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Abstract We define and look into the fundamental features of X-log convex, X-log quasi
convex, X-log semi-strictly quasi convex, and X-log-pseudo convex functions. This paper pro-
vides several examples and arguments in favour of the concept. Also, we develope another X-log
convex function as the sum of an X-log convex and X-log affine convex function. Additionally,
we define local and global log-minimum. Under one condition, it is possible to demonstrate that
the local log-minimum of an X-log convex and X-log quasi-convex function is also the global
log-minimum.

1 Introduction

In all areas of mathematics as well as related fields like physics, economics, and engineering,
convex functions play a significant role. The underlying reason for this is because those become
supportive in the presence of convexity as necessary conditions for the existence of a minimum,
which is particularly important to extremum problems. Around the turn of the 20th century,
Jensen [7] pioneered the concept of the convex functions, and Fenchel [19, 20] began a system-
atic investigation of the conjugate function more than forty years later. Fenchel’s [19] lecture
notes become the foundation for Rockfellar’s [17] renowned book, convex analysis.

Recent years have seen a number of generalizations of convex functions and convex sets
being addressed and investigated utilizing the concepts and methods. It is well understood that
logarithmically convex functions provide more accuracy and inequality than convex functions.
The notion of exponentially convex functions is closely connected to log-convex functions. As
can be seen in [1, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 18, 21, 22], a large number of experts
and researchers have recently worked on generalized convexity, generalized log-convexity and
exponential-convexity with fruitful applications. Recently, Ali and Akhter developed the idea of
X-convex sets and functions [8].

Motivated and inspired by continuing research in this intriguing, practical, and dynamic field,
we explore the idea of log-convex functions. We give some new definitions, namely local log-
minimum, global log-minimum and X-log convex, X-log quasi-convex, X-log semi-strictly
quasi-convex, X-log affine convex functions. The fundamental features of X-log convex func-
tions are discussed. It has been demonstrated that X-log convex functions have the same pleasant
features as convex functions. Several novel notions have been introduced and researched. We
see that the difference (sum) between the X-log convex and X-log affine convex functions is
another X-log convex function. The local log-minimum of X-log convex functions is shown to
be the global log-minimum.

2 Preliminaries

Definition 2.1. [8] A subset G of Rn is said to be an X-convex set if for all e, eo ∈ G, c ∈ [0, 1],
and if there exists a vector valued map q : G → Rn such that c(e− eo) + q(eo) ∈ G.

Definition 2.2. [8] A function L : G → R, defined on a nonempty X-convex subset G of Rn, is
said to be
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(a) X-convex if ∀ e, eo ∈ G and 0 ≤ c ≤ 1, ∃ a vector valued map q : G → Rn such that,

L(c(e− eo) + q(eo)) ≤ cL(e) + (1 − c)L(eo),

(b) strictly X-convex if ∀ e, eo ∈ B, e ̸= eo and 0 < c < 1, ∃ a vector valued map q : G →
Rn such that,

L(c(e− eo) + q(eo)) < cL(e) + (1 − c)L(eo).

A function L : G → R is said be (strictly) X-concave if −L is (strictly) X-convex.

Definition 2.3. [8] A function L : G → R, defined on a nonempty X-convex subset G of Rn, is
said to be

(a) quasi-X-convex if ∀ e, eo ∈ G and 0 ≤ c ≤ 1, ∃ a vector valued map q : G → Rn such
that,

L(c(e− eo) + q(eo)) ≤ max{L(e),L(eo)},

(b) strictly quasi-X-convex if ∀ e, eo ∈ G, e ̸= eo and 0 < c < 1, ∃ a vector valued map
q : G → Rn such that,

L(c(e− eo) + q(eo)) < max{L(e),L(eo)},

(c) semi-strictly quasi-X-convex if ∀ e, eo ∈ G and 0 < c < 1, ∃ a vector valued map
q : G → Rn such that, L(e) ̸= L(eo)

L(c(e− eo) + q(eo)) < max{L(e),L(eo)}.

A function L : G → R is said to be (strictly, semi-strictly) quasi-X-concave if −L is (strictly,
semi-strictly) quasi-X-convex.

3 X-log Convexity

Motivated by the research work [8, 10, 11], we offer the following definitions.

Definition 3.1. Let G be a non-empty X-convex subset of Rn. A function L : G → (0,∞) is
said to be

(a) X-log convex function, if ∀ e, eo ∈ G, co ∈ [0, 1], and ∃ a vector valued map f : G → Rn,
such that

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e),

(b) X-log strictly convex if ∀ e, eo ∈ G, e ̸= eo, 0 < co < 1, ∃ a vector valued map
f : G → Rn, such that

log(L(co(e− eo) + f(eo))) < (1 − co) logL(eo) + co logL(e).

Example 3.2. Let P = (−∞,−11] ∪ [−2,−1] be an X-convex set w.r.t. the map f : P → R be
defined as: f(eo) = eo − 13. Also, let the function L : P → (0,∞) be defined as:

L(e) = exp(e− c), c > 0.

So, L is not log-convex function because their domain is disconnected. But L is an X-log
convex function with respect to map f .

Remark 3.3. By the above definitions it is obvious that every X-log strictly convex function is
X-log convex. But the converse is may not true in general. See the following example.

Example 3.4. Let P = R be an X-convex set w.r.t. the map f : R → R be defined as: f(eo) =
eo − |[eo]|, where [, ] is the greatest integer and let L : R → (0,∞) be defined as:

L(e) = exp(e− c), c ≤ −1.

So, L is X-log convex but not X-log strictly convex function w.r.t. the map f .
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Definition 3.5. Let G be a non-empty X-convex subset of Rn. A function L : G → (0,∞) is
said to be

(a) X-log quasi-convex if ∀ e, eo ∈ G and 0 ≤ co ≤ 1,

log(L(co(e− eo) + f(eo))) ≤ max{logL(eo), logL(e)}

(b) X-log strictly quasi-convex if ∀ e, eo ∈ G, e ̸= eo and 0 < co < 1,

log(L(co(e− eo) + f(eo))) < max{logL(eo), logL(e)},

(c) X-log semi-strictly quasi-convex if ∀ e, eo ∈ G and 0 < co < 1, logL(eo) ̸= logL(e)

log(L(co(e− eo) + f(eo)) < max{logL(eo), logL(e)}.

Example 3.6. Let P = [1, 10]∪ [20,∞) be an X-convex set w.r.t. the map f : P → R be defined
as: f(eo) = eo + 29 and let L : P → R be defined as:

L(eo) =

{
e2, if eo = 1
e, otherwise

.

So, L is X-log quasi-convex and X-log semi-strictly quasi-convex with respect to f .

Example 3.7. Let P = [1, 11]∪ [23,∞) be an X-convex set w.r.t. the map f : P → R be defined
as: f(eo) = eo + 29 and let L : P → (0,∞) be defined as:

L(eo) =

{
ee, if eo = 1
e, otherwise

.

So, L is X-log quasi-convex and X-log semi-strictly quasi-convex with respect to f , but it is not
X-log convex w.r.t. the map f .

Remark 3.8. An X-log convex function is X-log semi-strictly quasi-convex function, but the
converse is may not true in general, (See the Example (3.7)).

Remark 3.9. By the above definitions it is clear that every X-log strictly quasi-convex function
is an X-log quasi-convex. But the converse is may not true in general, (See the Example (3.6)).

4 Main Results

Theorem 4.1. Let G be a non-empty X-convex subset of Rn. If the function L : G → (0,∞) is
an X-log convex, then the level set Zγ = {e ∈ G : logL(e) ≤ γ, γ ∈ R} is also an X-convex
set.

Proof. Consider e, eo ∈ Zγ . Then logL(e) ≤ γ and logL(eo) ≤ γ. Since G is an X-convex set,
then ∀ e, eo ∈ G , co ∈ [0, 1] and there exits a vector-valued map f : G → Rn s.t. co(e − eo) +
f(eo) ∈ G. So by X-log convexity of L, we obtain

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e)
≤ (1 − co)γ + coγ

≤ γ,

from which is follows that co(e− eo) + f(eo) ∈ G. Hence Zγ is an X-convex set.

Theorem 4.2. If the function L : G → (0,∞) is an X-log convex, defined on a non-empty
X-convex subset G of Rn, then

epi(L) = {(e, γ) : e ∈ G, logL(e) ≤ γ, γ ∈ R}

is an X-convex set.



A NOTE ON X-log CONVEXITY IN Rn 175

Proof. Let us consider L is X-log convex. Suppose that (e, γ), (eo, δ) ∈ epi(L). So, we find
logL(e) ≤ γ and logL(eo) ≤ δ. Thus, ∀ co ∈ [0, 1], e, eo ∈ G, and ∃ a vector-valued function
f : G → Rn such that

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e)
≤ (1 − co)γ + coδ

which implies that
(co(e− eo) + f(eo), (1 − co)γ + coδ) ∈ epi(L).

This proves epi(L) is an X-convex set.

Theorem 4.3. Let G be a non-empty X-convex subset of Rn. The function L : G → (0,∞) is an
X-log quasi-convex, if and only if the level set

Zγ = {e ∈ G : logL(e) ≤ γ, γ ∈ R}

is an X-convex set.

Proof. For e, eo ∈ Zγ , and max{logL(e), logL(eo)} = γ. For a vector-valued map f : G → Rn,
and for any co ∈ [0, 1], co(e−eo)+f(eo) ∈ G, then we have to prove that co(e−eo)+f(eo) ∈ Zγ .
By X-log quasi-convexity of L, we obtain

log(L(co(e− eo) + f(eo))) ≤ max{logL(eo), logL(e)}
= γ

which implies that co(e− eo) + f(eo) ∈ Zγ , therefore the level set Zγ is an X-convex set.
Conversely, suppose that Zγ is an X-convex set. So, for any e, eo ∈ Zγ , co ∈ [0, 1], and there
exists a vector-valued map f : G → Rn such that co(e − eo) + f(eo) ∈ Zγ . Let e, eo ∈ Zγ for
γ = max{logL(e), logL(eo)}.
Then from the definition of the set Zγ , it gives

log(L(co(e− eo) + f(eo))) ≤ max{logL(eo), logL(e)} = γ.

Hence L is an X-log quasi convex function.

Theorem 4.4. Let G be a non-empty X-convex subset of Rn. Let us consider L, an X-log convex
function. Let η = infe∈G logL(e). Then the set Q = {e ∈ G : logL(e) = η} is an X-convex
subset G of Rn. If L is X-log strictly convex, then Q is singleton.

Proof. Since L is an X-log convex function, then for any e, eo ∈ G, co ∈ [0, 1] and ∃ a vector-
valued map f : G → Rn, s.t.

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e)
= (1 − co)η + coη

= η.

Which implies that co(e− eo) + f(eo) ∈ Q. And hence Q is an X-convex set.
Now, for the other part, suppose on contrary that logL(e) = logL(eo) = η. As G is an X-convex
set, then for 0 < co < 1, co(e− eo) + f(eo) ∈ G. Also, since L is an X-log strictly convex,

log(L(co(e− eo) + f(eo))) < (1 − co) logL(eo) + co logL(e)
= (1 − co)η + coη

= η.

This contradicts the fact η = infe∈G logL(e) and hence the result is proved.

Theorem 4.5. Let G be a non-empty X-convex subset of Rn. If L is an X-log convex function
such that logL(e) ≤ logL(eo), ∀ e, eo ∈ G, then L is an X-log quasi convex function.
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Proof. Since L is an X-log convex function then, for any e, eo ∈ G, co ∈ [0, 1], and ∃ a vector-
valued map f : G → Rn, we have

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e)
≤ (1 − co) logL(eo) + co logL(eo)
= logL(eo)
= max{logL(eo), logL(e)},

therefore, the function L is X-log quasi convex.

Definition 4.6. Let G be a non-empty X-convex subset of Rn. A function L : G → (0,∞) is
said to be an X-log pseudo convex, if ∃ a strictly positive bi-function b : G×G → R+ s.t.

logL(e) < logL(eo)

=⇒

log(L(co(e− eo) + f(eo))) ≤ logL(eo) + co(co − 1)b(e, eo), ∀ e, eo ∈ G, co ∈ [0, 1].

Theorem 4.7. Let G be a non-empty X-convex subset of Rn. A function L : G → (0,∞) is an
X-log convex function such that logL(e) < logL(eo), then the function L is an X-log pseudo
convex.

Proof. Since logL(e) < logL(eo), and L is an X-log convex function, then ∀ e, eo ∈ G, co ∈
[0, 1] and ∃ a vector-valued function f : G → Rn, we obtain

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e)
= logL(eo) + co{logL(e)− logL(eo)}
< logL(eo) + co{logL(e)− logL(eo)}

−c2
o{logL(e)− logL(eo)}

= logL(eo) + co(co − 1){logL(eo)− logL(e)}
= logL(eo) + co(co − 1)b(e, eo),

where b(eo, e) = logL(e)− logL(eo) > 0.

Theorem 4.8. Let L : G → (0,∞) be an X-log pseudo convex function on G and let K : I → R
be strictly increasing convex function such that range(logL) ⊆ I . Then the composite function
K(logL) is an X-log pseudo convex function on G.

Proof. Since L is an X-log pseudo convex function on G, we have

logL(e) < logL(eo)

=⇒

log(L(co(e− eo) + f(eo))) ≤ logL(eo) + co(co − 1)b(e, eo), ∀ e, eo ∈ G, co ∈ [0, 1],

where b(e, eo) is strictly positive function.
Since K is strictly increasing convex function, so

K(logL(e)) < K(logL(eo))

=⇒

K(log(L(co(e− eo) + f(eo))) ≤ K((1 − co) logL(eo) + co(co − 1)b(e, eo))

< (1 − co)K(logL(eo) + co(co − 1)K(b(e, eo))

for every co ∈ [0, 1], e, eo ∈ G and K(b(e, eo)) is strictly positive function. Which shows that
K(log(L)) is X-log pseudo convex function on G.
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Definition 4.9. Let G be a non-empty X-convex subset of Rn. A function L : G → (0,∞) is
said to be X-log affine convex function, if ∀ e, eo ∈ G, co ∈ [0, 1], and ∃ a vector valued function
f : G → Rn, such that

log(L(co(e− eo) + f(eo)) = (1 − co) logL(eo) + co logL(e).

Theorem 4.10. Let G be a non-empty X-convex subset of Rn. Let L1 : G → (0,∞) be an
X-log affine convex function. Then L2 : G → (0,∞) is an X-log convex function, if and only if,
logL = logL2 − logL1 is an X-log convex function.

Proof. Let L1 be X-log affine convex function. Then ∀ e, eo ∈ G, co ∈ [0, 1] and ∃ a vector-
valued function f : G → Rn, s.t.

log(L1(co(e− eo) + f(eo))) = (1 − co) logL1(eo) + co logL1(e). (4.1)

Since L2 is X-log convex function. Then ∀ e, eo ∈ G, co ∈ [0, 1] and ∃ a vector-valued function
f : G → Rn, such that

log(L2(co(e− eo) + f(eo))) ≤ (1 − co) logL2(eo) + co logL2(e). (4.2)

From (4.1) and (4.2), we obtain

logL2(w)− logL1(w) ≤ (1 − co)[logL2(eo)− logL1(eo)]

+ co[logL2(e)− logL1(e)],

where w = co(e− eo) + f(eo).

log(L(co(e− eo) + f(eo))) ≤ (1 − co) logL(eo) + co logL(e)

which shows that logL = logL2 − logL1 is an X-log convex function.
The converse part is obvious.

Theorem 4.11. Let G be a non-empty X-convex subset of Rn. If L1, L2 : G → (0,∞) are two
X-log convex functions with respect to the same map f , then the sum L1+L2 is an X-log convex
function on G.

Proof. Since L1, L2 are X-log convex functions, then for any e, eo ∈ G, co ∈ [0, 1], ∃ a vector-
valued function f : G → Rn, we obtain

log(L1(co(e− eo) + f(eo))) ≤ (1 − co) logL1(eo) + co logL1(e) (4.3)

and
log(L2(co(e− eo) + f(eo))) ≤ (1 − co) logL2(eo) + co logL2(e) (4.4)

multiplying inequalities (4.3) and (4.4), we have

log((L1 + L2)(w) ≤ (1 − co)
2 log(L1 + L2)(eo) + c2

o log(L1 + L2)(e)

+ co(1 − co)[log(L1(eo) + L2(e)) + log(L1(e) + L2(eo))]

≤ (1 − co) log(L1 + L2)(eo) + co log (L1 + L2)(e) + C.

Where w = co(e− eo) + f(eo) and co(1 − co)[log(L1(eo) + L2(e)) + log(L1(e) + L2(eo))] =
C > 0. This implies that L1 + L2 is also an X-log convex function.

Definition 4.12. Let L : G ⊆ Rn → (0,∞) be a function. A point e ∈ G is said to be
(a) local log-minimum if

logL(e) ≤ logL(eo), ∀ eo ∈ G ∩Bδ(e) (4.5)

(b) strict local log-minimum if

logL(e) < logL(eo), ∀ eo ∈ G ∩Bδ(e) (4.6)

(c) global log-minimum if

logL(e) ≤ logL(eo), ∀ eo ∈ G (4.7)

(d) strict global log-minimum if

logL(e) < logL(eo), ∀ eo ∈ G. (4.8)
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Theorem 4.13. Let G be an X-convex subset of Rn with condition ∥co(e0 − e) + f(e)− e∥ < δ
for each e0, e ∈ G, co ∈ [0, 1], where f : G → Rn is a vector valued map associated with X-
convexity and δ > 0. Every local log-minimum of an X-log (strictly) convex function L : G →
(0,∞) defined on a nonempty X-convex subset G of Rn is a (unique) global log-minimum of L
over G. Moreover, the set of points at which an X-convex function attains its global log-minimum
on G is an X-convex set.

Proof. Let e ∈ G be local log-minimum of L over G. Then there exists δ > 0 such that

logL(e) ≤ logL(eo), ∀ eo ∈ G ∩Bδ(e) (4.9)

Suppose, on contrary, e is not a global log-minimum over G, then there exists e ∈ G, e0 ̸= e such
that logL(e0) < logL(e).

By X-log convexity of L, we have for co ∈ [0, 1],

log(L(co(e0 − e) + f(e)) ≤ co logL(e0) + (1 − co) logL(e)
< co logL(e) + (1 − co) logL(e),
< logL(e).

This contradicts inequality (4.9), since ∥co(e0 −e)+f(e)−e∥ < δ for each e0, e ∈ G, co ∈ [0, 1]
then co(e0 − e) + f(e) ∈ G ∩Bδ(e) for co.

If L is an X-log strictly convex function, we need to show that e is a unique log-minimum.
On the contrary, suppose there exists e0 ̸= e such that e0 is also a global log-minimum of L over
G. Then, it is clear that logL(e) = logL(e0). By X-log strictly convexity of L, we have for
co ∈ (0, 1)

log(L(co(e0 − e)) + (e))) < co logL(e0) + (1 − co) logL(e)
< logL(e).

This contradicts the fact that e is global log-minimum of L over G.
Let B = {e ∈ G : logL(e) ≤ logL(eo) ∀ eo ∈ G} be the set of points at which L attains its
global log-minimum. If e1, e2 ∈ B, then

logL(e1) ≤ logL(eo) and logL(e2) ≤ logL(eo) ∀ eo ∈ G.

By X-log convexity of L, ∀ co ∈ [0, 1] and for every e1, e2 ∈ G, we have

log(L(co(e2 − e1) + f(e1))) ≤ co logL(e2) + (1 − co) logL(e1)

≤ co logL(eo) + (1 − co) logL(eo)
≤ logL(eo).

This implies that co(e2 − e1) + f(e1) ∈ B.

Theorem 4.14. Let G be an X-convex subset of Rn with condition ∥co(e0 − e) + f(e)− e∥ < δ
for each e0, e ∈ G, co ∈ [0, 1], where f : G → Rn is a vector valued map associated with
X-convexity and δ > 0. Every strict local log-minimum of an X-log quasi convex function
L : G → (0,∞) defined on a nonempty X-convex subset G of Rn is a strict global log-minimum
of L over G. Moreover, the set of points at which an X-convex function attains its global log-
minimum on G is an X-convex set.

Proof. Let e ∈ G be strict local log-minimum of L over G. Then there exists δ > 0 such that

logL(e) < logL(eo), ∀ eo ∈ G ∩Bδ(e) (4.10)

Suppose on the contrary, e is not a strict global log-minimum over G. Then ∃, e0 ∈ G, e ̸= e0
such that,

logL(e0) ≤ logL(e).
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By X-log quasi convex function of L,∀co ∈ [0, 1], e0, e ∈ G, we obtain

log(L(co(e0 − e) + f(e))) ≤ logL(e).

This contradicts inequality (4.10), since ∥co(e0−e)+f(e)−e∥ < δ for each e0, e ∈ G, co ∈ [0, 1]
then co(e0 − e) + f(e) ∈ G ∩Bδ(e) for co.

Let B = {e ∈ G : logL(e) ≤ logL(eo) ∀ eo ∈ G} be the set of points at which L attains its
global log-minimum. If e1, e2 ∈ B, then

logL(e1) ≤ logL(eo) and logL(e2) ≤ logL(eo) ∀ eo ∈ G.

By X-log convexity of L, ∀ co ∈ [0, 1] and for every e1, e2 ∈ G, we have

log(L(co(e2 − e1) + f(e1))) ≤ max{logL(e2), logL(e1)},

log(L(co(e2 − e1) + f(e1))) ≤ logL(eo).

This implies that co(e2 − e1) + f(e1) ∈ B.

Theorem 4.15. An X-log strictly quasi-convex function L : G → (0,∞) defined on a nonempty
X-convex subset G of Rn attains its global log-minimum on G is not more than one point.

Proof. Assume, on contrary, that L attains global log-minimum at two distinct points e1 and e2 ∈
G. Then

logL(e1) ≤ logL(eo) and logL(e1) ≤ logL(eo), ∀ eo ∈ G. (4.11)

Taking eo = e2 in the first inequality and eo = e1 in the second inequality, we get logL(e1) =
logL(e2). By strict X-log quasi convexity of L, we have for all co ∈ (0, 1), there exists a vector
valued function f such that

log(L(co(e1 − e2) + f(e2))) < logL(e1),

which contradicts (4.11).

Theorem 4.16. Let G be an X-convex subset of Rn with condition ∥co(e0 − e) + f(e)− e∥ < δ
for each e0, e ∈ G, co ∈ [0, 1], where f : G → Rn is a vector valued map associated with
X-convexity and δ > 0. Suppose that the function L : G → (0,∞) is X-convex. If e ∈ G is a
local log-optimal solution to the problem

minimize L(e)
subject to e ∈ G,

(4.12)

then, e is a global log-minimum in the problem (4.12).

Proof. Proof is same as the Theorem (4.13).

5 Conclusion remarks

In this paper, we have introduced X-log convex, X-log quasi convex, X-log semi-strictly quasi
convex, and X-log-pseudo convex functions. Several interesting examples and arguments are
established in favour of the concept. Also, we have defined local and global log-minimum. We
have developed several interesting results of X-log convexity, X-log quasi convexity, X-log
semi-strictly quasi convexity and X-log semi-strictly quasi convexity.
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