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Abstract In this paper, we study positive solutions of a Steklov problem driven by the (p, 2)-
Laplacian operator by using variational method. A sufficient condition of the existence of pos-
itive solutions is characterized by the eigenvalues of linear and another nonlinear eigenvalue
problems.

1 Introduction

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the
following nonlinear Steklov problem:

(Sp,2)

{
−∆pu− ∆u+ |u|p−2u+ u = 0 in Ω,

⟨|∇u|p−2∇u+∇u, ν⟩ = f(x, u) on ∂Ω.

Here for any p > 2 by ∆p we denote the p-Laplacian differential operator defined by

∆pu := div(|∇u|p−2∇u) for all u ∈W 1,p(Ω).

When p = 2, we write ∆2 = ∆ (the standard Laplace differential operator). ν is the outward unit
normal vector on ∂Ω, ⟨., .⟩ is the scalar product of RN , while the reaction term f : ∂Ω×R → R
is a Carathéodory function.

In problem (Sp,2), the differential operator u 7→ −∆pu− ∆u is non-homogeneous. We men-
tion that equations involving the sum of a p-Laplacian and a Laplacian (also known as (p, 2)-
equations) arise in mathematical physics, see, for example, the works of Benci et al. [3](quantum
physics), Cherfils and Il’yasov [10](plasma physics) and Zhikov [20](homogenization of com-
posites consisting of two different materials with distinct hardening exponents, double phase
problems).

In [14], the authors studied the problem (Sp,2) with the Dirichlet boundary condition, they
impose certain conditions on the reaction term f(x, u) to make equation resonant at ±∞ and
zero. Using variational methods and critical groups, they obtain existence and multiplicity re-
sults. In [12], the authors consider the case with a reaction term f(x, u) which is superlinear
in the positive direction (without satisfying the Ambrosetti-Rabinowitz condition) and sublin-
ear resonant in the negative direction. They apply Morse’s theory and variational methods to
establish the existence of at least three non-trivial smooth solutions.

A more general problem with a (p, q)-Laplacian equation under a Steklov boundary condition
(1 < q < p < ∞), was studied in [5, 6, 7, 8, 9, 17, 18]. Elliptic equations involving differential
operators of the form

Au := div(D(u)∇u) = ∆pu+ ∆qu,

where D(u) = (|∇u|p−2 + |∇u|q−2), usually called (p, q)-Laplacian, occurs in many impor-
tant concrete situations. For instance, this happens when one seeks stationary solutions to the
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reaction-diffusion system.
ut = Au+ c(x, u). (1.1)

This system has a wide range of applications in physics and related sciences like chemical re-
action design [2], biophysics [11], and plasma physics [16]. In such applications, the function
u describes a concentration, the first term on the right-hand side of (1.1) corresponds to the dif-
fusion with a diffusion coefficient D(u), whereas the second one is the reaction and relates to
source and loss processes. Typically, in chemical and biological applications, the reaction term
c(x, u) has a polynomial form with respect to the concentration. For some related study see
[4, 15].

The energy functional φ ∈ C1(W 1,p(Ω),R) stemming from the problem (Sp,2) is defined by

φ(u) :=
1
p

∫
Ω

(|∇u|p + |u|p)dx+ 1
2

∫
Ω

(|∇u|2 + |u|2)dx−
∫
∂Ω

F (x, u)dσ, u ∈W 1,p(Ω),

where F (x, t) =
∫ t

0 f(x, s)ds for all (x, t) ∈ ∂Ω ×R.
We say that u ∈W 1,p(Ω) is a weak solution of (Sp,2) if∫

Ω

(|∇u|p−2∇u∇v + |u|p−2uv)dx+

∫
Ω

(∇u∇v + uv)dx−
∫
∂Ω

f(x, u)dσ = 0,

for all v ∈ W 1,p(Ω). Note that the critical points of the functional φ correspond exactly to the
weak solutions of (Sp,2).

Throughout this paper, we denote byW 1,p(Ω) the usual Sobolev space with the norm ∥u∥1,p :=(∫
Ω
(|∇u|p + |u|p)dx

)1/p

, and by W 1,p(Ω)∗ its dual space, and the duality pairing between

W 1,p(Ω) and W 1,p(Ω)∗ is written as ⟨., .⟩. It is well known that the embedding W 1,p(Ω) ↪→
Lr(∂Ω) is compact for each r ∈ [1, p∗), where p∗ = ∞ for N ≤ p and p∗ = (N − 1)p/N − p
for N > p. Hence, for every r ∈ [1, p∗), there exists Sr > 0 such that

∥u∥Lr(∂Ω) ≤ Sr∥u∥1,p. (1.2)

For each q ∈ (p, p∗), a vital constant is defined as follows:

Cq =
1

p(q − 1)

[
q − p

S1

](q−p)/(q−1)[
q(p− 1)
Sq
q

](p−1)/(q−1)

.

The asymptotic behaviors of f near zero and infinity lead us to define

µ1 := inf
{∫

Ω

(|∇u|2 + |u|2)dx : u ∈ H1(Ω),

∫
∂Ω

|u|2dσ = 1
}
,

λ1 := inf
{∫

Ω

(|∇u|p + |u|p)dx : u ∈W 1,p(Ω),

∫
∂Ω

|u|pdσ = 1
}
.

(1.3)

Now, we give our hypothesis on the reaction term f(x, u) :
H(f)1 f : ∂Ω ×R → R is a Carathéodory function with f(x, t) ≥ 0 for any x ∈ ∂Ω, t > 0.
H(f)2 There exist q ∈ (p, p∗) and C ∈ (0, Cq) such that for all x ∈ ∂Ω, t ∈ R,

|f(x, t)| ≤ C(1 + |t|q−1).

H(f)3 There exist f0 > µ1, f∞ > λ1, such that the limits

lim
t→0+

f(x, t)

t
= f0, lim

t→∞

f(x, t)

tp−1 = f∞, (1.4)

exist uniformly for x ∈ ∂Ω.

Remark 1.1. Since we are looking for positive solutions and the above hypotheses concern the
positive semiaxis R+ = [0,+∞), without any loss of generality we assume that

f(x, t) = 0 for a.e. x ∈ ∂Ω, for all t ≤ 0.
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Our main result is the following theorem.

Theorem 1.2. Suppose that f satisfies H(f)1-H(f)3. Then, (Sp, 2) yields at least two positive
solutions.

In [7], the authors show that if f satisfies H(f)1 and H(f)3 with f0 < µ1, f∞ > λ1, then
the problem (Sp,2) has a positive solution. In this article, Theorem 1.2 is a supplement of the
above result. In the process of this work, we require the introduction of the concept of the Fučik
spectrum Σp of the p-Laplacian operator with the Steklov boundary condition. Specifically,
Σp = Σp(m,n) is a set that consists of those (α, β) ∈ R2 such that{

∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν = αm(x)(u+)p−1 − βn(x)(u−)p−1 on ∂Ω,

has a nontrivial solution, where u+ = max{u, 0} and u− = max{−u, 0}, it is shown in [1] that
in particular if m and n both change sign in ∂Ω, then each of the four quadrants in the (α, β)
plane contains a first (nontrivial) curve of Σp.

Remark 1.3. For each f0 > µ1, f∞ > λ1 and q ∈ (p, p∗), we consider the following functions:

f(t) =


0, t ∈ (−∞, 0],
tf0, t ∈ (0, δ],

C1 + C2t
q−1, t ∈ (δ,R],

f∞t
p−1, t ∈ (R,∞],

where δ ∈ (0, 1) andR ∈ (1,∞). Moreover, C1 = (f0δR
q−1−f∞δp−1Rp−1)/(Rq−1−δq−1) and

C2 = (f∞Rp−1 − f0δ/(Rq−1 − δq−1). One can select sufficiently small δ and sufficiently large
R such that f0δ < Cq, f∞ < CqR

q−p, and C1, C2 > 0. Considering C = max{f0δ, f∞R
p−q} in

the condition H(f)2, we observe that these function f satisfy the hypotheses H(f)1-H(f)3.

2 Preliminaries

Let X be a Banach space and X∗ its topological dual while ⟨., .⟩ denotes the duality brackets on
the pair (X,X∗).

Definition 2.1. The functional φ ∈ C1(X) fulfills the Palais-Smale condition (the PS-condition
for short) if the following holds:
Every sequence {un} ⊆ X such that {φ(un)} is bounded and φ

′
(un) −→ 0 in X∗ as n −→ ∞,

admits a strongly convergent subsequence.

This compactness-type condition on φ leads to a deformation theorem which is the main
ingredient in the minimax theory of the critical values of φ. A basic result in that theory is the
so-called mountain pass theorem.

First, we demonstrate that the functional φ satisfies the Palais-Smale condition under the
conditions H(f)1-H(f)3. Thus, we only need to prove Lemmas 2.2 and 2.3.

Lemma 2.2. If H(f)1-H(f)3 hold. {un} ⊂ W 1,p(Ω) is bounded, and φ
′
(un) −→ 0, as n −→

∞, then {un} admits a convergent subsequence.

Proof. Assume that {un} is bounded, φ
′
(un) −→ 0 in W 1,p(Ω)∗, as n −→ ∞. By extracting a

subsequence, we may suppose that there exists {un} ⊂W 1,p(Ω) such that, as n −→ ∞

un ⇀ u in W 1,p(Ω), un −→ u in Ls(∂Ω), s ∈ [1, p∗). (2.1)

It follows from H(f)1-H(f)3 that there exists C1 > 0, such that

|f(x, t)| ≤ C1(1 + |t|p−1), (x, t) ∈ ∂Ω ×R. (2.2)
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Hence, by Hölder’s inequality and Sobolev’s embedding theorem, we have∣∣∣∣ ∫
∂Ω

f(x, un)(un − u)dσ

∣∣∣∣ ≤ C1
( ∫

∂Ω

|un||un − u|dσ +

∫
∂Ω

|un|p−1|un − n|dσ
)

≤ C1

(∫
∂Ω

|un|2dσ
) 1

2
(∫

∂Ω

|un − u|2dσ
) 1

2

+ C1

(∫
∂Ω

|un|pdσ
) p−1

p
(∫

∂Ω

|un − u|pdσ
) 1

p

≤ C2

(∫
∂Ω

|un − u|2dσ
) 1

2

+ C3

(∫
∂Ω

|un − u|pdσ
) 1

p

−→ 0, as n −→ ∞.

(2.3)

Similarly, we have ∣∣∣∣ ∫
∂Ω

f(x, u)(un − u)dσ

∣∣∣∣ −→ 0, as n −→ ∞. (2.4)

Noting that

< φ
′
(un)− φ

′
(u), un − u >=< φ

′
(un), un − u > − < φ

′
(u), un − u >

=

∫
Ω

∇un.∇(un − u)dx+

∫
Ω

un.(un − u)dx+

∫
Ω

|∇un|p−2∇un.∇(un − u)dx+

∫
Ω

|un|p−2(un − u)dx

−
∫
∂Ω

f(x, un)(un − u)dσ −
∫

Ω

∇u.∇(un − u)dx−
∫

Ω

u.(un − u)dx−
∫

Ω

|∇u|p−2∇u.∇(un − u)dx

−
∫

Ω

|u|p−2(un − u)dx+

∫
∂Ω

f(x, u)(un − u)dσ

=

∫
Ω

(
|∇(un − u)|2 + |(un − u)|2

)
dx+

∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
.∇(un − u)dx

+

∫
Ω

(
|un|p−2 − |u|p−2)(un − u)dx−

∫
∂Ω

f(x, un)(un − u)dσ +

∫
∂Ω

f(x, u)(un − u)dσ

(2.5)

and the inequality deduced from an inequality in Appendix of [13]∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
.∇(un − u)dx ≥ 2

p(2p−1 − 1)

∫
Ω

|∇(un − u)|p (2.6)

it follows from (2.3) and (2.4) that

2
p(2p−1 − 1)

∫
Ω

|∇(un − u)|p ≤ 2
p(2p−1 − 1)

∫
Ω

|∇(un − u)|p +
∫
∂Ω

f(x, un)(un − u)dσ

−
∫
∂Ω

f(x, un)(un − u)dσ −→ ∞, (2.7)

where we have used the fact that

< φ
′
(un)− φ

′
(u), un − u >−→ 0, as n −→ ∞. (2.8)

Hence un −→ u in W 1,p(Ω). The proof is completed.

Lemma 2.3. If H(f)1-H(f)3 hold, then each Palais-Smale sequence of φ is bounded.

Proof. Let {un} ⊂W 1,p(Ω) be a Palais-Smale sequence of φ, i.e., there exists M > 0 such that
|φ(un)| ≤M for all n ∈ N := {1, 2, ...} and φ

′
(un) −→ 0, as n −→ ∞.

First, we consider the following problem:{
−∆pu− ∆u+ |u|p−2u+ u = 0 in Ω,

< |∇u|p−2∇u+∇u, v > = f∞(u+)p−1 + g(x, u) on ∂Ω,



Existence of positive solutions for a (p, 2)-Laplacian Steklov problem 185

where g(x, t) = f(x, t)−f∞(t+)p−1 for all (x, t) ∈ ∂Ω×R. The operatorsA,L,K: W 1,p(Ω) −→
W 1,p(Ω)∗ are defined by

⟨Au, v⟩ =
∫

Ω

|∇u|p−2∇u.∇vdx+
∫

Ω

|u|p−2uvdx−
∫
∂Ω

f∞(u+)p−1dσ,

⟨Lu, v⟩ =
∫

Ω

∇u.∇vdx+
∫

Ω

uvdx,

⟨Ku, v⟩ =
∫
∂Ω

g(x, u)vdσ,

u, v ∈W 1,p(Ω). For any given ε > 0, there exists Cε > 0 such that

∥Ku∥∗ ≤ εSp
p∥u∥p−1 + CεS1, u ∈W 1,p(Ω). (2.9)

Indeed, because H(f)1-H(f)3 hold, for any given ε > 0, there exists Cε > 0 such that

|g(x, t)| ≤ ε|t|p−1 + Cε, (x, t) ∈ ∂Ω ×R. (2.10)

Using Hölder’s inequality and (1.3), we obtain that

|⟨Ku, v⟩| ≤
∫
∂Ω

|g(x, u)||v|dσ,

≤ ε

∫
∂Ω

|u|p−1|v|dσ + Cε

∫
∂Ω

|v|dσ

≤ ε∥u∥p−1
Lp(∂Ω)∥v∥Lp(∂Ω) + Cε∥v∥L1(∂Ω)

≤ εSp
p∥u∥

p−1
1,p − CεS1∥u∥1,p, u, v ∈W 1,p(Ω).

Therefore, (2.9) holds. It follows from Hölder’s inequality that

∥Lu∥∗ ≤ |Ω|(p−2)/p∥u∥1,p, u ∈W 1,p(Ω). (2.11)

Next, we claim that there exists C0 > 0 such that

∥Au∥∗ ≥ C0|∥u∥p−1
1,p , u ∈W 1,p(Ω). (2.12)

Assume for a contradiction that there exists a sequence {vn} ∈ W 1,p(Ω) with ∥v∥1,p = 1 such
that ∥Avn∥ ≤ 1

n , i.e.,∣∣∣∣ ∫
Ω

|∇vn|p−2∇vn.∇wdx+
∫

Ω

|vn|p−2vn.∇wdx−
∫
∂Ω

f∞(v+n )
p−1wdσ

∣∣∣∣ ≤ 1
n
∥w∥1,p, w ∈W 1,p(Ω), n ∈ N.

(2.13)
Because {vn} is bounded in W 1,p(Ω), we may assume by passing to a subsequence if necessary,
which is still denoted by {vn}, that vn ⇀ v inW 1,p(Ω), vn → v inLp(Ω) andLp(∂Ω). Choosing
w = vn − v in 2.13 and passing to the limit we obtain

lim
n→∞

(∫
Ω

|∇vn|p−2∇vn · ∇(vn − v)dx+

∫
Ω

|vn|p−2vn(vn − v)dx

)
= 0.

Using Hölder’s inequality, we get∫
Ω

|vn|p−2vn(vn − v)dx ≤
∫

Ω

|vn|p−1|vn − v|dx

≤
(∫

Ω

|vn|p−1
) p−1

p
(∫

Ω

|vn − v|p
) 1

p

dx

≤ ∥vn∥p−1
Lp(Ω)∥vn − v∥Lp(Ω)
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and as vn converges to v in Lp(Ω), it follows∫
Ω

|vn|p−2vn(vn − v)dx→ 0

and consequently,

lim
n→∞

(∫
Ω

|∇vn|p−2∇vn · ∇(vn − v)dx = 0.

Thus, vn → v in W 1,p(Ω), and ∥v∥Lp(Ω) = 1 by the S+ property of −∆p. Passing to the limit
again in (2.13), we have that v is a nontrivial solution of the following problem:

(Sp)

{
−∆pu+ |u|p−2u = 0 in Ω,

⟨|∇u|p−2∇u, ν⟩ = f∞(u+)p−1 on ∂Ω.

Therefore, we obtain that (f∞, 0) ∈
∑

p. Since f∞ ̸= λ1 and 0 ̸= λ1 on has f∞ > λ1 and
0 > λ1. This is a contradiction. Thus, from the inequalities (2.11), (2.9), and (2.12), we obtain
for all n that

C0∥un∥p−1 ≤ ∥Aun∥ ≤ ∥φ′(un)∥+∥Lun∥+∥Kun∥ ≤ o(1)+||(p−2/p∥un∥+εSp
p∥un∥p−1+CεS1.

Selecting sufficiently small ε, we obtain the boundedness of {un}.

Next, we prove that the functional φ satisfies mountain pass geometry.

Lemma 2.4. Assuming that f satisfies H(f)1-H(f)3, there exist ρ > 0 and α > 0 such that

(i) φ(u) ≥ α for all u ∈W 1,p(Ω) with ∥u∥1,p = ρ;

(ii) There exists e ∈W 1,p(Ω) such that ∥e∥1,p > ρ. and φ(e) < 0.

Proof. (i) For all u ∈W 1,p(Ω), considering H(f)2 and (1.3), we deduce that

φ(u) ≥ 1
p
∥u∥p1,p − C∥u∥L1(∂Ω) −

C

q
∥u∥q

Lq(∂Ω)

≥ 1
p
∥u∥p1,p − CS1∥u∥1,p −

C

q
Sq
q∥u∥

q
1,q

=
1
p
∥u∥p1,p

[
∥u∥p−1

1,p − a− b∥u∥q−1
1,q

]
,

where a = pCS1 and b = pC
q S

q
q . We define a function h : R+ → R by h(t) = tp−1 − a− btq−1

for all t ∈ R+. Then we have that

max
t∈R+

h(t) = h(t0) = (q − p)b
1−p
q−p

[
(p− 1)p−1

(q − 1)q−1

]1/(q−p)

− a,

where t0 = [b(q−1)/(p−1)]−1/(q−p) > 0. This implies that h(t0) > 0 if and only if aq−pbp−1 <
(q − p)q−p(p − 1)p−1/(q − 1)q−1, i.e., C < Cq. Considering ρ = t0, we obtain that φ(u) ≥
p−1ρh(ρ) := α > 0 for all u ∈W 1,p(Ω) and ∥u∥1,p = ρ.
(ii) It follows from (f)1-(f)3, and f∞ > λ1 that for any given ε ∈ (0, f∞ − λ1), there exists
Cε > 0 such that

f(x, t) ≥ (f∞ − ε)tp−1 − Cε, (x, t) ∈ ∂Ω ×R+,

which implies that

F (x, t) ≥ 1
p
(f∞ − ε)tp − Cεt, (x, t) ∈ ∂Ω ×R+.

Hence, for all t ∈ R+ and ψ1 a positive eigenfunction corresponding to λ1, we have that

φ(tψ1) ≤
t2

2

∫
Ω

(|∇ψ1|2 + |ψ1|2)dx+
tp

p
∥ψ1∥p1,p −

1
pλ1

(f∞ − ε)tp + Cεt∥ψ1∥L1(∂Ω)
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≤ t2

2

∫
Ω

(|∇ψ1|2 + |ψ1|2)dx− 1
pλ1

(f∞ − λ1 − ε)tp + Cεt∥ψ1∥L1(∂Ω)

which demonstrates that φ(tψ1) → −∞ as t→ ∞. Thus, we can select sufficiently large t1 > 0
and e = t1ψ1 such that ∥e∥1,p > ρ and φ(e) < 0.

3 Proof of the main result

In this section, we are now ready to prove our main Theorem 1.2.

Proof. According to H(f)1-H(f)3, we obtain for any given ε ∈ (0, f0 − µ1) that there exists
Cε > 0 such that

f(x, t) ≥ (f0 − ε)t− Cεt
p−1, (x, t) ∈ ∂Ω ×R+.

Subsequently, we have that

F (x, t) ≥ 1
2
(f0 − ε)t2 − Cεt

p, (x, t) ∈ ∂Ω ×R+.

Thus, it follows that

φ(tϕ1) ≤
t2

2

∫
Ω

(|∇ϕ1|2 + |ϕ1|2)dx+
tp

p
∥ϕ1∥p1,p −

1
2
(f0 − ε)t2

∫
∂Ω

|ϕ1|2dσ +
Cεt

p

p

∫
∂Ω

|ϕ1|pdσ

= − t2

2µ1
(f0 − µ1 − ε)

∫
Ω

(|∇ϕ1|2 + |ϕ1|2)dx+
tp

p
∥ϕ1∥p1,p +

Cεt
p

p
∥ϕ1∥pLp(∂Ω) < 0,

for sufficiently small t > 0. By Lemma 2.4, there exist ρ, α > 0 such that φ(u) > α for
all u ∈ W 1,p(Ω) with ∥u∥1,p = ρ. Hence, we have m = inf{φ(u) : u ∈ Bρ} < 0 where
Bρ = {u ∈W 1,p(Ω) : ∥u∥1,p ≤ ρ}. Thus, there exists a minimizing sequence {un} such that

φ(un) → m, φ′(un) → 0

by Ekeland’s variational principle. It follows from Lemma 2.2 and Lemma 2.3 that φ satisfies the
Palais-Smale condition. Thus, there exists u1 ∈ Bρ such that φ(u1) = m < 0 and φ′(u1) = 0,
which yields that u1 is a nontrivial critical point of φ. Furthermore, by applying the mountain
pass theorem [19] for

c = inf
γ∈Γ

max
t∈[0,1]

φ(γ(t))

and
Γ = {γ ∈ C([0, 1],W 1,p(Ω) : γ(0) = 0, γ(1) = e},

there exists u2 ∈ W 1,p(Ω) such that φ(u2) = c > 0 and φ′(u2) = 0, which shows that u2 is
another nontrivial critical point of φ.

Finally, we claim that u1 and u2 are positive solutions of the problem (Sp, 2). In fact, if u is a
critical point of φ, then by multiplying (Sp, 2) by u−, we obtain ∥u−∥2

1,2 + ∥u−∥p1,p = 0, which
yields u− = 0 and u ≥ 0. Thus, u1 ≥ 0 and u2 ≥ 0. Hence, the proof is complete.
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