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Abstract The definition of locally semi-compact spaces originates from the study of semi-
compact spaces. In this paper, we obtain some new properties of locally semi-compact spaces
and define semi-k spaces as a generalization of locally semi-compact spaces. The relation be-
tween s-topological groups and locally semi-compact spaces is also established.

1 Introduction

Generalized open sets play a significant role in General Topology, and they are now the research
topics of many topologists worldwide. Levine [1] introduced the concept of semi-open sets and
semi-continuity in general topological spaces. A subset A in a topological space X is said to be
a semi-open set if and only if A ⊂ A0−, or equivalently if there exists an open subset U of X such
that U ⊂ A ⊂ U−. The complement of a semi-open set is said to be a semi-closed set (A−0 ⊂ A).
Every open (respectively closed) set is semi-open (respectively semi-closed), but the converse
may not be true. For example, suppose X = {a, b, c} and T = {∅,X,{a},{b},{a, b}}. Then
(X,T ) is a topological space. The sets {b, c} and {a, c} are semi-open but not open sets. Since
the semi-open sets played a significant role in the study of topological spaces, many mathemati-
cians introduced and investigated generalized open sets in topological spaces, such as α-open
sets (A ⊂ A0−0) [2], α-closed sets (A0−0 ⊂ A) [2], regular-open sets (A = A−0) [3], b-open
sets [4], pre-regular p-open sets [5].

As applications, the authors [6] used fuzzy semi-open sets and fuzzy semi-continuous map-
pings to generalize the fuzzy bitopological space and introduced fuzzy soft semi-pre-interior and
fuzzy soft semi-pre-closure [7] in fuzzy soft topological space. To minimize the topology con-
ditions for different reasons or preserve some properties under fewer conditions than those on
topology, the authors [8] introduced a concept of supra semi-limit points of a set and studied
main properties. In the paper [9], the authors examined almost semi-correspondence between
known relations of similarity and semi-correspondence and studied this relationship in the fam-
ily of density-type topologies. The properties of regular closed sets, semi-open sets, regular
semi-open sets, pre-open sets, and β-open sets in generalized topological spaces analogous to
their properties in topological spaces are also studied in [10].

In this direction, in 1978, Maheshwari and Prasad [11] used semi-open sets to define s-regular
spaces. A space X is said to be s-regular if, for any closed set F and x ∉ F , there exist disjoint
semi-open sets U and V such that x ∈ U and F ⊂ V . A space X is said to be semi-T3 if X is
s-regular and T1. A topological space X is said to be s-normal [11] if, for every pair of disjoint
closed sets A and B of X , there exist disjoint semi-open sets U and V such that A ⊂ U and
B ⊂ V . It is evident that every regular space is s-regular, and every normal space is s-normal.
However, the converse need not be true.

One of the critical applications of semi-open sets is compactness. A space X is said to be a
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semi-compact space [12] if every cover of X by semi-open sets has a finite subcover. A space
X is said to be s-paracompact [13] if every open cover of X has a locally finite semi-open
refinement. The authors in [13] also investigated the relationship between s-paracompact spaces
and semi-compact spaces.

In 1984, the definition of locally semi-compact spaces [14], which are closely related to semi-
compact spaces, was introduced. A space X is said to be locally semi-compact if every point of
X has an open neighborhood which is a semi-compact subspace of X . Obviously, every semi-
compact space is a locally semi-compact space, but the converse may not be true. For example,
if X = N and T = {A ∶ A ⊂ X}, then (X,T ) is an infinite discrete topological space. Hence,
{{xn} ∶ xn ∈ X} is a semi-open cover of X , but it does not have a finite subcover. Thus, X
is locally semi-compact but not semi-compact. Furthermore, the study of locally semi-compact
spaces is wide open. In 2014, the authors in [15] studied the s-topological groups, and a wider
class of S-topological groups, which are defined using semi-open sets and semi-continuity. In
2015, two types of topological groups, which are irresolute-topological and Irr-topological [16],
were introduced and studied. At the same time, many authors use generalized open sets to
replace open sets when they study topological groups, such as [17] and [18].

Our aim in this paper is to continue the investigation of locally semi-compact spaces and
introduce the definition of semi-k spaces as a generalization of locally semi-compact spaces.
One of the cores of investigating spaces using mappings is establishing extensive connections
between spaces with specific topological properties. Therefore, we improve upon some re-
sults concerning locally semi-compact spaces and show what mappings preserve locally semi-
compactness.

Throughout this paper, X and Y are always topological spaces on which no separation axioms
are assumed. The set of positive integers is denoted as N. The real line is denoted as R. The
interior and semi-interior of A in X are denoted as A0 and sop(A). The closure and semi-closure
of A in X are denoted as A and sclA. Suppose X and Y are topological spaces, and f ∶ X → Y is
a mapping between X and Y . If A ⊆ X , the restriction of f to A is the function f ∣A∶ A → f(A)
defined by f ∣A (x) = f(x) for each x in A. Throughout this paper, G denotes a group (G,∗)
endowed with a topology. If G is a group, then e denotes its identity element. If H is an invariant
subgroup of G, then G/H denotes the quotient group. For definitions not defined here, we refer
the reader to [19].

2 Locally semi-compact space

Locally semi-compact spaces are one of the essential classes of topological spaces, and many re-
sults have been obtained. However, some topological properties, such as hereditary property and
preservation under cartesian product, have not been obtained. The connection between locally
semi-compact spaces and other spaces is also not obtained. Thus, this section is mainly devoted
to studying locally semi-compact spaces and addresses the questions mentioned above.

Definition 2.1. [20] A mapping f ∶ X → Y is said to be irresolute if, for each semi-open set
V ⊂ Y , f−1(V ) is a semi-open set in X .

Definition 2.2. [19] A mapping f ∶ X → Y is said to be almost open if, for each y ∈ Y , there is
x ∈ f−1(y) such thatf(U) is a neighborhood of y in Y whenever U is a neighborhood of x.

Theorem 2.3. [14] If f ∶ X → Y is an open irresolute surjection and X is locally semi-compact,
then Y is locally semi-compact.

Since f is an open mapping, it follows that f is an almost open mapping [19], but the converse
may not be true. The following is a generalization of theorem 2.3 to locally semi-compact
spaces.

Theorem 2.4. If f ∶ X → Y is an almost open irresolute surjection and X is locally semi-
compact, then Y is locally semi-compact.

Proof. Suppose y in Y . Since f is an almost open mapping and X is locally semi-compact, it
follows that there is x in f−1(y) and a semi-compact neighborhood V containing x such that
f(V ) is a neighborhood of y. Suppose {Wα}α∈I is a semi-open cover of f(V ). Since f is an
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irresolute surjection, it follows that {f−1(Wα)}α∈I is a semi-open cover of V . Then there exists
a finite semi-open cover {f−1(W1), f−1(W2),⋯, f−1(Wr)} of V . Hence, V ⊂ ∪ri=1f

−1(Wi)
and f(V ) ⊂ ∪ri=1Wi. Therefore, f(V ) is a semi-compact neighborhood of y, and Y is locally
semi-compact.

The following example shows that Y need not be locally semi-compact when f ∶ X → Y is
an irresolute surjection and X is a locally semi-compact space. Hence, the hypothesis that f is
almost open is essential in Theorem 2.4.

Example 2.5. Suppose X = {−1}∪(0,1] is a subspace of the Euclidean topology space R. Then
X is a locally semi-compact space. Let Y = {(x, sin(1/x)) ∶ 0 < x ≤ 1} ∪ {(0,0)} and Y be a
subspace of Euclidean topology space R2. Suppose V is an open neighborhood of (0,0). Then
there exists an open ball Er centered at (0,0), where r is the radius of Er, such that Er ∩Y ⊂ V .
Then {(x, r/3) ∶ x ∈ R} ∩ Er ∩ Y is an infinite set of V and does not have semi-cluster point
in Y . Then V is not semi-compact. Thus, Y is not locally semi-compact. Let f ∶ X → Y be a
following mapping.

f(x) = { (0,0), if x = −1
(x, sin(1/x)), if 0 < x ≤ 1

Then f ∶ X → Y is an irresolute surjection, and X is a locally semi-compact space, but the
locally semi-compact is not preserved under f .

Definition 2.6. [20] A mapping f ∶ X → Y is said to be semi-open (respectively pre-semi-open)
if, for each semi-open set V ⊂ X , f(V ) is an open (respectively semi-open)set.

Theorem 2.7. [14] Each locally semi-compact space is a locally compact space.

Lemma 2.8. If f ∶ X → Y is a semi-open continuous bijection and Y is locally compact, then X
is locally semi-compact.

Proof. Suppose x ∈ X and y = f(x). Then there exists a compact neighborhood U such that
y ∈ U and x ∈ f−1(U). Then f−1(U) is a neighborhood of x. Suppose {Vα ∶ α ∈ I} is a semi-
open cover of f−1(U). Since f is a semi-open surjection, it follows that {f(Vα) ∶ α ∈ I} is an
open cover of U . Thus, there is a finite subcover {f(V1), f(V2),⋯, f(Vr)} of U . Then there is
a finite subcover {V1, V2,⋯, Vr} of f−1(U). Therefore, f−1(U) is a compact neighborhood of x,
and X is locally semi-compact.

According to Lemma 2.8 and Theorem 2.7, we obtain the following corollary direectly.

Corollary 2.9. If f ∶ X → Y is a semi-open continuous bijection and Y is locally compact, then
X is locally compact.

Lemma 2.10. If f ∶ X → Y is a pre-semi-open continuous bijection and Y is locally semi-
compact, then X is locally semi-compact.

Proof. The proof is similar to Lemma 2.8, and it is omitted.

Theorem 2.11. [19] Each T2 locally compact space is a Tychonoff space.

Since each regular second-countable space is metrizable and each Tychonoff space is regular,
by Theorem 2.4, Theorem 2.7 and Theorem 2.11, we arrive at the following theorem.

Theorem 2.12. Suppose X is a locally semi-compact space and f ∶ X → Y is an almost open
irresolute surjection. Then Y is metrizable when Y is a T2 second-countable space.

Corollary 2.13. Suppose X is a semi-T2 locally semi-compact space and f ∶ X → Y is a semi-
open irresolute bijection. Then the following properties are equivalent.
(1) Y is a semi-T3 space.
(2) Y is an s-regular space.
(3) Y is a semi-T2 space.
(4) Y is a semi-T1 space.
(5) Y is a semi-T0 space.
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(6) Y is a Tychonoff space.
(7) Y is a T3 space.
(8) Y is a regular space
(9) Y is a T2 space.
(10) Y is a T1 space.
(11) Y is a T0 space.

Proof. It is clear that (7) ⇒ (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5). For every distinct y1 and y2,
there exists distinct x1 and x2, such that y1 = f(x1) and y2 = f(x2). Then there exist disjoint
semi-open sets U and V such that x1 ∈ U and x2 ∈ V . Then f(U) and f(V ) are open sets and
f(U) ∩ f(V ) = ∅. Thus, Y is T2. Since f is a semi-open, it follows that f is almost open. By
Theorem 2.4 and Theorem 2.7, Y is locally compact. By Theorem 2.11, Y is a Tychonoff
space. Then (6) ⇐⇒ (7) ⇐⇒ (8) ⇐⇒ (9) ⇐⇒ (10) ⇐⇒ (11) and (5)⇒ (6).

Theorem 2.14. [14] Suppose A ⊂ B ⊂ X and B is an α-open set. Then A is semi-compact
relative to B if and only if A is semi-compact relative to X .

Corollary 2.15. If A and B are locally semi-compact α-open in X , then A ∪B is locally semi-
compact.

Proof. Suppose x in A ∪ B. We may assume x in A. Then there exists a semi-compact open
neighborhood U ⊂ A such that x in U and U ⊂ A ⊂ A ∪ B. Since each open set is semi-open,
by Theorem 2.14, U is semi-compact relative to A ∪ B. Therefore, A ∪ B is locally semi-
compact.

The following example shows that X ∪ Y need not be locally semi-compact when X and Y
are locally semi-compact spaces.

Example 2.16. Suppose R is the Euclidean topology space, X = {(x, y) ∈ R2 ∶ x > 0} and
Y = {(0,0)}. Then X and Y are locally semi-compact spaces of R2. Since (0,0) ∈ X ∪ Y , and
(0,0) does not have a semi-compact open neighborhood in X ∪ Y , it follows that X ∪ Y is not
locally semi-compact.

It is well known that the intersection of two semi-open sets need not be semi-open. To
investigate this question, we introduce the following property of semi-open sets.

Definition 2.17. A topological space X is said to have the SOP property (semi-openness preser-
vation) if, for all open subsets A and B, we have A ∩B = A ∩B.

Example 2.18. Every finite T1 space has the SOP property.

If X has the SOP property, U and V are semi-open sets, then there exist two open sets, A and
B, such that A ⊂ U ⊂ A, B ⊂ V ⊂ B. Thus, A ∩B ⊂ U ∩ V ⊂ A ∩B = A ∩B. Then we arrive at
the following result directly. If X has the SOP property, then the finite intersection of semi-open
sets is a semi-open set of X , and the family of all semi-open sets forms a topology on X .

Proposition 2.19. If X and Y have the SOP property, then X × Y has the SOP property.

Proof. Suppose A and B are open sets in X × Y . Let A = A1 × A2 and B = B1 × B2. Then
A ∩B = (A1 ×A2) ∩ (B1 ×B2) = (A1 ∩B1) × (A2 ∩B2) = (A1 ∩B1) × (A2 ∩B2). Since X

and Y have the SOP property, it follows that (A1 ∩B1) × (A2 ∩B2) = (A1 ∩B1) × (A2 ∩B2).
Since (A1 ∩B1) × (A2 ∩B2) = (A1 ×A2) ∩ (B1 ×B2) = A1 ×A2 ∩B1 ×B2 = A ∩B, it follows
that A ∩B = A ∩B. Then X × Y has the SOP property.

Since each T2 second-countable locally compact space is paracompact, [19] and locally semi-
compact space is locally compact, by Theorem 2.4, we arrive at the following corollary.

Corollary 2.20. If f ∶ X → Y is an almost open irresolute surjection, X is a locally semi-
compact space, and Y is a semi-T2 second-countable space with the SOP property, then Y is a
paracompact space.
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Lemma 2.21. If X is a semi-T2 space with the SOP property, then each semi-compact set is
semi-closed in X .

Proof. Suppose A is a semi-compact set in X and x ∈ A. Fix y ∈ X − A. Since X is a semi-T2
space, it follows that there exist two semi-open sets, Ux and Vx, such that x ∈ Ux, y ∈ Vx, and
Ux ∩ Vx = ∅. Then {Ux ∶ x ∈ A} is a semi-open cover of A. Thus, there exists a finite subcover
{Ux1 , Ux2 ,⋯, Uxp

} of A and A ⊂ ∪pi=1Uxi
. Let U = ∪pi=1Uxi

and V = ∩pi=1Vxi
. Since X has the

SOP property, it follows that V is a semi-open set and U ∩ V = ∅. Then A ∩ V = ∅. Therefore,
A is semi-closed in X .

Lemma 2.22. If X is a semi-compact space and Y is semi-closed in X , then Y is semi-compact.

Proof. Suppose {Aα ∶ α ∈ I} is a semi-open cover of Y . For each Aα, there exists an open set
Bα ⊂ Y such that Bα ⊂ Aα ⊂ Bα. Then there exists an open set Cα in X such that Bα = Cα ∩ Y .
Thus, Aα ⊂ Bα ⊂ Cα. Let Dα = Cα ∪ Aα. Then Dα ∩ Y = Aα. Since Cα ⊂ Dα ⊂ Dα and
Dα = Cα ∪Aα = Cα, it follows that Dα is semi-open in X . Then {Dα ∶ α ∈ I} ∪ {X − Y }
is a semi-open cover of X . There exists a semi-open cover {D1,D2,⋯,Dr} ∪ {X − Y } in X .
Therefore, there exists a semi-open cover {A1,A2,⋯,Ar} of Y , and Y is semi-compact.

The following result is an immediate consequence of Lemma 2.21 and Lemma 2.22.

Theorem 2.23. Suppose X is a semi-compact semi-T2 space with the SOP property. Then A ⊂ X
is semi-closed if and only if A is semi-compact.

Lemma 2.24. If X is a semi-compact semi-T2 space with the SOP property, then X is s-regular.

Proof. The proof is similar to the proof of Lemma 2.21 and thus omitted.

The following theorem will be helpful to show the next result.

Theorem 2.25. [10] Suppose A ⊂ B ⊂ X , where X is a topological space. Then
(1) If A is semi-open in X , then A is semi-open in B.
(2) If A is semi-open in B and B is semi-open in X , then A is semi-open in X .

Lemma 2.26. If A ⊂ B ⊂ X , A is semi-closed in B, and B is semi-closed in X , then A is
semi-closed in X .

Proof. If x is not in A, then x in X−B or x in B−A. Suppose x in X−B. Since B is semi-closed
in X , it follows that there is a semi-open set U in X such that x in U and U ∩B = ∅, and hence
A is semi-closed in X . Suppose x ∈ B −A. Since A is semi-closed in B, it follows that there is
a semi-open set V in B such that x in V and V ∩A = ∅. Then V ⊂ B ⊂ X and V ⊂ sop(B) ⊂ X .
By Theorem 2.25, V is a semi-open set of X . Therefore, A is semi-closed in X .

Corollary 2.27. Suppose X is locally semi-compact semi-T2 with the SOP property and Y is
α-open in X . Then Y is locally semi-compact when Y is semi-closed in X .

Proof. For each x ∈ Y , there exists a semi-compact open set U in X such that x ∈ U . By Lemma
2.21, U is semi-closed in X . Since Y is semi-closed in X , it follows that U ∩ Y is semi-closed
in X . Then U ∩ Y is semi-closed in U . By Lemma 2.22, U ∩ Y is semi-compact in U . Since U
is open in X , it follows that U is α-open. By Theorem 2.14, U ∩ Y is semi-compact in X . Then
U ∩ Y is semi-compact in Y . Therefore, Y is locally semi-compact.

Lemma 2.28. If Y is semi-open in X and X is a semi-T2 space with the SOP property, then Y is
a semi-T2 space.

Proof. Suppose x /= y, x and y in Y . Then there exists a semi-open set U ⊂ X containing x and
a semi-open set V ⊂ X containing y such that U ∩ V = ∅. Since X has the SOP property and Y
is semi-open, it follows that Y ∩U and Y ∩V are semi-open in X . According to Theorem 2.25,
Y ∩ U and Y ∩ V are semi-open in Y and (Y ∩ U) ∩ (Y ∩ V ) = ∅. Therefore, Y is a semi-T2
space.

Theorem 2.29. Suppose X is a locally semi-compact space with the SOP property. Then X is
s-regular when X is semi-T2.
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Proof. Suppose A ⊂ X is closed and x ∉ A. Then there exists an open set U containing x such
that U∩A = ∅. Since X is locally semi-compact, it follows that there exists a semi-compact open
neighborhood V in X containing x. According to Lemma 2.28, V is semi-T2. Let W = U ∩ V .
Then W is semi-open in X . By Theorem 2.25, W is semi-open in V . Then F = V −W is
semi-closed in V . By Lemma 2.21, V is semi-closed in X . By Lemma 2.26, F is semi-closed
in X . By Lemma 2.24, V is s-regular. Since x ∉ F , it follows that there exists a semi-open set G
in V containing x and a semi-open set H in V containing F such that G ∩H = ∅. By Theorem
2.25, G is semi-open in X . Let C = V −H . Then C is semi-closed in V . By Lemma 2.26, C
is semi-closed in X and X − C is semi-open. Then x ∈ G ⊂ C ⊂ W ⊂ U and A ⊂ (X − C).
Therefore, (X −C) ∩G = ∅ and X is s-regular.

Since each T1 s-regular space is a semi-T3 space and according to Theorem 2.29, we obtain
the following corollary directly.

Corollary 2.30. Suppose X is a T1 locally semi-compact space with the SOP property. Then the
following properties are equivalent.
(1) X is a semi-T3 space.
(2) X is an s-regular space.
(3) X is a semi-T2 space.

Theorem 2.31. If X and Y are locally semi-compact spaces with the SOP property, then X × Y
is locally semi-compact.

Proof. Suppose x0 ∈ X and y0 ∈ Y . Since X and Y are locally semi-compact spaces, it fol-
lows that there is a semi-compact neighborhood U in X such that x0 ∈ U and a semi-compact
neighborhood V in Y such that y0 ∈ V . Suppose A is a semi-open cover of U × V . For each
x ∈ U , {x} × V is semi-compact in U × V . Then A is a semi-open cover of {x} × V and
there exists a finite cover Ax ⊂ A of {x} × V . Let Ax = {Ux1 × Vx1 , Ux2 × Vx2 ,⋯, Uxr

× Vxr
}.

Since X has the SOP property, it follows that Wx = ∩ri=1Uxi
containing x is semi-open. Then

Wx × V = Wx × (Vx1 ∪ Vx2 ∪ ⋯ ∪ Vxr
) ⊂ Ux1 × Vx1 ∪ Ux2 × Vx2 ∪ ⋯Uxr

× Vxr
and Ax is a

semi-open cover of Wx × V . Since {Wx ∶ x ∈ U} is a semi-open cover of U and U is semi-
compact, it follows that there exists a semi-open cover W = {Wx1 ,Wx2 ,⋯,Wxs

} of U . Then
there exists a finite semi-open cover Axi

of Wxi
× V for each Wxi

∈ W and i = 1,2,⋯, s. Let
A0 = Ax1 ∪Ax2 ∪⋯∪Axs

. Then U ×V = (Wx1 ∪Wx2 ∪⋯∪Wxs
)×V ⊂ ∪A∈A0A. Thus, A0 ⊂ A

is a finite semi-open cover of U × V , and U × V is semi-compact. Therefore, X × Y is a locally
semi-compact space.

Corollary 2.32. Suppose each Xi is a locally semi-compact space with the SOP property for
i ∈ N. Then X = ∏i∈NXi is locally semi-compact when there are only finite many Xi are not
semi-compact.

Proof. Suppose X1,X2,⋯,Xr are locally semi-compact but not semi-compact, and x = (xi)i∈N ∈
X . For xi ∈ Xi, there exists a semi-compact open neighborhood Ui in Xi such that xi ∈ Ui for
i ∈ N. By Theorem 2.31,∏i∈NUi is a semi-compact open neighborhood of x, where Ui = Xi for
i > r. Therefore, X is locally semi-compact.

The following example shows that each Xi(i ∈ N) is a locally semi-compact space, but
∏i∈NXi need not be locally semi-compact. Theorem 2.33 and Lemma 2.34 will be helpful to
show the following example, so we introduce them first.

Theorem 2.33. [20] If f ∶ X → Y is an open continuous, then f is irresolute.

Lemma 2.34. Each discrete space is semi-compact if and only if it is finite.

Proof. Suppose X is a semi-compact discrete. Assume that X is infinite. Since X is a discrete
space, then {{x} ∶ x ∈ X} is an open cover of X . Then {{x} ∶ x ∈ X} is a semi-open cover
of X . Since X is semi-compact, it follows that there exists a finite cover {{x1},{x2},⋯,{xr}}
such that ∪ri=1{xi} = X . Thus, X = {x1, x2,⋯, xr} is a finite set. It contradicts the assump-
tion, and hence, X is a finite space. Conversely, suppose X is a discrete finite space. Let
X = {x1, x2,⋯, xp}. Then each {xi} is open when i = 1⋯p. Thus, {xi} is a semi-open set.
Let {Uα ∶ α ∈ I} be a semi-open cover of X . Then there exists a finite semi-open cover
{{x1},{x2},⋯,{xp}} of X . Therefore, X is semi-compact.
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Example 2.35. Suppose F1 is the discrete topology of N, and X =∏i∈NNi for each Ni = N and
i ∈ N. Then Ni is a locally semi-compact space. Let F2 = ∏i∈NUi, where each Ui is open in Ni

and Ui /= Ni for only finitely many i. Then F2 is a product topology of X . If Pi ∶ X → Ni is a
projection, then Pi is an open continuous surjection. By Theorem 2.33, f is irresolute. Suppose
V is a semi-compact and open set of X , and by definition of F2, a projection Pi exists such that
Pi(V ) = Ni is a semi-compact set. Since N is a discrete set, and by Lemma 2.34, it follows
that Pi(V ) = Ni = N is a finite set. It contradicts the fact, and hence, ∏i∈NXi is not locally
semi-compact.

It is well known that discrete spaces are compact spaces if and only if it is finite spaces [19],
and by Lemma 2.34, we arrive at the following theorem.

Theorem 2.36. If X is a discrete space, then the following properties are equivalent.
(1) X is a finite space.
(2) X is a compact space.
(3) X is a semi-compact space.

3 Semi-k space

This section begins by generalizing locally semi-compact spaces to semi-k spaces. Later, analo-
gous results of locally semi-compact spaces will be presented under the generalization. We first
obtain the following lemma to better introduce the definition of semi-k space.

Lemma 3.1. [14] If A is semi-compact relative to X and B is semi-closed in X, then A ∩ B is
semi-compact relative to X.

Lemma 3.2. Suppose X is a locally semi-compact semi-T2 space with the SOP property. Then
A ⊂ X is a semi-closed set if and only if for each semi-compact set C ⊂ X , A∩C is a semi-closed
set of X .

Proof. Suppose A is not a semi-closed set. Then there is a point x ∈ sclA and x ∉ A. Since X
is a locally semi-compact space, it follows that there is a semi-compact neighborhood B such
that x ∈ B. Since x ∈ sclA, it follows that B ∩A /= ∅ and x ∈ sclA ∩ sclB. For each semi-open
neighborhood C containing x. Since X has the SOP property, it follows that C ∩B is semi-open
and x ∈ C∩B. Since x ∈ sclA, it follows that C∩B∩A /= ∅ and x ∈ scl(A∩B). Since x ∉ A∩B,
it follows that A ∩B is not a semi-closed set.

Conversely, suppose A is a semi-closed set, and D is a semi-compact set. By Lemma 3.1,
A ∩D is semi-compact. By Lemma 2.21, A ∩D is semi-closed.

Definition 3.3. A space X is said to be a semi-k space if, for each A ⊂ X , A is semi-closed if
and only if A ∩B is a semi-closed set of X for any semi-compact B of X .

According to Lemma 3.2, we obtain the following corollary directly. Next, Example 3.5
shows that semi-k spaces need not be locally semi-compact.

Corollary 3.4. If X is a locally semi-compact semi-T2 space with the SOP property, then X is a
semi-k space.

Example 3.5. Let R be the real line, and P be the set of all irrational numbers. Let T be the
usual topology of R, and A = T ∪ {{x} ∶ x ∈ P} is a base that defines a topology on R. The R
with the topology generated by A is called the Michael line [19] and is denoted by X . It is clear
that X is first countable and not locally compact. If X is locally semi-compact, then X is locally
compact, a contradiction. Then X is not locally semi-compact.

Next, we prove X is a semi-k space. Suppose A ⊆ X is not closed. Then there exists x in
d(A) such that x ∉ A. Since X is a first countable space, there is a countable open neighborhood
basis {Vi ∶ i ∈ N} for x. Suppose Un = ∩ni=1Vi and n ∈ N. Then Un+1 ⊂ Un and {Un ∶ n ∈ N}
is a countable open neighborhood basis of x. Thus, {Un ∶ n ∈ N} is a countable semi-open
neighborhood basis of x. Since x ∈ d(A), it follows that Un ∩ (A − {x}) /= ∅. Suppose xn in
Un ∩ (A − {x}) and B = {xn ∶ n ∈ N} ∪ {x}. Suppose {Wα ∶ α ∈ I} is a semi-open cover of
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B. Then there exists Wα such that x ∈ Wα. Thus, there exists Un0 ∈ {Un ∶ n ∈ N} such that x
in Un0 and Un0 ⊆ Wα. For each n ≥ n0, Un ⊂ Un0 , it follows that xn in Un and Un ⊂ Wα. Then
there exists a finite semi-open cover {W1,⋯,Wt} of {xn ∶ n ≤ n0}. Then {Wα,W1,⋯,Wt} is a
finite semi-open cover of B. Thus, B is a semi-compact space and B ∩A = {xn ∶ n ∈ N}. Since
x is a semi-closure point of {xn ∶ n ∈ N} and x is not in it, it follows that {xn ∶ n ∈ N} is not a
semi-closed set in X . Therefore, X is a semi-k space.

Since the intersection of two semi-closed sets is semi-closed, and according to Definition 3.3
and Lemma 2.21, we obtain the following corollary directly.

Corollary 3.6. If semi-T2 space X has the SOP property, and each A ⊂ X is semi-closed, pro-
viding B ∩A is a semi-closed set of X for any B is semi-compact, then X is a semi-k space.

Proposition 3.7. Suppose X is semi-T2 with the SOP property. Then the following properties
are equivalent.
(1) X is a semi-k space.
(2) Each B ⊂ X is semi-open, providing A ∩ B is a semi-open set of A for any A , which is
semi-compact.
(3) Each B ⊂ X is semi-closed, providing A ∩B is a semi-closed set of X for any A , which is
semi-compact.

Proof. It is clear that (1)⇒ (3) by Definition 3.3 and (3)⇒ (1) by Corollary 3.6.
(1)⇒ (2). Since A∩B is a semi-open set of A, it follows that A− (A∩B)=A∩ (X −B) is

a semi-closed set of A. Since X is semi-T2 with the SOP property and A is semi-compact in X ,
and by Lemma 2.21, it follows that A is semi-closed in X . By Lemma 2.26, A ∩ (X −B) is a
semi-closed set of X . Since X is a semi-k space, it follows that X−B is semi-closed. Therefore,
B is a semi-open set of X .
(2) ⇒ (1). Suppose A ⊂ X is a semi-compact set. Then A is semi-closed in X . If C is a

subset of X and A ∩ C is a semi-closed set of X , then A ∩ C is a semi-closed set of A. Thus,
A−A∩C=A∩ (X −C) is a semi-open set of A, and X −C is a semi-open set of X . Therefore,
C is a semi-closed set of X . By Corollary 3.6, X is a semi-k space.

Here are some basic properties of semi-k spaces and show what mappings preserve semi-k
spaces.

Proposition 3.8. If each Xr is a semi-k space, then the topological sum X = ⊕Xr is a semi-k
space.

Proof. Suppose A is a semi-closed set of X , and B is a semi-compact set of X . Since X is a
topological sum, it follows that A ∩Xr is a semi-closed set of Xr. Suppose {Uα ∶ α ∈ I} is a
semi-open cover of B ∩Xr in Xr. For each Uα, there exists a semi-open set Vα ⊂ X such that
Uα = Vα∩Xr and {Vα ∶ α ∈ I} is a semi-open cover of B in X . Since B is a semi-compact set of
X , it follows that there exists a finite semi-open subcover {V1, V2,⋯, Vt} of B. Then there exists
a finite semi-open subcover {V1∩Xr, V2∩Xr,⋯, Vt∩Xr} = {U1, U2,⋯, Ut} of B∩Xr in Xr, and
B∩Xr is a semi-compact set of Xr. Since Xr is a semi-k space, (B∩Xr)∩(A∩Xr) = B∩A∩Xr

is a semi-closed set of Xr, and ∪(A ∩ B ∩Xr) = A ∩ B is a semi-closed set of X . Suppose C
is a subset of X and D is a semi-compact set of X . If C ∩ D is a semi-closed set of X , then
C ∩D ∩Xr = (C ∩Xr) ∩ (D ∩Xr) is a semi-closed set of Xr and D ∩Xr is a semi-compact
set of Xr. Since Xr is a semi-k space, it follows that C ∩Xr is a semi-closed set of Xr. Thus,
∪(C∩Xr) = C∩X = C is a semi-closed set of X . Consequently, X = ⊕Xr is a semi-k space.

Proposition 3.9. If X is a semi-k space and Y is regular-open in X , then Y is semi-k in X .

Proof. Suppose A is a semi-closed set of Y , and C is a semi-compact subset of Y . Since Y
is regular-open, it follows that Y = Y −0. Then Y 0 = Y −0 and Y = Y 0. Thus, Y ⊂ Y 0− and
Y 0 ⊂ Y 0−0. Then Y ⊂ Y 0−0 and Y is α-open. According to Lemma 2.14, C is a semi-compact
subset of X . Since Y = Y −0, it follows that Y −0 ⊂ Y . Then Y is semi-closed. By Lemma 2.26,
A is a semi-closed set of X . Since X is a semi-k space, it follows that A ∩ C is a semi-closed
set of X . Thus, A ∩ C is a semi-closed set of Y . Suppose B ⊂ Y , D is a semi-compact subset
of Y , and B ∩ D is a semi-closed subset of Y , then B ∩ D is a semi-closed subset of X . By
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Lemma 2.14, D is a semi-compact subset of X . Since X is a semi-k space, it follows that B is
a semi-closed subset of X . Therefore, B is a semi-closed subset of Y , and Y is a semi-k set of
X .

Lemma 3.10. If X is a semi-k space and f ∶ X → Y is a bijective, irresolute and pre-semi-open
mapping, then Y is a semi-k space.

Proof. Suppose A is a semi-closed set of Y and B is a semi-compact set of Y . Since f is
irresolute, it follows that f−1(Y −A) = X −f−1(A) is a semi-open set of X and f−1(A) is semi-
closed. Suppose {Uα ∶ α ∈ I} is a semi-open cover of f−1(B) in X . Then f−1(B) ⊂ ∪α∈IUα and
B ⊂ ∪α∈If(Uα). Then there exists a finite semi-open subcover {f(U1), f(U2),⋯, f(Ur)} such
that f−1(B) ⊂ ∪ri=1Ui. Thus, f−1(B) is a semi-compact set of X . Since X is a semi-k space, it
follows that f−1(B)∩f−1(A) is a semi-closed set of X and X−f−1(B)∩f−1(A) is a semi-open
set. Since f is bijective pre-semi-open mapping, it follows that f(X − f−1(B) ∩ f−1(A)) =
Y −B ∩A is a semi-open set of Y . Thus, B ∩A is a semi-closed set of Y .

Suppose C is a subset of Y , D is a semi-compact set of Y , and C ∩D is a semi-closed set in
Y . Then f−1(C∩D) = f−1(C)∩f−1(D) is semi-closed in X , and f−1(D) is semi-compact in X .
Thus, f−1(C) is semi-closed, and X −f−1(C) is semi-open in X . Then f(X −f−1(C)) = Y −C
is semi-open in Y , and C is semi-closed in Y . Therefore, Y is a semi-k space.

It is well known that if f ∶ X → Y is bijective, irresolute, and pre-semi-open, then f is said
to be semi-homeomorphism, and by Lemma 3.10, we obtain the following corollary directly.

Corollary 3.11. If X is a semi-k space and f ∶ X → Y is a semi-homeomorphism mapping, then
Y is a semi-k space.

Since each locally semi-compact semi-T2 space with the SOP property is a semi-k space, it
follows that the following remark can be obtained directly by Lemma 3.10.

Remark 3.12. If X is a locally semi-compact semi-T2 space with the SOP property and f ∶ X →
Y is an irresolute, pre-semi-open and bijective mapping, then Y is a semi-k space.

It is well known that we connect various class spaces using mappings as a linkage. This way,
we will use irresolute and pre-semi-open mappings to investigate the relationships among locally
semi-compact, semi-k, and k spaces. The following Theorem implies the connection between
semi-k spaces and locally semi-compact spaces, and Theorem 3.16 implies the connection be-
tween semi-k spaces and k spaces.

Theorem 3.13. If Y is a semi-T2 semi-k space with the SOP property, then there exists a locally
semi-compact semi-T2 space X with the SOP property and a bijective irresolute and pre-semi-
open mapping f such that f(X) = Y .

Proof. Let the family formed by all semi-compact sets in Y be Z = {Aα × {α} ∶ α ∈ I}, and
(Aα × {α}) ∩ (Aβ × {β}) = ∅, for α /= β, α ∈ I , and β ∈ I . Suppose the set X = ⊕α∈IAα × {α}
is a topological sum formed by all sets of Z. Each set G ⊂ X is a semi-open(semi-closed) set
if and only if G ∩ (Aα × {α}) is a semi-open(semi-closed) set in Aα × {α}) for each α ∈ I .
Then X is locally semi-compact. For each α ∈ I , let f ∶ X → Y be a surjective mapping and
f ∣Aα

∶ Aα × {α} → Kα be a semi-homeomorphism mapping. If M ⊂ Y is a semi-open set, then
(Y −M) ⊂ Y is a semi-closed set. Since Y is a semi-k space, it follows that (Y −M) ∩ Aα is
semi-closed in Y . Then f−1(Y −M)∩Aα×{α} = (Y −M)∩Aα×{α} is a semi-closed set of X .
Thus, f−1(Y −M) = X − f−1(M) is a semi-closed set, and f−1(M) is a semi-open set. Hence,
f is an irresolute mapping. Suppose U is a semi-open set of X . Then X − U is semi-closed.
Then (X − U) ∩Aα × {α} is semi-closed. Then f(X − U) ∩Aα × {α} = (X − U) ∩Aα × {α}
is semi-closed. Since Y is a semi-k space, it follows that f(X − U) = Y − f(U) is semi-closed,
and f(U) is a semi-open set. Therefore, f is a pre-semi-open mapping.

We arrive at the following theorem according to Theorem 2.31, Remark 3.12, and Theorem
3.13.

Theorem 3.14. Suppose X and Y are semi-T2 spaces with the SOP property. Then X × Y is a
semi-k space when X is a semi-k space, and Y is a locally semi-compact space.
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Definition 3.15. [21] A space X is said to be a k space if X is T2 and each A ⊂ X is closed,
providing B ∩A is closed in X for any compact set B.

Theorem 3.16. Suppose f ∶ X → Y is a pre-semi-open bijection, and the inverse image of each
semi-open subset of Y is open in X . Then X is a k space if and only if Y is a semi-T2 semi-k
space.

Proof. Suppose X is a k space. Let A be a subset of Y , and A∩C is a semi-closed set in Y , which
C is semi-compact in Y . Then f−1(Y −A∩C) = X − f−1(A)∩ f−1(C) is an open set in X , and
f−1(A) ∩ f−1(C) is a closed set in X . Suppose {Fα ∶ α ∈ I} is an open cover of f−1(C). Since
f ∶ X → Y is a pre-semi-open mapping, it follows that {f(Fα) ∶ α ∈ I} is a semi-open cover of
C. There is a finite subcover {f(F1), f(F2),⋯, f(Fr)} of C. Then {F1, F2,⋯, Fr} is an open
cover of f−1(C), and f−1(C) is a compact set of X . Since X is a k space, it follows that f−1(A)
is a semi-closed set of X and X − f−1(A) is a semi-open set. Then f(X − f−1(A)) = Y −A is
semi-open, and A is semi-closed in Y .

Suppose G ⊂ Y is semi-closed and x ∉ f−1(G). Thus, f(x) ∉ G. Then there is a semi-
open set E in Y such that E ∩ G = ∅ and f(x) ∈ E. Thus, x ∈ f−1(E). Since the inverse
image of each semi-open subset of Y is open in X , it follows that f−1(E) is semi-open in X
and f−1(E) ∩ f−1(G) = ∅. Then f−1(G) is closed in X . Suppose H in Y is semi-compact
and {Wβ ∶ β ∈ J} is an open cover of f−1(H). Hence, {Wβ ∶ β ∈ J} is a semi-open cover
of f−1(H). Thus, {f(Wβ) ∶ β ∈ J} is a semi-open cover of H . Then there is a finite cover
{f(W1), f(W2),⋯, f(Ws)} of H . Thus, there is a finite cover {W1,W2,⋯,Ws} of f−1(H).
Then f−1(H) is compact in X . Since X is a k space, it follows that f−1(G) ∩ f−1(H) is closed
in X . Since f is pre-semi-open bijection, it follows that G∩H is semi-closed in X . Then Y is a
semi-k space.

For every distinct y1 and y2 in Y , there exists distinct x1 and x2 in X such that y1 = f(x1)
and y2 = f(x2). Since X is T2, it follows that there exist disjoint open sets W and R such that
x1 ∈ W and x2 ∈ R. Then W and R are semi-open sets, and y1 ∈ f(W ) and y2 ∈ f(R). Since f
is a pre-semi-open bijection, it follows that f(W ) and f(R) are disjoint semi-open sets. Then
Y is semi-T2.

Conversely, suppose Y is a semi-k space. Let A ⊂ X and A ∩ C be a closed set in X , where
C is compact in X . Thus, X −A ∩C is an open set of X . Then f(X −A ∩C) = Y − f(A ∩C)
is semi-open, and f(A ∩ C) = f(A) ∩ f(C) is semi-closed in Y . Suppose {Eγ ∶ γ ∈ L} is a
semi-open cover of f(C). Thus, {f−1(Eγ) ∶ γ ∈ L} is an open cover of C. Then there exists
a finite cover {f−1(E1), f−1(E2),⋯, f−1(Ep)}. Then {E1, E2,⋯, Ep} is a semi-open cover of
f(C), and f(C) is semi-compact in Y . Since Y is a semi-k space, it follows that f(A) is semi-
closed, and Y − f(A) is semi-open in Y . Then f−1(Y − f(A)) = X −A is open in X . Hence, A
is closed in X . For every distinct x1 and x2 in X , there exists distinct y1 and y2 in Y such that
y1 = f(x1) and y2 = f(x2). Since Y is semi-T2, it follows that there exist disjoint semi-open sets
U and V such that y1 ∈ U , y2 ∈ V . Then x1 ∈ f−1(U), x2 ∈ f−1(V ), and f−1(U) ∩ f−1(V ) = ∅.
Since f−1(U) and f−1(V ) are open in X , it follows that X is T2. Therefore, X is a k space.

To complete the following proof, we need to introduce a new definition. First, we recall some
basic notations. A collection B = {Bα ∶ α ∈ I} of subsets of a topological space X is said to be
s-locally finite [22] if each x ∈ X has a semi-open set U containing x, and U intersects at most
finitely many members of B. A collection C = {Cβ ∶ β ∈ J} of subsets of a topological space X
is said to be net [19] if for each x ∈ V , V is an open set of X , and there exists Cβ ∈ C such that
x ∈ Cβ ⊂ V .

Definition 3.17. A collection A = {Aα ∶ α ∈ I} of subsets of a topological space X is said to be
semi-net, if U is a semi-open set of X and each x ∈ U , there exists Aα ∈ A such that x ∈ Aα ⊂ U .

Definition 3.18. A collection A = ∪n∈NAn of subsets of a topological space X is said to be a σ
s-locally finite semi-net if each An is an s-locally finite semi-net.

Since each open set is a semi-open set and based on the definition of the net, we arrive at the
following remark directly. But example 3.20 shows that the converse of the remark may not be
true.

Remark 3.19. Every semi-net in a topological space is a net.
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Example 3.20. Suppose X = {1,2,3} and F1 = {∅,X,{1},{2},{1,2}} is a topology of X .
Thus, F2 = {∅,X,{1},{2},{1,2},{1,3},{2,3}} is the family of all semi-open sets of X . Sup-
pose F3 = {X,{1},{2}}. Then F3 is a net of X . Notes that {1,3} is a semi-open set and
3 ∈ {1,3}. For each set A in F3 does not satisfy the condition that 3 ∈ A ⊂ {1,3}. Therefore, F3
is not a semi-net of X .

According to Definition 3.17, we obtain the following corollaries directly.

Corollary 3.21. If A = {Aα ∶ α ∈ I} is a semi-net of X and f ∶ X → Y is an irresolute
surjection, then {f(Aα) ∶ α ∈ I} is a semi-net of Y .

Corollary 3.22. If A = {Aα ∶ α ∈ I} is a semi-net of Y and f ∶ X → Y is a pre-semi-open
injection, then {f−1(Aα) ∶ α ∈ I} is a net of X .

Corollary 3.23. If A = {Aα ∶ α ∈ I} is a semi-net of X and B = {Bβ ∶ β ∈ J} is a semi-net of
Y , Then {Aα ×Bβ ∶ α ∈ I, β ∈ J} is a semi-net of X × Y .

Corollary 3.24. If A is a semi-net of X , and Y is semi-open in X , then A is a semi-net of Y .

Corollary 3.25. If A is a semi-net of X , and each A ∈ A is open, then X has the SOP property.

Theorem 3.26. Suppose X is an s-regular space with the SOP property. Then X is s-normal
when X has a countable semi-net.

Proof. Suppose A and B are closed sets in X and A ∩B = ∅. For each x ∈ A, there exist semi-
open sets Ux and Vx such that x ∈ Ux, B ⊂ Vx, and Ux ∩ Vx = ∅. Let Wx = X − Vx. Then Wx is
semi-closed. Thus, x ∈ Ux ⊂Wx and Wx ∩B = ∅. Then A = {Ux ∶ x ∈ A} is a semi-open cover
of A. Meanwhile, for each y ∈ B, there exists a semi-open set Ey containing y and a semi-closed
set Fy such that y ∈ Ey ⊂ Fy and Fy ∩ A = ∅. Then B = {Ey ∶ y ∈ B} is a semi-open cover of
B. Thus, A ∪B ∪ {X − (A ∪ B)} is a semi-open cover of X . Suppose C = {Cn ∶ n ∈ N} is
a countable semi-net of X . Hence, Ux = ∪{Cn ∶ x ∈ Cn ⊂ Ux, x ∈ Ux, Cn ∈ C } and each Ux in
A . Thus, C1 = {Cn ∶ Cn ∈ C , x ∈ Cn ⊂ Ux, x ∈ A} is a cover of A. For each Cn in C , there
exists Uxn

in A such that Cn ⊂ Uxn
. Then there exists a countable semi-open cover A1 ⊂ A of

A. Let A1 = {Un ∶ n ∈ N}. Meanwhile, there exists a countable semi-open cover B1 ⊂ B of B.
Let B1 = {En ∶ n ∈ N}. Let Gn = Un − ∪{Fk ∶ k ≤ n} and Hn = En − ∪{Wk ∶ k ≤ n}. Then
Gn ∩Hm = ∅ and Gm ∩Hn = ∅ for m ≤ n. Then Gn ∩Hm = ∅ for each n and m in N. Since
X has the SOP property, it follows that Gn and Hn are semi-open sets. Let G = ∪n∈NGn and
H = ∪n∈NHn. Then G and H are semi-open sets, G ∩H = ∅, and A ⊂ G and B ⊂ H . Therefore,
X is s-normal.

According to Theorem 3.26 and Theorem 2.29, we obtain the following corollary directly.

Corollary 3.27. Suppose X is a locally semi-compact space with the SOP property. Then X is
s-normal when X is a semi-T2 space with a countable semi-net.

Theorem 3.28. Suppose X is a semi-T2 semi-countably compact space with the SOP property.
Then X is a semi-k space when X has a σ s-locally finite semi-net.

Proof. Suppose A = ∪n∈NAn is a σ s-locally finite semi-net of X . Let An = {Aα ∶ α ∈ I}. For
each α ∈ I , pick xα ∈ Aα. Let B = ∪{scl{xα} ∶ α ∈ I}. Suppose C = ∪{scl{xα} ∶ α ∈ J} is
a subset of B. If scl{xα} ⊂ C, then {xα} ⊂ ∪α∈J{xα} and scl{xα} ⊂ scl(∪α∈J{xα}). Thus,
∪α∈Jscl{xα} ⊂ scl(∪α∈J{xα}). If x ∉ ∪α∈Jscl{xα}, there is a semi-open set U containing x such
that U intersects at most finitely many members of An. Then U intersects at most finitely many
members of {{xα} ∶ α ∈ I}. Thus, U intersects at most finitely many members of {{xα} ∶ α ∈ J}.
Let it be {{x1},{x2},⋯,{xt}}. Since x ∉ ∪α∈Jscl{xα}, it follows that x ∉ ∪ti=1scl{xi}. Since
x ∉ ∪α∈Jscl{xα}, it follows that x ∉ ∪ti=1scl{xi} and x ∈ X − ∪ti=1scl{xi}. Since X has the
SOP property, it follows that ∪ti=1scl{xi} is semi-closed, X −∪ti=1scl{xi} is a semi-open set, and
U ∩ (X − ∪ti=1scl{xi}) is semi-open. Since (X − ∪ti=1scl{xi}) ∩ {xi} = ∅ for i = 1,2,⋯, t, it
follows that (U ∩ (X − ∪ti=1scl{xi})) ∩ (∪{{xα} ∶ α ∈ J}) = ∅. Then x ∉ scl(∪{{xα} ∶ α ∈ J})
and scl(∪α∈J{xα}) ⊂ ∪α∈Jscl{xα}. Thus, scl(∪α∈J{xα}) = ∪α∈Jscl{xα}. Therefore, each
subset of B and B are discrete semi-closed sets.
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Assume that B is an infinite set. Let B = {Bn ∶ n ∈ N}, Bn = ∪{scl{xn+i}; i = 0,1,2,3,⋯}
and n ∈ N. Then Bn ⊂ B and Bn ∩ Bm /= ∅ for every n, m ∈ N. We assume ∩n∈NBn = ∅.
Since Bn is semi-closed, it follows that X −Bn is semi-open and ∪n∈N(X −Bn) is a semi-open
cover of X . Since X is a semi-countably compact space, it follows that there exists a finite semi-
open cover {X −B1,X −B2,⋯,X −Bp} such that ∪pi=1(X −Bi) = X . Then ∩pi=1Bi = ∅. It is
contradictory. Then there exists a point x0 ∈ ∩n∈NBn and x0 ∈ B. If x0 is not a semi-accumulation
point of B, then x0 is not a semi-accumulation point of Bn, which contradicts the fact that Bn is
semi-closed and x0 ∈ Bn. Then x0 is a semi-accumulation point of B, which contradicts that B
is a discrete set. Therefore, B is a finite set. We may assume scl{xα} = scl{xβ} when α and β
are in I . Hence, An is not s-locally finite on xα. It is contradictory. Thus, An is finite. Thus, A
is a countably s-locally finite collection of X , and let A = {An ∶ n ∈ N}.

Suppose D = {Dγ ∶ γ ∈ K} is a semi-open cover of X . For each γ ∈ K, let Aγ = {An ∶ y ∈
An ⊂ Dγ , y ∈ Dγ ,An ∈ A }. Then Dγ = ∪{An ∶ An ∈ Aγ}, and ∪γ∈KAγ is a cover of X . For
each An ∈ ∪γ∈KAγ , there exists Dγn

∈ D such that An ∈ Dγn
. Then there exists a countable

semi-open cover {Dγn
∶ n ∈ N} of X . Since X is semi-countably compact, it follows that there is

a finite cover {D1,D2,⋯,Dt} of X . Then X is semi-compact. Thus, X is locally semi-compact.
Since X is a semi-T2 locally semi-compact space with the SOP property, and by Corollary 3.4,
X is a semi-k space.

According to Theorem 3.28, we obtain the following corollary directly.

Corollary 3.29. Suppose A is s-locally finite in X and A1 = {Aα ∶ α ∈ I} ⊂ A . Then ∪{sclAα ∶
Aα ∈ A1} = scl(∪{Aα ∶ Aα ∈ A1}) when X has the SOP property.

By Theorem 3.16 and Theorem 3.28, we obtain the following corollary.

Corollary 3.30. Suppose f ∶ X → Y is a pre-semi-open bijection, the inverse image of each
semi-open subset of Y is open in X , and Y has a σ s-locally finite semi-net. Then X is a k space
when Y is a semi-countably compact semi-T2 space with the SOP property.

Corollary 3.31. Suppose X is a semi-countably compact space with the SOP property. Then X
is a semi-compact space when X has a σ s-locally finite semi-net.

Proof. The proof is similar to Theorem 3.28, and it is omitted.

Since each subset in discrete space is open and closed, it follows that discrete space has the
SOP property. We obtain the following theorem by Lemma 2.34 and corollary 3.31

Theorem 3.32. Suppose X is a semi-countably compact discrete space. Then X is a finite and
compact space when X has a σ s-locally finite semi-net.

4 The application of locally semi-compact spaces

In this section, we obtained some applications of locally semi-compact spaces and established the
relations among locally semi-compact spaces, s-paracompact spaces, and s-topological groups.

Theorem 4.1. [23] Suppose X is an s-regular space and U is semi-open in X . Then, for each
x ∈ U , there exists a semi-open set V and a semi-closed set W such that x ∈ V ⊂W ⊂ U .

Theorem 4.2. Suppose X is locally semi-compact and has a countable semi-net. Then X is
s-paracompact when X is a semi-T2 space with the SOP property.

Proof. Suppose A = {Aα ∶ α ∈ I} is an open cover of X and B = {Bn ∶ n ∈ N} is a countable
semi-net. By Theorem 2.29, X is s-regular. For each x ∈ Aα, by Theorem 4.1, there exists a
semi-open set Ux and a semi-closed set Vx such that x ∈ Ux ⊂ Vx ⊂ Aα. Then U = {Ux ∶ x ∈ X}
is a semi-open cover of X . Since B is a countable semi-net, it follows that there exists a set
Bn ∈ B such that y ∈ Bn ⊂ Ux for y ∈ Ux. Then there exists a collection Bx = {Bn ∶ y ∈
Bn ⊂ Ux, y ∈ Ux,Bn ∈ B} ⊂ B such that Ux = ∪{Bn ∶ Bn ∈ Bx}. Then B1 = ∪x∈XBx

is a cover of X . Thus, there exists a set Uxn
in U such that Bn ⊂ Uxn

for each Bn ∈ B1.
Then there exists a countable semi-open cover U1 ⊂ U and let U1 = {Uxn

∶ n ∈ N}. Let



LOCALLY SEMI-COMPACT SPACES 131

W1 = Ux1 ,W2 = Ux2 − Ux1 ,⋯,Wn = Uxn
− ∪k<nUxk

. Then Wn ⊂ Uxn
⊂ Vxn

for each n ∈ N, and
W = {Wn ∶ n ∈ N} is an s-locally finite cover of X .

Since Vx is a semi-closed set, it follows that {sclWn ∶ n ∈ N} is a semi-closed refinement
of A . Since W is s-locally in X , for each x ∈ X , it follows that there exists a semi-open
set Cx such that x ∈ Cx and Cx intersects at most finitely many members of W . Let it be
W1 = {W1,W2,⋯,Wr}. Then Cx ∩ sclWr /= ∅. If Cx ∩ sclWr+1 /= ∅ and Wr+1 is not in W1, then
there exists a point y ∈ Cx ∩ sclWr+1. Thus, there exists a semi-open neighborhood Dy such that
y ∈ Dy ⊂ Cx. Since y ∈ sclWr+1, it follows that Dy ∩Wr+1 /= ∅. Then Cx ∩Wr+1 /= ∅. It is a
contradiction. Then W2 = {sclWn ∶ n ∈ N} is an s-locally finite cover of X and sclWn ⊂ Vxn

for
each n ∈ N.

For each x ∈ X , there exists a semi-open set Ex such that Ex intersects at most finitely many
members of W2. Then E = {Ex ∶ x ∈ X} is a semi-open cover of X . In the same way, there
exists a countable s-locally finite semi-closed cover of X , which is a refinement of E . Let it be
F .

For each n ∈ N, let Hn = X − ∪{F ∶ F ∈ F , F ∩ sclWn = ∅} and H = {Hn ∶ n ∈ N}. Since
F is s-locally finite and semi-closed, and X has the SOP property, and by Corollary 3.29, it
follows that ∪{F ∶ F ∈F , F ∩ sclWn = ∅} is semi-closed, and Hn is semi-open in X . For each
y ∈ sclWn, there exists a semi-closet set F ∈ F such that y ∈ F . Then F ∩ sclWn /= ∅ and F is
not in {F ∶ F ∈F , F ∩ sclWn = ∅}. Then F ⊂ X − ∪{F ∶ F ∈F , F ∩ sclWn = ∅} = Hn. Thus,
y ∈ Hn and sclWn ⊂ Hn. Hence, for each n ∈ N and F ∈ F , Hn ∩ F /= ∅ when sclWn ∩ F /= ∅.
If F ∩Hn /= ∅, then there exists a point y ∈ Hn ∩ F . Then y ∉ ∪{F ∶ F ∈ F , F ∩ sclWn = ∅}.
Thus, y ∈ ∪{F ∶ F ∈ F , F ∩ sclWn /= ∅} and F ∩ sclWn /= ∅. Thus, for each n ∈ N and F ∈ F ,
F ∩Hn /= ∅ is equivalent to F ∩ sclWn /= ∅.

For each n ∈ N, there exists a set Aαn
∈ A such that sclWn ⊂ Aαn

. Let A1 = {Aαn
∶

sclWn ⊂ Aαn
, n ∈ N}. Then A1 is a semi-open cover of X . Let Gn = Aαn

∩Hn for each n ∈ N.
Let G = {Gn ∶ n ∈ N}. Since sclWn ⊂ Hn and W2 is a cover of X , it follows that G is a cover of
X and semi-open refinement of A .

For each x ∈ X , there exists a semi-open set Qx such that x ∈ Qx and Qx intersects at most
finitely many members of F . Let it be {F1, F2,⋯, Fs}. For each Fi ∈F and i = 1,2,⋯, s, there
exists a set Exi

∈ E such that Fi ∈ Exi
. Since Exi

intersects at most finitely many members
of W2 for i = 1,2,⋯, s, it follows that Fi intersects at most finitely many members of W2 for
i = 1,2,⋯, s. Then Fi intersects at most finitely many members of H for i = 1,2,⋯, s. Thus,
Qx intersects at most finitely many members of H . Then Qx intersects at most finitely many
members of G , and G is an s-locally finite collection of X . Therefore, X is s-paracompact.

Definition 4.3. [15] An s-topological group is a group G with a topology A such that for each
x, y in G and each neighborhood W of xy−1, there are semi-open neighborhoods U of x and V
of y such that UV −1 ⊂W .

Theorem 4.4. [15] Let G be an s-topological group. Then each left (right) translation lg ∶ G →
G(rg ∶ G→ G) is a semi-homeomorphism.

Theorem 4.5. Suppose G is an s-topological group. Then G is a locally semi-compact space if
and only if there is a semi-compact neighborhood of e in G.

Proof. Since G is a locally semi-compact space and e in G, it follows that e has a semi-compact
neighborhood. Suppose U is a semi-compact neighborhood of e. For each x in G. Since the
right translation rg ∶ G → G is a semi-homeomorphism, it follows that Ux is a semi-compact
neighborhood and x in Ux. Therefore, G is locally semi-compact.

Corollary 4.6. Suppose G is a locally semi-compact semi-T2 s-topological group with the SOP
property. Then H is locally semi-compact when H is an α-open subgroup.

Proof. Since H is α-open, it follows that H is semi-open. Let rx ∶ G→ G be the right translation.
Then rx is a semi-homeomorphism. Thus, rx(H) = Hx is semi-open, and ∪x∈G−HHx is semi-
open. Then H = G − ∪x∈G−HHx is semi-closed. According to Corollary 2.27, H is locally
semi-compact.

We obtain the following corollary directly according to Lemma 2.22 and Lemma 2.34.
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Corollary 4.7. Suppose G is a semi-compact group and H is a semi-closed subgroup. Then H
is semi-open if and only if H is finite in G.

Theorem 4.8. Suppose G is an s-topological group with the SOP property, H is semi-compact,
and f ∶ G → G/H is a projection. Then G is locally semi-compact when (G/H,A ) is semi-
compact, where A = {U ⊂ G/H ∶ f−1(U) is semi − open}.

Proof. Since f ∶ G → G/H is a projection and A is a topology on G/H . Then f is semi-
continuous and surjective. Let A ⊂ G be semi-closed. Then f−1(f(A)) = AH ⊂ G. Let
x ∈ G − AH . Then A ∩ xH−1 = ∅. Let {Uα ∶ α ∈ I} be a semi-open cover of xH−1. Then
xH−1 ⊂ ∪α∈IUα and H−1 ⊂ ∪α∈Ix−1Uα. Thus, H ⊂ ∪α∈IxU−1

α . Since H is semi-compact, it
follows that there exists a finite set J ⊂ I such that H ⊂ ∪α∈JxU−1

α and x−1H ⊂ ∪α∈JU−1
α . Then

xH−1 ⊂ ∪α∈JU−1
α and xH−1 are semi-compact. Then there exists a semi-open neighborhood V

of e such that A ∩ V ∩ xH−1 = ∅ and AH ∩ V x = ∅. Since V x is a semi-open neighborhood
of x, it follows that AH is semi-closed and G/H − AH ∈ A . Since A is a topology on G/H ,
it follows that f(A) is closed in G/H , and f is semi-closed. If gH ∈ G/H and f(a) = gH for
some a ∈ G, then f−1(gH) = f−1(f(a)) = aH . Thus, aH is semi-compact by Lemma 4.4. Then
f−1(gH) is semi-compact for each gH ∈ G/H .

Let {Wβ ∶ β ∈ L} be a semi-open cover of G = f−1(G/H) and y = gH ∈ G/H . Then there
exists a finite set L0 ⊂ L such that f−1(gH) ⊂ ∪β∈L0Wβ . Let Dy = ∪β∈L0Wβ . Then Dy is
semi-open, Ey = G/H − f(G −Dy) is semi-open, and gH is in Ey. Thus, G/H ⊂ ∪y∈G/HEy.
Since G/H is semi-compact, it follows that there are finite points y1, y2,⋯, yr in G/H such that
G/H ⊂ ∪ri=1Eyi

. Then G = f−1(G/H) ⊂ ∪ri=1f
−1(Eyi

) = ∪ri=1Dyi
. Therefore, G is locally

semi-compact.

5 Conclusion remarks

In this paper, we continue the study of the properties of locally semi-compact spaces, and some
new properties have been obtained. At the same time, we establish the connections between
locally semi-compact spaces and semi-k spaces by irresolute and pre-semi-open mappings and
obtain the relation between semi-countably compact spaces and semi-k spaces. The relation
between s-topological groups and locally semi-compact spaces is also established. Several di-
rections for future research are discussed below. The work initiated here is the starting point
for continuing work towards that direction and motivating others to do so. To obtain differ-
ent types of spaces in further research, we suggest adopting semi-countable compact spaces or
semi-paracompact spaces instead of semi-compact spaces.
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[4] D. Andrijević, On b-open sets, Mat. Vesnik, 48(1-2), 59–64, (1996).

[5] P. Jeyanthi, P. Nalayini and T. Noiri, Pre-regular p-open sets and decompositions of complete continuity,
Jordan J. Math. Stat., 9(3), 227–237, (2016).

[6] S.S. Thakur and R. Malviya, Semi-open sets and semi-continuity in fuzzy bitopological spaces, Fuzzy Sets
and Systems, 79(2), 251–256, (1996).

[7] S. Hussain, On fuzzy soft semi-pre-open sets and fuzzy soft semi-pre-continuous mappings, Hacet. J. Math.
Stat., 46(5), 851–863, (2017).

[8] T.M. Al-shami, E.A. Abo-Tabl and B.A. Asaad, M.A. Arahet, Limit points and separation axioms with
respect to supra semi-open sets, Eur. J. Pure Appl. Math., 13(3), 427–443, (2020).

[9] S. Lindnern and M. Terepeta, Almost semi-correspondence, Georgian Math. J., 24(3), 439–446, (2017).

[10] M.S. Sarsak, More properties of generalized open sets in generalized topological spaces, Demonstr.
Math., 55(1), 404–415, (2022).

[11] S.N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.),
22(1), 27–29, (1978).



LOCALLY SEMI-COMPACT SPACES 133

[12] M. Ganster, Some remarks on strongly compact spaces and semi-compact paces, Bull. Malaysian Math.
Soc., 10(2), 67–70, 1987.

[13] K.Y. Al-Zoubi, S-paracompact spaces, Acta Math. Hungar., 110(1-2), 165–174, (2006).

[14] F.H. Khedr, On semi compact spaces, Delta J. Sci., 8(2), 421–430, (1984).
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