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Abstract The Ricci-Bourguignon soliton is a self-similar solution of the Ricci-Bourguignon
flow. This article is dedicated to the study of Ricci-Bourguignon soliton in a complete Rieman-
nian manifold. In particular, it is shown that under certain conditions, the Ricci curvature of the
Ricci-Bourguignon soliton vanishes along some geodesics.

1 Introduction

In 1982, Hamilton [8, 9] presented the concept of Ricci flow in a complete Riemannian man-
ifold (M, g0) to investigate the various geometric and topological properties of a Riemannian
manifold. The Ricci flow is defined by an evolution equation for the Riemannian metrics on
(M, g0):

∂

∂t
g(t) = −2Ric, g(0) = g0.

A Ricci soliton generalizes the Einstein metric and is defined as

Ric+
1
2
LXg = λg, (1.1)

where X denotes a smooth vector field on M , L indicates the Lie-derivative operator and λ ∈ R.
Ricci soliton is called shrinking, steady or expanding according to λ > 0, λ = 0 or λ < 0,
resp. The vector field X is known as the potential vector field of the Ricci soliton. If X is either
Killing or vanishing vector field, then the Ricci soliton is called trivial Ricci soliton, and (1.1)
reduces to an Einstein metric. If X becomes the gradient of a smooth function f ∈ C∞(M), the
ring of smooth functions on M , then the Ricci soliton is called gradient Ricci soliton and (1.1)
reduces to the form

Ric+∇2f = λg, (1.2)

where ∇2f is the Hessian of f . The study of Ricci soliton reveals many geometrical and topo-
logical properties of a manifold; for more information, see [12, 10, 13, 5, 6, 1].

Jean-Pierre Bourguignon [2] introduced a more generalized type of Ricci flow, which is called
Ricci-Bourguignon flow:

∂

∂t
g(t) = −2(Ric− ρRg),

where ρ is a real nonzero constant.
If ρ = 0, then the Ricci-Bourguignon flow reduces to the Ricci flow. Just like Ricci soliton, a

similar kind of self-similar solution can be defined in the case of Ricci-Bourguignon flow, which
is called gradient Ricci-Bourguignon soliton [7] or gradient ρ-Einstein soliton [3].

Definition 1.1. [3] A Riemannian manifold (M, g) of dimension n ≥ 3 is said to be the gradient
ρ-Einstein Ricci soliton if

Ric+∇2f = λg + ρRg, ρ ∈ R, ρ ̸= 0,
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for some function f ∈ C∞(M) and some constant λ ∈ R. The function f is called Einstein
potential. The gradient ρ-Einstein soliton is called expanding if λ < 0, steady if λ = 0 and
shrinking if λ > 0.

Ricci-Bourguignon solitons are extensively studied, for reference see [11, 14, 3, 7].
In this article, we have deduced the behavior of the Ricci curvature along some geodesics.

The main result of our article is the following:

Theorem 1.2. Let (M, g) be a Riemannian manifold, where g is gradient Ricci-Bourguignon
soliton with non negative Ricci curvature. If M contains a line, then there exists a geodesic ϱ
such that the Ricci curvature of g vanishes along ϱ, i.e.,

Ric(ϱ′(t), ϱ′(t)) = 0, for all t > 0.

2 Main proof

Proof of Theorem 1.2. Let c : (−∞,+∞) → M be a line in M . Suppose that β+ and β− are the
Busemann functions which correspond to the rays c+ = c|[0,∞) and c− = c|(−∞,0] respectively,
i.e.,

β+(x) = lim
t→∞

(d(x, c+(t))− t),

β−(x) = lim
t→∞

(d(x, c−(−t))− t).

Now using the Cheeger-Gromoll splitting theorem, see [4, Theorem 1], we get that β+ and β−

are superharmonic functions. Again, using the triangle inequality, we obtain for all x ∈ M

β+(x) + β−(x) = lim
t→∞

(d(x, c+(t)) + d(x, c−(−t))− 2t) ≥ 0.

Furthermore,

(β+ + β−)(c(t)) = 0, (2.1)

since c is a line. Let y ∈ c and D be an arbitrary connected region in M with smooth boundary
∂D and containing y in its interior. The (2.1) implies that

(β+ + β−)(y) = 0.

Now consider two continuous functions h+ and h− on D which are harmonic on int(D) with
h+|∂D = β+|∂D and h−|∂D = β−|∂D. Since (h+ + h−)|∂D is non-negative, it follows from
the minimum principle for harmonic functions that h+(y) + h−(y) ≥ 0. Now β+ ≥ h+ and
β− ≥ h−, so we must have β+(y) = h+(y) and β−(y) = h−(y). Then it follows that β+ = h+

and β− = h− on D. Since, D is arbitrary, it indicates that β+ and β− are differentiable and
harmonic in M . The property of Busemann function implies that for any x, y ∈ M ,

|bt(x)− bt(y)| ≤ d(x, y).

Letting t → ∞ ,it shows that |∇β+| ≤ 1. Again, for a given x, take a minimal geodesic ϱt from
x to c(t). Let {tn} be a sequence such that ϱ′tn(0) → ϱ′(0). Then for all y ∈ ϱ, it implies that
|β+(x) − β+(y)| = d(x, y). Therefore, it is clear that |∇β+| = 1, and ϱ is the integral curve
of ∇β+ through the point x. Let ∇β+ = ν. Now an orthonormal frame e1, e2, · · · , en−1, ν can
be constructed in a neighborhood of x that is parallel along ϱ. And it shows that ∇νν = 0 at x.
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Now, we calculate

∇2f(ν, ν) = (ρR+ λ)⟨ν, ν⟩ −Ric(ν, ν)

= (ρR+ λ)−
n−1∑
i=1

⟨R(ei, ν)ν, ei⟩

= (ρR+ λ)−
n−1∑
i=1

⟨∇ei∇νν −∇ν∇eiν −∇[ei,ν]ν, ei⟩

= (ρR+ λ) +
n−1∑
i=1

⟨∇ν∇eiν, ei⟩+
n−1∑
i=1

⟨∇∇ei
νν, ei⟩

= (ρR+ λ) +
n−1∑
i=1

ν⟨∇eiν, ei⟩+
n−1∑
i,j=1

⟨∇eiν, ej⟩⟨∇ejν, ei⟩

= (ρR+ λ)−
n−1∑
i=1

ν⟨ν,∇eiei⟩+ ∥∇ν∥2

= (ρR+ λ) + ν(∆β+) + ∥∇ν∥2 = (ρR+ λ) + ∥∇ν∥2.

It shows that along the geodesic ϱ, ∇2f(ν, ν) ≥ (ρR + λ). Again, the equation of Ricci-
Bourguignon soliton implies that along ϱ,∫ t

0
∇2f(ϱ′(t), ϱ′(t))dt =

∫ t

0
(ρR+ λ)dt−

∫ t

0
Ric(ϱ′(t), ϱ′(t))dt ≤

∫ t

0
(ρR+ λ)dt.

Hence, we obtain ∫ t

0
∇2f(ϱ′(t), ϱ′(t))dt =

∫ t

0
(ρR+ λ)dt.

Integrating the Ricci-Bourguignon equation and putting the above value, it yields∫ t

0
Ric(ϱ′(t), ϱ′(t))dt = −

∫ t

0
∇2f(ϱ′(t), ϱ′(t))dt+

∫ t

0
(ρR+ λ)⟨ϱ′(t), ϱ′(t)⟩dt

= −
∫ t

0
(ρR+ λ)dt+

∫ t

0
(ρR+ λ)dt = 0.

Since, Ric is non-negative everywhere, the above inequality implies that Ricci curvature vanishes
along the geodesic ϱ.
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