2, b3, · · · , bt︸ ︷︷ ︸
(t−j)−times

), where at least

one bi ∈ Z(Γi). Now depending upon the choices of bi the negative degree of v1 is given by
d−(v1) = [|Γj+1|−ϕ(|Γj+1|)]×ϕ(|Γj+2|)×· · ·×ϕ(|Γt|)+[|Γj+2|−ϕ(|Γj+2|)]×ϕ(|Γj+1|)×· · ·×
ϕ(|Γt|)+ · · ·+ [|Γt| −ϕ(|Γt|)]×ϕ(|Γj+1|)× · · · ×ϕ(|Γt−1|)− [(|Γj+1| −ϕ(|Γj+1|))× (|Γj+2| −
ϕ(|Γj+2|))× · · · × (|Γt| − ϕ(|Γt|))], where ϕ is Euler’s phi function. One can easily observe that
the negative degree d−(v1) is odd. Therefore, the vertex v1 receives the negative sign under the
canonical marking. Thus, there exists a cycle in CayΣ(Γ, S) containing one negative vertex and
three positive vertices. This implies that CayΣ(Γ, S) is not C-Consistent.
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Case:3 Let Γ ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
j−times

×Z3 × Z3 × · · · × Z3︸ ︷︷ ︸
(t−j)−times

; (t − j) > 1. Then there exist

a cycle in CayΣ(Γ, S), viz., v1 − v2 − v3 − v4 − v1, where v1 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
j−times

, 2, 2, 2, . . . , 2︸ ︷︷ ︸
(t−j)times

),

v2 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
t−times

), v3 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
(t−1)−times

, 2) and v4 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
(t−1)−times

, 0).

Since v2 ∈ S, so d−(v2) = 0. Now, we shall calculate the negative degree of each vertices v1,
v3 and v4. Note that v1 is adjacent to vertices of the form (1, 1, 1, · · · , 1︸ ︷︷ ︸

j−times

, bj+1, bj+2, bj+3, . . . , bt︸ ︷︷ ︸
(t−j)−times

),

where each b′js is either 0 or 2. Therefore, d−(v1) = 2t−j − 1, which is odd. This indicates
that v1 receives the negative sign through a canonical marking. Note that v3 is adjacent to the
vertices of form (1, 1, 1, . . . , 1︸ ︷︷ ︸

j−times

, bj+1, bj+2, bj+3, . . . , ct︸ ︷︷ ︸
(t−j)−times

), where each b′js is either 1 or 2 and ct

is either 0 or 1, this gives us d−(v3) = 2t−j − 2, which is even. Thus, through a canonical
marking the vertex v3 receive the positive sign. The vertex v4 is adjacent to the vertices of form
(0, 0, 0, . . . , 0︸ ︷︷ ︸

j−times

, bj+1, bj+2, bj+3, . . . , ct︸ ︷︷ ︸
(t−j)−times

), where each b′js is either 0 or 2 and ct is either 1 or 2, this

gives that d−(v4) = 2t−j − 2, which is even.
Clearly the vertices v2, v3 and v4 in CayΣ(Γ, S) receive the positive sign through canonical

marking. Thus the existence of a four cycle can be seen in CayΣ(Γ, S) consisting of exactly one
negative vertex which ensures that it is not consistent. Hence CayΣ(Γ, S) is not C-Consistent.

Therefore from the foregoing analysis we found the existence of a cycle in all cases which is
not consistent, so our assumption that CayΣ(Γ, S) is C-Consistent is wrong. Thus, for CayΣ(Γ, S)
to be C-Consistent at least one of the above listed conditions holds.

Sufficiency: Let Γ ∼= Zp1
k1 × Zp2

k2 × · · · × Zpt
kt be a finite abelian group, p′is are prime

numbers, k′is, i and t are positive integers. Let S = U(Γ) be a generating set of Γ. Here our aim
is to show that CayΣ(Γ, S) is C-Consistent in each of the above listed conditions. If |S| = 1 or
|S| = 2, then CayΣ(Γ, S) is C-Consistent by Theorem 3.4 and Theorem 3.5. Now, for |S| > 2
we shall tackle each case separately as follows:

For (i), Γ ∼= Zp1
k1 (as t = 1) and S = U(Γ). Consequently in view of Theorem 3.7(iv),

CayΣ(Γ, S) is C-Consistent.
For (ii), let Γ ∼= Zp1

k1 ×Zp2
k2 ×· · ·×Zpt

kt (t > 1) among which none of Z′
pi

ki
s is isomorphic

to Z2. Let u = (u1, u2, . . . , ut) and v = (v1, v2, . . . , vt) be two vertices of CayΣ(Γ, S). If u and
v are adjacent in Cay(Γ, S), then u− v ∈ S. Now in order to calculate the negative degree of u
we apply the similar procedure as done in Theorem 3.8, which gives

d+(u) =
∏
i

[pi
ki − 2piki−1]

∏
j

[pj
kj − pj

kj−1].

Note that d+(u is even, and hence d−(u) is also even as |S| and d+(u) are both even. Since
u is arbitrary, each vertex of CayΣ(Γ, S) receive a positive sign under the canonical marking.
Therefore CayΣ(Γ, S) is C-Consistent.

For (iii), first let Γ ∼= Zt−1
2 × Z2. Then S = U(Γ) = {(1, 1, 1, . . . , 1)︸ ︷︷ ︸

t−times

}, that is |S| = 1 which

indicates that CayΣ(Γ, S) is C-Consistent by the Theorem 3.4.
Next, let Γ ∼= Zt−1

2 ×Z3. Then S = U(Γ) = {(1, 1, 1, . . . , 1)︸ ︷︷ ︸
t−times

, (1, 1, 1, . . . , 2)︸ ︷︷ ︸
t−times

}, that is |S| = 2.

Now in view of Theorem 3.5, CayΣ(Γ, S) is C-Consistent. Hence the result.

Theorem 3.10. Let Γ ∼= Zp1
k1 ×Zp2

k2 × · · ·×Zpt
kt be a finite abelian group, p′is are prime, k′is,

i and t are positive integers. Assume that S = Z0(Γ) be a Cayley set of Γ. If at least one Zpi
ki

is isomorphic to Z2 and |U(Γ)| ≥ 3, then CayΣ(Γ, S) is not C-Consistent.

Proof. Let Γ ∼= Zp1
k1 × Zp2

k2 × · · · × Zpt
kt be a finite abelian group and S = Z0(Γ) be a

Cayley set of Γ. In order to prove the desire result it suffices to show the existence of a cycle in
CayΣ(Γ, S), which is not consistent. To do this, we tackle the following cases:
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Case 1: If some of Zpi
ki is isomorphic to Z2, but not all, then we can choose u = (1, 1, . . . , 1),

v = (1, 1, . . . , a) and w = (1, 1, . . . , b) be three arbitrary distinct elements from U(Γ) as
|U(Γ)| ≥ 3, where a, b ∈ U(Zpt

kt ). Note that in CayΣ(Γ, S) an edge is negative if and only
if none of end vertices belongs to S. Here all three vertices are adjacent with each other through
negative edge and the negative degree of each of u, v and w is equal and is given by

d−(u) = d−(v) = d−(w) =
∏
i

(pi
ki − pi

ki−1)− 1, 1 ≤ i ≤ t.

Consequently, the negative degree of each of u, v and w is odd and therefore all the vertices
receive the negative sign through canonical marking. Since the vertices u, v and w are adjacent
to each other in CayΣ(Γ, S), so there exist an all-negative triangle in which all three vertices
are marked with negative sign, this would ensure the existence of negative cycle which is not
consistent. Hence CayΣ(Γ, S) is not C-Consistent.

Case 2: If exactly one of Zpi
ki is isomorphic to Z2, then we can choose the four elements

u1 = (1, 1, . . . , 1), u2 = (0, 0, . . . , 1), u3 = (1, 0, . . . , 0), and u4 = (0, 0, . . . , 0). Then there
exist a cycle (u1, u2, u3, u4, u1) in CayΣ(Γ, S). The negative degree of u1 is odd as it is adjacent
to all other elements of U(Γ) and the negative degree of remaining other vertices u2, u3, and u4
is even, therefore under the canonical marking u1 receive the negative sign and other vertices,
namely, u2, u3, and u4 receive the positive sign, this would ensure the existence of positive cycle
which is not consistent. Hence CayΣ(Γ, S) is not C-Consistent.

Theorem 3.11. Let Γ ∼= Zp1
k1 ×Zp2

k2 × · · ·×Zpt
kt be a finite abelian group, p′is are prime, k′is,

i and t are positive integers. Assume that S = Z0(Γ) be a Cayley set of Γ. Then Cayley signed
graph CayΣ(Γ, S) is C-consistent if and only if one of following conditions hold:

(i) for t = 1, Γ is isomorphic to Z4 or Zpk , p > 2;

(ii) for t > 1, none of Zpi
ki has Z2 as a quotient;

(iii) for t > 1, Γ ∼= Z2
t.

Proof. Necessity: Let us suppose that CayΣ(Γ, S) is C-Consistent and each of listed conditions
is false. Let Γ ∼= Zp1

k1 × Zp2
k2 × · · · × Zpt

kt be a finite abelian group and S = Z0(Γ) be a
Cayley set of Γ. In order to violate (i) and (iii), Γ is neither isomorphic to Z4 nor Zpk nor Z2

t,
t > 1 and to violate (ii) atleast one of Zpi

ki has Z2 as a quotient in Γ. This indicate that |Γ|
must be even and the number of elements a, a ∈ U(Γ) is also even. Note that in CayΣ(Γ, S)
an edge is negative if and only if none of end vertices belongs to S. Since each element of
U(Γ) is adjacent to every element of U(Γ) by negative edge, so the negative degree of a is odd
∀ a, a ∈ U(Γ). Consider three distinct elements u1, u2 and u3 from the set Γ \ S, i.e., U(Γ).
Since u1, u2 and u3 are mutually adjacent in CayΣ(Γ, S) with negative edge, so there exists
an all-negative triangle, namely, (u1, u2, u3, u1). Now it is easy to see that under the canonical
marking each element of U(Γ) receive the negative sign and one can find the presence of an
all-negative triangle in CayΣ(Γ, S), namely, (u1, u2, u3, u1) in which all the three vertices are
negatively marked. Therefore, there exist a cycle in CayΣ(Γ, S) which is not consistent and
hence CayΣ(Γ, S) is not C-Consistent, a contradiction to our assumption. Hence, if CayΣ(Γ, S)
is C-Consistent, then one of the conditions must hold.

Sufficiency: Let Γ ∼= Zp1
k1 × Zp2

k2 × · · · × Zpt
kt be a finite abelian group, p′is are prime

numbers, k′is, i and t are positive integers. Let S = Z0(Γ) be a Cayley set of Γ. Here our aim is
to show that CayΣ(Γ, S) is C-Consistent in each of the above listed conditions. We shall tackle
each case separately as follows:

(i) If t = 1 and Γ ∼= Z4, then |S| = 1. Therefore, in view of Theorem 3.4, CayΣ(Γ, S) is
C-Consistent. Next if t = 1 and Γ ∼= Zpk , then |S| is even and Cay(Γ, S) is an even regular
graph. Note that in CayΣ(Γ, S) an edge is negative if and only if none of the end vertices belongs
to S. Since the positive edges lie only between multiple of p and 0, so the number of negative
edges incident at a vertex u, u /∈ S are also even. This implies that the negative degree of u is
even ∀u, u ∈ Γ. Therefore, all the vertices receive positive sign under the canonical marking.
Thus, CayΣ(Γ, S) is C-Consistent.

(ii) For t > 1 and Γ ∼= Zp1
k1 ×Zp2

k2 ×· · ·×Zpt
kt in which none of Zpi

ki has Z2 as a quotient.
Note that in CayΣ(Γ, S) an edge is negative if and only if none of end vertices belongs to S. Let
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u be vertex which does not belong to S. Then negative degree of vertex u in CayΣ(Γ, S) is given
by

d−(u) =
∏
i

[pi
ki − pi

ki−1]−
∏
i

[pi
ki − 2piki−1]− 1, 1 ≤ i ≤ t.

This implies that d−(u) is even for all u, u /∈ S. Since the negative degree of the vertices which
belong to S is zero, so all the vertices in CayΣ(Γ, S) are marked with positive signs through
canonical marking. Hence, CayΣ(Γ, S) is C-Consistent.

(iii) For t > 1 and Γ ∼= Z2
t, then S contains all non-zero elements except the one element,

precisely (1, 1, 1, . . . , 1)︸ ︷︷ ︸
t−times

. Since there is only one element which does not belong to S, so there

is no negative edge in CayΣ(Γ, S), and hence it is an all-positive graph. Therefore in light of
Lemma 3.1, CayΣ(Γ, S) is balanced.
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