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Abstract In this paper, we determine the structure of the unit groups of the semisimple group algebras of non-metabelian
groups of order 144. Up to isomorphism, there are 197 non-isomorphic groups of order 144, and only 28 are non-metabelian.
Mittal and Sharma [19] studied the unit groups of the semisimple group algebras of non-metabelian groups of order 144
that have exponent either 36 or 72. In this work, we characterize the unit groups of the group algebras of non-metabelian
groups of order 144 having exponent 12 and 24. This paper completes the study of the unit groups of the group algebras of
non-metabelian groups up to order 144.

1 Introduction
Let KG denote the group algebra generated by the finite group G of order n over the finite field K of order q = pk having
characteristics p. Let U(KG) denote the collection of all elements in KG having multiplicative inverses. The set U(KG) is
known as the unit group of KG. Owing to the applications of the units in various fields like coding theory (see [8],[9],[10]),
number theory ([6]), cryptography [17] etc., the classification of the unit groups of the group algebras has become a salient
research area [7, 13, 20, 21, 25, 26, 27, 28].
For the group algebras generated by metabelian groups (recall that a group G is metabelian if its derived subgroup is abelian),
Bakshi et al. [3] completely characterized the unit groups. Therefore, most of the researchers in this area focus on the unit
groups of the group algebras of non-metabelian groups. Thanks to Pazderski, it is possible to explicitly calculate the possible
orders of non-metabelian groups (see [23]). One can note that the smallest possible order of a non-metabelian group is 24.
The unit groups of the semisimple group algebras of non-metabelian groups of order 24 are studied in [11, 12]. One of the
notable works in this direction is due to Mittal and Sharma [15], where the authors studied the unit groups of the semisimple
group algebras of non-metabelian groups up to order 72. Furthermore, Mittal and Sharma also characterized the unit groups
of the semisimple group algebras of non-metabelian groups up to order 120 (see [16, 18, 22, 24]), except that of the symmetric
group S5. Arvind and Panja study the unit group of the semisimple group algebra of S5 in [2]. In continuation, Abhilash et
al. [1] considered all the non-metabelian groups of order 128 and studied the unit groups of their corresponding semisimple
group algebras.
Next, using [23], it is straight-forward to note that there are non-metabelian groups of order 144. Up to isomorphism, there
are 197 groups of order 144, and only 28 are non-metabelian. Moreover, the possible exponents of these 28 non-metabelian
groups are 12, 24, 36, and 72. Recently, Mittal and Sharma [19] computed the unit groups of the semisimple group algebras
of non-metabelian groups of order 144 that have exponents 36 or 72. In this work, we consider the remaining non-metabelian
groups of order 144, i.e., the groups having exponents 12 or 24 (a total of 11 such groups), and compute the unit groups
of their corresponding semisimple group algebras. This paper will complete the study of the unit groups of the semisimple
group algebras of groups up to order 144.
This paper is organized as follows. The preliminaries needed in this paper are collected in section 2. Moreover, in the same
section, we discuss the non-metabelian groups of order 144. Sections 3 and 4 deal with our main results on the structure
of the unit groups of semisimple group algebras of 11 non-metabelian groups of order 144. Finally, section 5 concludes the
paper.

2 Preliminaries
Throughout this paper, let K denote the finite field of order q = pk with characteristic p and let G denote the finite group of
order n. The definitions given below are as in [5].

Definition 2.1. An element x ∈ G is called p′-element, if p ∤ |x|, where |x| is the order of x.

Let the least common multiple of the orders of all p′-elements in G be denoted by s. Let the primitive sth root of unity over
K be denoted by ω. Therefore, K(ω) is the splitting field over K. Next, we define the set

TG,K = {t | σ(ω) = ωt, where σ ∈ Gal(K(ω)/K)},

where Gal(K(ω)/K) denotes the Galois group of K(ω) over K.

Definition 2.2. For any p′-element x ∈ G, let γx =
∑

h∈Cx

h. Then, the cyclotomic K-class of γx is the set

SK(γx) = {γxt | t ∈ TG,K}.
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Proposition 2.1. [5] The set of simple components of KG
J(KG)

and the set of cyclotomic K-classes in G, where J(KG) is the
Jacobson radical of KG, are in 1-1 correspondence.

Proposition 2.2. [5] Let l be the number of cyclotomic K-classes in G. If K1,K2, · · · ,Kl are the simple components of
Z
( KG
J(KG)

)
and S1, S2, · · · , Sl are the cyclotomic K-classes of G, then |Si| = [Ki : K] with a suitable ordering of the

indices, assuming that the Galois group Gal(K(ω) : K) is cyclic.

Lemma 2.1. [14] Let KG be a semi-simple group algebra and let G′ be the derived subgroup of G. Then,

KG ∼= KGeG′ ⊕△(G,G′),

where KGeG′ = K
(

G
G′

)
is the sum of all commutative simple components of KG and △(G,G′) is the sum of all others.

Proposition 2.3. [14] The number of irreducible representations of KG is equal to the number of conjugacy classes of G.

We end this section by discussing the non-metabelian groups of order 144.

2.1 Non-metabelian groups of order 144
From [19, section 2], we know that there are 28 non-metabelian groups of order 144. These are listed as follows: We write
all the 28 non-metabelian groups of order 144 in the following list:

1. (Q8 ⋊ C9).C2

2. (Q8 ⋊ C9) ⋊ C2

3. ((C2 × C2) ⋊ C9) ⋊ C4

4. C2 × (Q8 ⋊ C9)

5. ((C4 × C2) ⋊ C2) ⋊ C9

6. C2 × (((C2 × C2) ⋊ C9) ⋊ C2)

7. (C3 × C3) ⋊ ((C4 × C2) ⋊ C2)

8. (C3 × C3) ⋊ (C4 ⋊ C4)

9. (C3 × C3) ⋊D16

10. (C3 × C3) ⋊QD16

11. (C3 × C3) ⋊Q16

12. (C3 × C3) ⋊ (C4 ⋊ C4)

13. C3 × (C2 · S4)

14. C3 ×GL(2, 3)

15. C3 × (A4 ⋊ C4)

16. C3 ⋊ (C2.S4)

17. (C3 × SL(2, 3)) ⋊ C2

18. (C3 ×A4) ⋊ C4

19. ((C4 × S3) ⋊ C2) ⋊ C3

20. S3 × SL(2, 3)

21. C6 × SL(2, 3)

22. C3 × (((C4 × C2) ⋊ C2) ⋊ C3)

23. (C3 × C3) ⋊QD16

24. S3 × S4

25. C2 × ((S3 × S3) ⋊ C2)

26. C2 × ((C3 × C3) ⋊Q8)

27. C6 × S4

28. C2 × ((C2 ×A4) ⋊ C2).

Among these 28 groups, the groups at the serial numbers 7, 8, 12, 18 and 19 have exponent 12 (total 5) and the groups at the
serial numbers 9, 10, 11, 16, 17 and 23 have exponent 24 (total 6). In the subsequent sections, we study the unit groups of
group algebras corresponding to these 11 groups.

3 Groups of exponent 12
As discussed in section 2, we know that there are 5 non-metabelian groups of order 144. In this section, we characterize the
unit group of the semisimple group algebra generated by these 5 groups. Throughout this paper, let x−1y−1xy = [x, y]
denote the commutator of x, y ∈ G. The 5 non-metabelian groups of order 144 with exponent 12 are given below. We
remark that, in order to be consistent with the list given in section 2, we represent the groups with the same serial numbers as
appearing earlier.

7. (C3 × C3) ⋊ ((C4 × C2) ⋊ C2)

8. (C3 × C3) ⋊ (C4 ⋊ C4)

12. (C3 × C3) ⋊ (C4 ⋊ C4)

18. (C3 ×A4) ⋊ C4

19. ((C4 × S3) ⋊ C2) ⋊ C3

3.1 G7 = (C3 × C3) ⋊ ((C4 × C2) ⋊ C2).
The group G7 has the following presentation:

G7 =⟨x1, x2, x3, x4, x5, x6 | x2
1, [x2, x1]x

−1
3 , [x3, x1], [x4, x1], [x5, x1]x

−1
5 , [x6, x1], x

2
2x

−1
4 , [x3, x2], [x4, x2],

[x5, x2]x
−1
6 x−2

5 , [x6, x2]x
−1
5 , x2

3, [x4, x3], [x5, x3]x
−1
5 , [x6, x3]x

−1
6 , x2

4, [x5, x4], [x6, x4], x
3
5, [x6, x5], x

3
6⟩

The sizes, orders and the representatives of the 18 conjugacy classes of G7 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x4 x1x6 x2x4 x2x5

Size 1 6 6 9 1 4 18 6 12 6 12
Order 1 2 4 2 2 3 4 2 6 4 12
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x3x4 x4x5 x5x6 x1x2x4 x1x4x6 x2x4x5 x4x5x6

9 4 4 18 12 12 4
2 6 3 4 6 12 6

Theorem 3.1. Let G7 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 5} mod 12, U(KqG7) ∼= (K∗
q)

8 ⊕ (GL2(Kq))2 ⊕ (GL4(Kq))8.

2) for pk ≡ {7, 11} mod 12, U(KqG7) ∼= (K∗
q)

4 ⊕ (K∗
q2 )

2 ⊕ (GL2(Kq))2 ⊕ (GL4(Kq))6 ⊕GL4(Kq2 ).

Proof. The group G7 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG7) = 0. Also, the commutator subgroup
G′

7
∼= (C3×C3)⋊C2 and G7

G′
7

∼= C4×C2. Therefore, lemma 2.1 can be applied to compute the Wedderburn decomposition.

Let us discuss the Wedderburn decomposition in the following 2 cases.
Case 1: k is even in q = pk or pk ≡ {1, 5} mod 12.
In this case, | SK(γg) |= 1, ∀g ∈ G7. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of KqG7
is given by,

KqG7 ∼= (Kq)
8

10⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 136 =

10∑
i=1

n2
i .

The choices of ni’s can be

(29, 10), (27, 63), (26, 43, 8), (25, 33, 5, 8), (25, 4, 54), (24, 32, 4, 52, 6), (23, 34, 4, 62),

(23, 33, 43, 7), (22, 36, 5, 7), (22, 48), (2, 33, 45, 5) and (36, 42, 52).

In the direction of finding ni’s uniquely, we consider the normal subgroup N = ⟨x4⟩ of G7. The Wedderburn decomposition
of the factor group F = G7

N
∼= (S3 × S3) ⋊ C2 is due to [15] and is given below: KqF ∼= (Kq)4 ⊕M2(Kq)⊕M4(Kq)4.

With this information, we can conclude that the choices for ni’s can either be (22, 48) or (2, 33, 45, 5). Suppose, if p = 5,
then by proposition 1 of [4], (2, 33, 45, 5) cannot be the choice in the decomposition of KqG7. Therefore, we have

KqG7 ∼= (Kq)
8 ⊕ (M2(Kq))

2 ⊕ (M4(Kq))
8.

Case 2: k is odd and pk ≡ {7, 11} mod 12.
In this case, SK(γx2 ) = {γx2 , γx2x4}, SK(γx1x2 ) = {γx1x2 , γx1x2x4}, SK(γx2x5 ) = {γx2x5 , γx2x4x5} and SK(γg) =
{γg}, for the remaining g ∈ G7. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG7 ∼= (Kq)
4 ⊕ (Kq2 )2

8⊕
i=1

Mni (Kq)⊕Mn9 (Kq2 ), ni ≥ 2 ⇒ 136 =

8∑
i=1

n2
i + 2 · n2

9.

Therefore, by repeating the same process as in case 1, we get that (22, 46, 4) is the only possibility for ni’s. Thus, we have

KqG7 ∼= (Kq)
4 ⊕ (Kq2 )2 ⊕ (M2(Kq))

2 ⊕ (M4(Kq))
6 ⊕M4(Kq2 ).

This completes the proof.

3.2 G8 = (C3 × C3) ⋊ (C4 ⋊ C4).
The group G8 has the following presentation:

G8 =⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
4 , [x2, x1]x

−1
3 , [x3, x1], [x4, x1], [x5, x1]x

−1
5 , [x6, x1], x

2
2x

−1
4 , [x3, x2], [x4, x2],

[x5, x2]x
−1
6 x−2

5 , [x6, x2]x
−2
6 x−1

5 , x2
3, [x4, x3], [x5, x3]x

−1
5 , [x6, x3]x

−1
6 , x2

4, [x5, x4], [x6, x4], x
3
5, [x6, x5], x

3
6⟩.

The sizes, orders and the representatives of the 18 conjugacy classes of G8 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x4 x1x6 x2x4 x2x5

Size 1 6 6 9 1 4 18 6 12 6 12
Order 1 4 4 2 2 3 4 4 12 4 12

x3x4 x4x5 x5x6 x1x2x4 x1x4x6 x2x4x5 x4x5x6

9 4 4 18 12 12 4
2 6 3 4 12 12 6

Theorem 3.2. Let G8 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 5} mod 12, U(KqG8) ∼= (K∗
q)

8 ⊕ (GL2(Kq))2 ⊕ (GL4(Kq))8.

2) for pk ≡ {7, 11} mod 12, U(KqG8) ∼= (K∗
q)

4 ⊕ (K∗
q2 )

2 ⊕ (GL2(Kq))2 ⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

Proof. The group G8 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG8) = 0. Also, the commutator subgroup
G′

8
∼= (C3×C3)⋊C2 and G8

G′
8

∼= C4×C2. Therefore, lemma 2.1 can be applied to compute the Wedderburn decomposition.

As in theorem 3.1, we further discuss the following two cases.
Case 1: k is even in q = pk or pk ≡ {1, 5} mod 12. The proof is same as case 1 in theorem 3.1.
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Case 2: k is odd and pk ≡ {7, 11} mod 12.
In this case, SK(γx1 ) = {γx1 , γx1x4}, SK(γx2 ) = {γx2 , γx2x4}, SK(γx1x6 ) = {γx1x6 , γx1x4x6}, SK(γx2x5 ) =
{γx2x5 , γx2x4x5} and SK(γg) = {γg}, for the remaining g ∈ G8. By lemma 2.1 and propositions 2.2 and 2.3, the
Wedderburn decomposition is given by

KqG8 ∼= (Kq)
4 ⊕ (Kq2 )2

6⊕
i=1

Mni (Kq)

8⊕
i=7

Mni (Kq2 ), ni ≥ 2 ⇒ 136 =

6∑
i=1

n2
i + 2 · n2

7 + 2 · n2
8.

By repeating the same process as in theorem 3.1, we conclude that (22, 44, 4, 4) is the only possibility for ni’s. Therefore,
we have

KqG8 ∼= (Kq)
4 ⊕ (Kq2 )2 ⊕ (M2(Kq))

2 ⊕ (M4(Kq))
4 ⊕ (M4(Kq2 ))2.

This completes the proof.

3.3 G12 = (C3 × C3) ⋊ (C4 ⋊ C4).
Here, note that the structure of the groups G8 and G12 are same, but they are not isomorphic because of the small variation
in the presentations. The group G12 has the following presentation:

G12 = ⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
3 , [x2, x1]x

−1
3 , [x3, x1], [x4, x1], [x5, x1]x

−2
6 , [x6, x1]x

−1
6 x−2

5 , x2
2x

−1
4 x−1

3 , [x3, x2],

[x4, x2], [x5, x2]x
−1
6 x−2

5 , [x6, x2]x
−2
6 x−2

5 , x2
3, [x4, x3], [x5, x3]x

−1
5 , [x6, x3]x

−1
6 , x2

4, [x5, x4], [x6, x4], x
3
5, [x6, x5], x

3
6⟩

The sizes, orders and the representatives of the 12 conjugacy classes of G12 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x4 x2x4 x3x4 x4x5 x1x2x4

Size 1 18 18 9 1 8 18 18 18 9 8 18
Order 1 4 4 2 2 3 4 4 4 2 6 4

Theorem 3.3. Let G12 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 5} mod 12, U(KqG12) ∼= (K∗
q)

8 ⊕ (GL2(Kq))2 ⊕ (GL8(Kq))2.

2) for pk ≡ {7, 11} mod 12, U(KqG12) ∼= (K∗
q)

4 ⊕ (K∗
q2 )

2 ⊕ (GL2(Kq))2 ⊕ (GL8(Kq))2.

Proof. The group G12 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG12) = 0. Also, the commutator
subgroup G′

12 = (C3×C3)⋊C2 and G12
G′

12
= C4×C2. Therefore, lemma 2.1 can be applied to the Wedderburn decomposition.

Let us discuss the decomposition in 2 cases.
Case 1: k is even in q = pk or pk ≡ {1, 5} mod 12.
In this case, | SK(γg) |= 1, ∀g ∈ G12. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of
KqG12 is given by,

KqG12 ∼= (Kq)
8

4⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 136 =
4∑

i=1

n2
i .

The choices of ni’s can be (22, 82) and (2, 42, 10). In the direction of finding ni’s uniquely, we consider the normal subgroup
N = ⟨x5, x6⟩ of G12. The factor group F = G12

N
∼= C4 ⋊ C4. Using [3], we note that KqF ∼= (Kq)8 ⊕ (M2(Kq))2. With

this information, we can conclude that the Wedderburn decomposition of KqG12 is given by

KqG12 ∼= (Kq)
8 ⊕ (M2(Kq))

2 ⊕ (M8(Kq))
2.

Case 2: k is odd and pk ≡ {7, 11} mod 12.
In this case, SK(γx2 ) = {γx2 , γx2x4}, SK(γx1x2 ) = {γx1x2 , γx1x2x4} and SK(γg) = {γg}, for the remaining g ∈ G12.
By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG12 ∼= (Kq)
4 ⊕ (Kq2 )2

4⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 136 =

4∑
i=1

n2
i .

Further, by repeating the same process as in theorem 3.1, we get that (22, 82) is the only possibility for ni. Therefore, we
have

KqG12 ∼= (Kq)
4 ⊕ (Kq2 )2 ⊕ (M2(Kq))

2 ⊕ (M8(Kq))
2.

This completes the proof.

3.4 G18 = (C3 × A4) ⋊ C4.
The group G18 has the following presentation:

G18 =⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
2 , [x2, x1], [x3, x1]x

−1
3 , [x4, x1]x

−1
4 , [x5, x1]x

−1
6 x−1

5 , [x6, x1]x
−1
6 x−1

5 , x2
2, [x3, x2],

[x4, x2], [x5, x2], [x6, x2], x
3
3, [x4, x3], [x5, x3]x

−1
6 x−1

5 , [x6, x3]x
−1
5 , x3

4, [x5, x4], [x6, x4], x
2
5, [x6, x5], x

2
6⟩

The sizes, orders and the representatives of the 18 conjugacy classes of G18 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x5 x2x3 x2x4 x2x5 x3x4

Size 1 18 1 8 2 3 18 18 8 2 3 8
Order 1 4 2 3 3 2 4 4 6 6 2 3
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x4x5 x1x2x5 x2x3x4 x2x4x5 x2
3x4 x2x

2
3x4

6 18 8 6 8 8
6 4 6 6 3 6

Theorem 3.4. Let G18 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 5} mod 12, U(KqG18) ∼= (K∗
q)

4 ⊕ (GL2(Kq))8 ⊕ (GL3(Kq))4 ⊕ (GL6(Kq))2.

2) for pk ≡ {7, 11} mod 12, U(KqG18) ∼= (K∗
q)

2 ⊕K∗
q2 ⊕ (GL2(Kq))8 ⊕ (GL3(Kq))2 ⊕GL3(Kq2 )⊕ (GL6(Kq))2.

Proof. The group G18 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG18) = 0. Also, the commutator
subgroup G′

18 = C3 ×A4 and G18
G′

18
= C4. Therefore, lemma 2.1 can be applied to compute the Wedderburn decomposition.

Case 1: k is even in q = pk or pk ≡ {1, 5} mod 12.
In this case, | SK(γg) |= 1, ∀g ∈ G18. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of
KqG18 is given by,

KqG18 ∼= (Kq)
4

14⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 140 =
14∑
i=1

n2
i .

The choices of ni’s can be

(211, 42, 8), (210, 54), (29, 32, 52, 6), (28, 34, 62), (28, 33, 42, 7), (27, 47),

(26, 33, 44, 5), (25, 36, 4, 52), (24, 38, 4, 6) and (312, 42).

In order to find the value of ni’s uniquely, we consider the normal subgroups N1 = ⟨x5, x6⟩ and N2 = ⟨x4⟩ of G18. The
factor group F1 = G18

N1
∼= (C3 × C3) ⋊ C4. Using [3], we know that KqF1 ∼= (Kq)4 ⊕ (M2(Kq))8. By theorem 3.3 from

[15], KqF2 ∼= (Kq)4 ⊕ (M2(Kq))2 ⊕ (M3(Kq))4. With this information, we conclude that the Wedderburn decomposition
of KqG18 is given by

KqG18 ∼= (Kq)
4 ⊕ (M2(Kq))

8 ⊕ (M3(Kq))
4 ⊕ (M6(Kq))

2.

Case 2: k is odd and pk ≡ {7, 11} mod 12.
In this case, SK(γx1 ) = {γx1 , γx1x2}, SK(γx1x5 ) = {γx1x5 , γx1x2x5} and SK(γg) = {γg}, for the remaining g ∈ G18.
By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG18 ∼= (Kq)
2 ⊕ Kq2

14⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 140 =

14∑
i=1

n2
i .

Furthermore, using [3, 15] we know that KqF1 ∼= (Kq)2 ⊕Kq2 ⊕ (M2(Kq))8 and KqF2 ∼= (Kq)2 ⊕Kq2 ⊕ (M2(Kq))2 ⊕
(M3(Kq))2 ⊕M3(Kq2 ). This means that

KqG18 ∼= (Kq)
2 ⊕ Kq2 ⊕ (M2(Kq))

8 ⊕ (M3(Kq))
2 ⊕M3(Kq2 )⊕ (M6(Kq))

2.

This completes the proof.

3.5 G19 = ((C4 × S3) ⋊ C2) ⋊ C3.
The group G19 has the following presentation:

G19 =⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
6 , [x2, x1], [x3, x1], [x4, x1], [x5, x1]x

−1
5 , [x6, x1], x

3
2, [x3, x2]x

−1
4 , [x4, x2]x

−1
4 x−1

3 ,

[x5, x2], [x6, x2], x
2
3x

−1
6 , [x4, x3]x

−1
6 , [x5, x3], [x6, x3], x

2
4x

−1
6 , [x5, x4], [x6, x4], x

3
5, [x6, x5], x

2
6⟩

The sizes, orders and the representatives of the 21 conjugacy classes of G19 are given below:

Representative e x1 x2 x3 x5 x6 x1x2 x1x3 x1x6 x2
2 x2x3 x2x5 x3x5

Size 1 3 4 6 2 1 12 18 3 4 4 8 12
Order 1 4 3 4 3 2 12 2 4 3 6 3 12

x5x6 x1x
2
2 x1x2x3 x2

2x5 x2
2x6 x2x3x5 x1x

2
2x6 x2

2x5x6

2 12 12 8 4 8 12 8
6 12 12 3 6 6 12 6

Theorem 3.5. Let G19 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ 1 mod 12, U(KqG19) ∼= (K∗
q)

6 ⊕ (GL2(Kq))9 ⊕ (GL3(Kq))2 ⊕ (GL4(Kq))3 ⊕GL6(Kq).

2) for pk ≡ 5 mod 12, U(KqG19) ∼= (K∗
q)

2 ⊕ (K∗
q2 )

2 ⊕ (GL2(Kq))3 ⊕ (GL2(Kq2 ))3 ⊕ (GL3(Kq))2 ⊕GL4(Kq)⊕
GL4(Kq2 )⊕GL6(Kq).

3) for pk ≡ 7 mod 12, U(KqG19) ∼= (K∗
q)

6⊕(GL2(Kq))3⊕(GL2(Kq2 ))3⊕(GL3(Kq))2⊕(GL4(Kq))3⊕GL6(Kq).

4) for pk ≡ 11 mod 12, U(KqG19) ∼= (K∗
q)

2 ⊕ (K∗
q2 )

2 ⊕ GL2(Kq) ⊕ (GL2(Kq2 ))4 ⊕ (GL3(Kq))2 ⊕ GL4(Kq) ⊕
GL4(Kq2 )⊕GL6(Kq).
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Proof. The group G19 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG19) = 0. Also, the commutator
subgroup G′

19
∼= C3 ×Q8 and G19

G′
19

∼= C6. Therefore, lemma 2.1 can be applied to compute the Wedderburn decomposition.

We discuss the decomposition in the following 4 cases.
Case 1: k is even in q = pk or pk ≡ 1 mod 12.
In this case, | SK(γg) |= 1, ∀g ∈ G19. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of
KqG19 is given by,

KqG19 ∼= (Kq)
6

15⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 138 =

15∑
i=1

n2
i .

The choices of ni’s can be

(212, 4, 5, 7), (210, 43, 52), (29, 33, 53), (29, 32, 43, 6), (28, 35, 5, 6), (25, 36, 44) and (24, 39, 4, 5)

In the direction of finding ni’s uniquely, we consider the normal subgroup N = ⟨x5⟩ of G19. The Wedderburn decomposition
of the factor group F = G19

N
∼= ((C4 × C2) ⋊ C2) ⋊ C3 is KqF ∼= (Kq)6 ⊕ M2(Kq)6 ⊕ M3(Kq)2 (see [15]). With this

information, we can conclude that the choices for ni’s are reduced to (29, 33, 53), (29, 32, 43, 6) and (28, 35, 5, 6). Suppose,
if p = 5, then by proposition 1 of [4], (29, 32, 43, 6) can be the only choice in the Wedderburn decomposition of KqG19.
Thus, we have

KqG19 ∼= (Kq)
6 ⊕ (M2(Kq))

9 ⊕ (M3(Kq))
2 ⊕ (M4(Kq))

3 ⊕M6(Kq).

Case 2: k is odd and pk ≡ 5 mod 12.
In this case, SK(γx2 ) = {γx2 , γx2

2
}, SK(γx1x2 ) = {γx1x2 , γx1x

2
2
}, SK(γx2x3 ) = {γx2x3 , γx2

2x6
}, SK(γx2x5 ) =

{γx2x5 , γx2
2x5

}, SK(γx1x2x3 ) = {γx1x2x3 , γx1x
2
2x6

}, SK(γx2x3x5 ) = {γx2x3x5 , γx2
2x5x6

} and SK(γg) = {γg}, for
the remaining g ∈ G19. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG19 ∼= (Kq)
2 ⊕ (Kq2 )2

7⊕
i=1

Mni (Kq)

11⊕
i=8

Mni (Kq2 ), ni ≥ 2 ⇒ 138 =

7∑
i=1

n2
i + 2 ·

11∑
i=8

n2
i .

Therefore, repeat the same process as in case 1, we get that (29, 32, 43, 6) is the only possibility for ni’s. Hence, we have

KqG19 ∼= K2
q ⊕ K2

q2 ⊕M2(Kq)
3 ⊕M2(Kq2 )3 ⊕M3(Kq)

2 ⊕M4(Kq)⊕M4(Kq2 )⊕M6(Kq).

Case 3: k is odd and pk ≡ 7 mod 12.
In this case, SK(γx1 ) = {γx1 , γx1x6}, SK(γx1x2 ) = {γx1x2 , γx1x2x3}, SK(γx1x

2
2
) = {γx1x

2
2
, γx1x

2
2x6

} and SK(γg) =

{γg}, for the remaining g ∈ G19. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG19 ∼= (Kq)
6

9⊕
i=1

Mni (Kq)

12⊕
i=10

Mni (Kq2 ), ni ≥ 2 ⇒ 138 =

9∑
i=1

n2
i + 2 ·

12∑
i=10

n2
i .

On repeating the same process as in case 1, we get that (29, 32, 43, 6) is the only possibility for ni. Therefore, we have

KqG19 ∼= (Kq)
6 ⊕ (M2(Kq))

3 ⊕ (M2(Kq2 ))3 ⊕ (M3(Kq))
2 ⊕ (M4(Kq))

3 ⊕M6(Kq).

Case 4: k is odd and pk ≡ 11 mod 12.
In this case, SK(γx1 ) = {γx1 , γx1x6}, SK(γx2 ) = {γx2 , γx2

2
}, SK(γx1x2 ) = {γx1x2 , γx1x

2
2x6

}, SK(γx2x3 ) = {γx2x3 , γx2
2x6

},
SK(γx2x5 ) = {γx2x5 , γx2

2x5
}, SK(γx1x

2
2
) = {γx1x2x3 , γx1x

2
2
}, SK(γx2x3x5 ) = {γx2x3x5 , γx2

2x5x6
} and SK(γg) =

{γg}, for the remaining g ∈ G19. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG19 ∼= (Kq)
2 ⊕ (Kq2 )2

5⊕
i=1

Mni (Kq)

10⊕
i=6

Mni (Kq2 ), ni ≥ 2 ⇒ 138 =
5∑

i=1

n2
i + 2 ·

10∑
i=6

n2
i .

W eepeat the same process as in case 1 to note that (29, 32, 43, 6) is the only possibility for ni’s. Consequently, we get

KqG19 ∼= (Kq)
2 ⊕ (Kq2 )2 ⊕M2(Kq)⊕ (M2(Kq2 ))4 ⊕ (M3(Kq))

2 ⊕M4(Kq)⊕M4(Kq2 )⊕M6(Kq).

This completes the proof.

4 Groups of exponent 24
In this section, we characterize the unit group of group algebra generated by 6 non-metabelian groups of order 144 with
exponent 24. We use the same numbers for these groups as in section 2. The 6 non-metabelian groups of order 144 with
exponent 24 are given below:

9. (C3 × C3) ⋊D16

10. (C3 × C3) ⋊QD16

11. (C3 × C3) ⋊Q16

16. C3 ⋊ (C2 · S4)

17. (C3 × SL(2, 3)) ⋊ C2

23. (C3 × C3) ⋊QD16

4.1 G9 = (C3 × C3) ⋊ D16.
The group G9 has the following presentation:

G9 =⟨x1, x2, x3, x4, x5, x6 | x2
1, [x2, x1]x

−1
3 , [x3, x1]x

−1
4 , [x4, x1], [x5, x1]x

−1
5 , [x6, x1], x

2
2, [x3, x2]x

−1
4 , [x4, x2],

[x5, x2]x
−1
6 x−2

5 , [x6, x2]x
−2
6 x−1

5 , x2
3x

−1
4 , [x4, x3], [x5, x3]x

−1
5 , [x6, x3]x

−1
6 , x2

4, [x5, x4], [x6, x4], x
3
5, [x6, x5], x

3
6⟩

The sizes, orders and the representatives of the 15 conjugacy classes of G9 are given below:
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Representative e x1 x2 x3 x4 x5 x1x2 x1x6 x2x5 x4x5 x5x6

Size 1 12 12 18 1 4 18 12 12 4 4
Order 1 2 2 4 2 3 8 6 6 6 3

x1x2x4 x1x3x5 x2x3x5 x4x5x6

18 12 12 4
8 6 6 6

Theorem 4.1. Let G9 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 7} mod 24, U(KqG9) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))8.

2) for pk ≡ {5, 11} mod 24, U(KqG9) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

3) for pk ≡ {13, 19} mod 24, U(KqG9) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))8.

4) for pk ≡ {17, 23} mod 24, U(KqG9) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

Proof. The group G9 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG9) = 0. Also, the commutator subgroup
G′

9 = (C3 ×C3)⋊C4 and G9
G′

9
= C2 ×C2. Therefore, lemma 2.1 can be applied to compute the Wedderburn decomposition.

We discuss the Wedderburn decomposition in the following 4 cases.
Case 1: k is even in q = pk or pk ≡ {1, 7} mod 24.
In this case, | SK(γg) |= 1, ∀g ∈ G9. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of KqG9
is given by

KqG9 ∼= (Kq)
4

11⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 140 =
11∑
i=1

n2
i .

The choices of ni’s can be

(29, 10), (28, 63), (27, 43, 8), (26, 33, 5, 8), (26, 4, 54), (25, 32, 4, 52, 6), (24, 34, 4, 62), (24, 33, 43, 7),

(23, 36, 5, 7), (23, 48), (22, 33, 45, 5), (2, 36, 42, 52) and (38, 42, 6).
In the direction of finding ni’s uniquely, we consider the normal subgroup N1 = ⟨x4⟩ of G9. The Wedderburn decomposition
of the factor group F1 = G9

N1
∼= (S3 ×S3)⋊C2 is KqF1 ∼= (Kq)4 ⊕M2(Kq)⊕M4(Kq)4 (see [15]). With this information,

we can conclude that the choices of ni’s can either be (23, 48) or (22, 33, 45, 5). Suppose, if p = 5, then by proposition 1 of
[4], (22, 33, 45, 5) cannot be the choice in the decomposition of KqG9. Hence

KqG9 ∼= (Kq)
4 ⊕ (M2(Kq))

3 ⊕ (M4(Kq))
8.

Case 2: k is odd and pk ≡ {5, 11} mod 24.
In this case, SK(γx1x2 ) = {γx1x2 , γx1x2x4}, SK(γx1x6 ) = {γx1x6 , γx1x3x5}, SK(γx2x5 ) = {γx2x5 , γx2x3x5} and
SK(γg) = {γg}, for the remaining g ∈ G9. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposi-
tion is given by

KqG9 ∼= (Kq)
4

5⊕
i=1

Mni (Kq)
8⊕

i=6

Mni (Kq2 ), ni ≥ 2 ⇒ 140 =
5∑

i=1

n2
i + 2 ·

8∑
i=6

n2
i .

On repeating the same process as in case 1, we get that (2, 44, 2, 42) is the only possibility for ni. Hence, we have

KqG9 ∼= (Kq)
4 ⊕M2(Kq)⊕M2(Kq2 )⊕ (M4(Kq))

4 ⊕ (M4(Kq2 ))2.

Case 3: k is odd and pk ≡ {13, 19} mod 24.
In this case, SK(γx1x2 ) = {γx1x2 , γx1x2x4} and SK(γg) = {γg}, for the remaining g ∈ G9. By lemma 2.1 and proposi-
tions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG9 ∼= (Kq)
4

9⊕
i=1

Mni (Kq)⊕Mn10 (Kq2 ), ni ≥ 2 ⇒ 140 =
9∑

i=1

n2
i + 2 · n2

10.

Next, we consider N2 = ⟨x5, x6⟩ � G9. Accordingly, F2 = G9
N2

∼= D16. Using [3], we note that KqF2 ∼= (Kq)4 ⊕
M2(Kq)⊕M2(Kq2 ). Hence, we note that

KqG9 ∼= (Kq)
4 ⊕M2(Kq)⊕M2(Kq2 )⊕ (M4(Kq))

8.

Case 4: k is odd and pk ≡ {17, 23} mod 24.
In this case, SK(γx1x6 ) = {γx1x6 , γx1x3x5}, SK(γx2x5 ) = {γx2x5 , γx2x3x5} and SK(γg) = {γg}, for the remaining
g ∈ G9. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG9 ∼= (Kq)
4

7⊕
i=1

Mni (Kq)
9⊕

i=8

Mni (Kq2 ), ni ≥ 2 ⇒ 140 =

7∑
i=1

n2
i + 2 ·

9∑
i=8

n2
i .

By repeating the procedure as in case 3, we note that

KqG9 ∼= (Kq)
4 ⊕ (M2(Kq))

3 ⊕ (M4(Kq))
4 ⊕ (M4(Kq2 ))2.

This completes the proof.
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4.2 G10 = (C3 × C3) ⋊ QD16.
The group G10 has the following presentation:

G10 =⟨x1, x2, x3, x4, x5, x6 | x2
1, [x2, x1]x

−1
3 , [x3, x1]x

−1
4 , [x4, x1], [x5, x1]x

−1
5 , [x6, x1], x

2
2x

−1
4 , [x3, x2]x

−1
4 , [x4, x2],

[x5, x2]x
−1
6 x−2

5 , [x6, x2]x
−2
6 x−1

5 , x2
3x

−1
4 , [x4, x3], [x5, x3]x

−1
5 , [x6, x3]x

−1
6 , x2

4, [x5, x4], [x6, x4], x
3
5, [x6, x5], x

3
6⟩

The sizes, orders and the representatives of the 15 conjugacy classes of G10 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x6 x2x5 x4x5 x5x6

Size 1 12 12 18 1 4 18 12 12 4 4
Order 1 2 4 4 2 3 8 6 12 6 3

x1x2x4 x1x3x5 x2x3x5 x4x5x6

18 12 12 4
8 6 12 6

Theorem 4.2. Let G10 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ 1 mod 24, U(KqG10) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))8.

2) for pk ≡ 5 mod 24, U(KqG10) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

3) for pk ≡ {7, 23} mod 24, U(KqG10) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))6 ⊕GL4(Kq2 ).

4) for pk ≡ {11, 19} mod 24, U(KqG10) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))6 ⊕GL4(Kq2 ).

5) for pk ≡ 13 mod 24, U(KqG10) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))8.

6) for pk ≡ 17 mod 24, U(KqG10) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

Proof. The group G10 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG10) = 0. Also, the commutator
subgroup G′

10
∼= (C3 × C3) ⋊ C4 and G10

G′
10

∼= C2 × C2. Therefore, lemma 2.1 can be applied to compute the Wedderburn

decomposition. Let us discuss the Wedderburn decomposition in the following 6 cases.
Case 1: k is even or pk ≡ 1 mod 24. The proof follows from case 1 of theorem 4.1.
Case 2: k is odd and pk ≡ 5 mod 24. The proof follows from case 2 of theorem 4.1.
Case 3: k is odd and pk ≡ {7, 23} mod 24.
For pk ≡ 7 mod 24, SK(γx1x2 ) = {γx1x2 , γx1x2x4}, SK(γx2x5 ) = {γx2x5 , γx2x3x5} and SK(γg) = {γg}, for the
remaining g ∈ G10. For pk ≡ 23 mod 24, SK(γx1x2 ) = {γx1x2 , γx1x2x4}, SK(γx1x6 ) = {γx1x6 , γx1x3x5} and SK(γg) =
{γg}, for the remaining g ∈ G10. For both the cases, the Wedderburn decomposition and the choices of ni’s are same as in
case 3 of theorem 4.1. Then, as in case 3 of theorem 4.1, we note that KqF2 ∼= (Kq)4 ⊕ M2(Kq) ⊕ M2(Kq2 ). Thus, we
have

KqG10 ∼= (Kq)
4 ⊕M2(Kq)⊕M2(Kq2 )⊕ (M4(Kq))

6 ⊕M4(Kq2 ).

Case 4: k is odd and pk ≡ {11, 19} mod 24.
For pk ≡ 11 mod 24, SK(γx1x6 ) = {γx1x6 , γx1x3x5} and SK(γg) = {γg}, for the remaining g ∈ G10. For pk ≡ 19 mod
24, SK(γx2x5 ) = {γx2x5 , γx2x3x5} and SK(γg) = {γg}, for the remaining g ∈ G10. For both the cases, similar to case 3,
we can see that the Wedderburn decomposition is given by KqF2 ∼= (Kq)4 ⊕ (M2(Kq))3

KqG10 ∼= (Kq)
4 ⊕ (M2(Kq))

3 ⊕ (M4(Kq))
6 ⊕M4(Kq2 ).

Case 5: k is odd and pk ≡ 5 mod 24. The proof follows from case 3 of theorem 4.1.
Case 6: k is odd and pk ≡ 5 mod 24. The proof follows from case 4 of theorem 4.1. This completes the proof.

4.3 G11 = (C3 × C3) ⋊ Q16.
The group G11 has the following presentation:

G11 =⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
4 , [x2, x1]x

−1
3 , [x3, x1]x

−1
4 , [x4, x1], [x5, x1]x

−1
5 , [x6, x1], x

2
2x

−1
4 , [x3, x2]x

−1
4 , [x4, x2],

[x5, x2]x
−1
6 x−2

5 , [x6, x2]x
−2
6 x−1

5 , x2
3x

−1
4 , [x4, x3], [x5, x3]x

−1
5 , [x6, x3]x

−1
6 , x2

4, [x5, x4], [x6, x4], x
3
5, [x6, x5], x

3
6⟩

The sizes, orders and the representatives of the 15 conjugacy classes of G9 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x6 x2x5 x4x5 x5x6

Size 1 12 12 18 1 4 18 12 12 4 4
Order 1 4 4 4 2 3 8 12 12 6 3

x1x2x4 x1x3x5 x2x3x5 x4x5x6

18 12 12 4
8 12 12 6

Theorem 4.3. Let G11 be the group defined above and Kq be the finite field of characteristic p > 3. Then



168 N. Abhilash, E. Nandakumar∗, G. Mittal and R. K. Sharma

1) for k even or pk ≡ {1, 23} mod 24, U(KqG11) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))8.

2) for pk ≡ {5, 19} mod 24, U(KqG11) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

3) for pk ≡ {7, 17} mod 24, U(KqG11) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL4(Kq))4 ⊕ (GL4(Kq2 ))2.

4) for pk ≡ {11, 13} mod 24, U(KqG11) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL4(Kq))8.

Proof. The proof can be done on the similar lines of theorem 4.1.

4.4 G16 = C3 ⋊ (C2 · S4).
The group G16 has the following presentation:

G16 =⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
6 , [x2, x1]x

−1
2 , [x3, x1]x

−1
3 , [x4, x1]x

−1
6 x−1

5 x−1
4 , [x5, x1]x

−1
5 x−1

4 , [x6, x1],

x3
2, [x3, x2], [x4, x2]x

−1
5 x−1

4 , [x5, x2]x
−1
6 x−1

4 , [x6, x2], x
3
3, [x4, x3], [x5, x3], [x6, x3], x

2
4x

−1
6 ,

[x5, x4]x
−1
6 , [x6, x4], x

2
5x

−1
6 , [x6, x5], x

2
6⟩

The sizes, orders and the representatives of the 15 conjugacy classes of G16 are given below:

Representative e x1 x2 x3 x4 x6 x1x4 x2x3 x2x5 x3x4 x3x6

Size 1 36 8 2 6 1 18 8 8 12 2
Order 1 4 3 3 4 2 8 3 6 12 6

x1x2x4 x2
2x3 x2x3x5 x2

2x3x4

18 8 8 8
8 3 6 6

Theorem 4.4. Let G16 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 7, 17, 23} mod 24, U(KqG16) ∼= (K∗
q)

2 ⊕ (GL2(Kq))6 ⊕ (GL3(Kq))2 ⊕ (GL4(Kq))4 ⊕
GL6(Kq).

2) for pk ≡ {5, 11, 13, 19} mod 24, U(KqG16) ∼= (K∗
q)

2⊕(GL2(Kq))4⊕GL2(Kq2 )⊕(GL3(Kq))2⊕(GL4(Kq))4⊕
GL6(Kq).

Proof. The group G16 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG16) = 0. Also, the commutator
subgroup G′

16
∼= C3 × SL(2, 3) and G16

G′
16

∼= C2. Therefore, lemma 2.1 can be applied to compute the Wedderburn decom-

position. Let us discuss the decomposition in the following 2 cases.
Case 1: k is even in q = pk or pk ≡ {1, 7, 17, 23} mod 24.
In this case, | SK(γg) |= 1, ∀g ∈ G16. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of
KqG16 is given by,

KqG16 ∼= (Kq)
2

13⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 142 =

13∑
i=1

n2
i .

The choices of ni’s can be

(211, 72), (29, 3, 5, 62), (29, 42, 5, 7), (27, 44, 52), (26, 36, 8), (26, 33, 4, 53), (26, 32, 44, 6),

(25, 35, 4, 5, 6), (23, 39, 7), (22, 36, 45) and (2, 39, 42, 5).

In the direction of finding ni’s uniquely, we consider the normal subgroup N = C3 of G16. The Wedderburn decomposition
of the factor group F = G16

N
∼= C2 ·S4 is KqF ∼= (Kq)2 ⊕M2(Kq)3 ⊕M3(Kq)2 ⊕M4(Kq) (see [15, theorem 3.1]). With

this information, we can conclude that the choices of ni’s can be (26, 33, 4, 53), (26, 32, 44, 6) or (25, 35, 4, 5, 6). Suppose,
if p = 5, then by proposition 1 of [4], (26, 32, 44, 6) is the only choice for the decomposition of KqG16. Therefore, we have

KqG16 ∼= (Kq)
2 ⊕ (M2(Kq))

6 ⊕ (M3(Kq))
2 ⊕ (M4(Kq))

4 ⊕M6(Kq).

Case 2: k is odd and pk ≡ {5, 11, 13, 19} mod 24.
In this case, SK(γx1x4 ) = {γx1x4 , γx1x2x4} and SK(γg) = {γg}, for the remaining g ∈ G16. By lemma 2.1 and
propositions 2.2 and 2.3, the Wedderburn decomposition is given by

KqG16 ∼= (Kq)
2

11⊕
i=1

Mni (Kq)⊕Mn12 (Kq2 ), ni ≥ 2 ⇒ 142 =

11∑
i=1

n2
i + 2 · n2

12.

On repeating the same process as in case 1, we get that (26, 32, 44, 6) is the only possibility for ni’s. Hence, we get

KqG16 ∼= (Kq)
2 ⊕ (M2(Kq))

4 ⊕M2(Kq2 )⊕ (M3(Kq))
2 ⊕ (M4(Kq))

4 ⊕M6(Kq).

This completes the proof.
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4.5 G17 = (C3 × SL(2, 3)) ⋊ C2.
The group G17 has the following presentation:

G17 =⟨x1, x2, x3, x4, x5, x6 | x2
1, [x2, x1]x

−1
2 , [x3, x1]x

−1
3 , [x4, x1]x

−1
6 x−1

5 x−1
4 , [x5, x1]x

−1
5 x−1

4 , [x6, x1], x
3
2,

[x3, x2], [x4, x2]x
−1
5 x−1

4 , [x5, x2]x
−1
6 x−1

4 , [x6, x2], x
3
3, [x4, x3], [x5, x3], [x6, x3], x

2
4x

−1
6 , [x5, x4]x

−1
6 ,

[x6, x4], x
2
5x

−1
6 , [x6, x5], x

2
6⟩

The sizes, orders and the representatives of the 15 conjugacy classes of G17 are given below:

Representative e x1 x2 x3 x4 x6 x1x4 x2x3 x2x5 x3x4 x3x6

Size 1 36 8 2 6 1 18 8 8 12 2
Order 1 2 3 3 4 2 8 3 6 12 6

x1x2x4 x2
2x3 x2x3x5 x2

2x3x4

18 8 8 8
8 3 6 6

Theorem 4.5. Let G17 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 11, 17, 19} mod 24, U(KqG17) ∼= (K∗
q)

2 ⊕ (GL2(Kq))6 ⊕ (GL3(Kq))2 ⊕ (GL4(Kq))4 ⊕
GL6(Kq).

2) for pk ≡ {5, 7, 13, 23} mod 24, U(KqG17) ∼= (K∗
q)

2 ⊕ (GL2(Kq))4 ⊕GL2(Kq2 )⊕ (GL3(Kq))2 ⊕ (GL4(Kq))4 ⊕
GL6(Kq).

Proof. The proof is similar to that of theorem 4.4.

4.6 G23 = (C3 × C3) ⋊ QD16.
The group G23 has the following presentation:

G23 =⟨x1, x2, x3, x4, x5, x6 | x2
1x

−1
3 , [x2, x1]x

−1
4 x−1

3 , [x3, x1], [x4, x1], [x5, x1]x
−1
6 x−2

5 , [x6, x1]x
−1
6 x−1

5 , x2
2,

[x3, x2]x
−1
4 , [x4, x2], [x5, x2]x

−2
6 , [x6, x2]x

−1
6 , x2

3x
−1
4 , [x4, x3], [x5, x3]x

−2
6 , [x6, x3]x

−1
6 x−2

5 , x2
4, [x5, x4]x

−1
5 ,

[x6, x4]x
−1
6 , x3

5, [x6, x5], x
3
6⟩

The sizes, orders and the representatives of the 9 conjugacy classes of G23 are given below:

Representative e x1 x2 x3 x4 x5 x1x2 x1x4 x2x5

Size 1 18 12 18 9 8 36 18 24
Order 1 8 2 4 2 3 4 8 6

Theorem 4.6. Let G23 be the group defined above and Kq be the finite field of characteristic p > 3. Then

1) for k even or pk ≡ {1, 11, 17, 19} mod 24, U(KqG23) ∼= (K∗
q)

4 ⊕ (GL2(Kq))3 ⊕ (GL8(Kq))2.

2) for pk ≡ {5, 7, 13, 23} mod 24, U(KqG23) ∼= (K∗
q)

4 ⊕GL2(Kq)⊕GL2(Kq2 )⊕ (GL8(Kq))2.

Proof. The group G23 is finite and so, Artinian. Thus, by Maschke’s theorem, J(KqG23) = 0. Also, the commutator
subgroup G′

23 = (C3 × C3) ⋊ C4 and G23
G′

23
= C2 × C2. Therefore, lemma 2.1 can be applied to compute the Wedderburn

decomposition. Let us discuss the Wedderburn decomposition in the following 2 cases.
Case 1: k is even in q = pk or pk ≡ {1, 11, 17, 19} mod 24.
In this case, | SK(γg) |= 1, ∀g ∈ G23. By lemma 2.1 and propositions 2.2 and 2.3, the Wedderburn decomposition of
KqG23 is given by

KqG23 ∼= (Kq)
4

5⊕
i=1

Mni (Kq), ni ≥ 2 ⇒ 140 =

5∑
i=1

n2
i .

The choices of ni’s can be
(23, 82), (22, 42, 10), (33, 7, 8), (32, 4, 5, 9), (42, 63) and (4, 53, 7).

In the direction of finding ni’s uniquely, we consider the normal subgroup N = ⟨x5, x6⟩ of G23. Using [3], the Wedderburn
decomposition of the group F = G23

N
∼= QD16 is given by KqF ∼= (Kq)4 ⊕ (M2(Kq))3. With this information, we can

conclude that the only choice for the decomposition of KqG23 is (23, 82). Therefore, we get

KqG23 ∼= (Kq)
4 ⊕ (M2(Kq))

3 ⊕ (M8(Kq))
2.

Case 2: k is odd and pk ≡ {5, 11, 13, 19} mod 24.
In this case, SK(γx1 ) = {γx1 , γx1x4} and SK(γg) = {γg}, for the remaining g ∈ G23. By lemma 2.1 and propositions 2.2
and 2.3, the Wedderburn decomposition is given by

KqG23 ∼= (Kq)
4

3⊕
i=1

Mni (Kq)⊕Mn4 (Kq2 ), ni ≥ 2 ⇒ 140 =

3∑
i=1

n2
i + 2 · n2

4.

Therefore, we repeat the same process as in case 1 to get that (2, 82, 2) is the only possibility for ni’s. Therefore, we get

KqG23 ∼= (Kq)
4 ⊕M2(Kq)⊕M2(Kq2 )⊕ (M8(Kq))

2.

This completes the proof.
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5 Conclusion remarks
We have characterized the unit groups of the semisimple group algebras of non-metabelian groups of order 144 that have
exponent either 12 or 24. In all, we have considered 11 group algebras in this paper. With this paper, the study of the unit
groups of semisimple group algebras of groups up to order 144 is completed. This paper further motivates the researchers to
compute the unit groups of the semisimple group algebras of non-metabelian groups of order greater than 144.
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