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Abstract Let K = Q(α) be a pure number field generated by a root α of a monic irreducible
polynomial xp

r − a ∈ Z[x], where p is a rational prime and r is a positive integer. Let ZK

be the ring of integers of K. In this paper, we calculate an integral basis of ZK and study the
monogenity of K in some particular cases.

1 Introduction

Let K = Q(α) be a number field generated by a root α of a monic irreducible polynomial
F (x) ∈ Z[x], ZK its ring of integers, ∆(F ) the discriminant of F (x), and dK the absolute
discriminant of K. It is well known that the ring ZK is a free Z-module of rank n = [K : Q],
and so the Abelian group ZK/Z[α] is finite. Its cardinal order is called the index of Z[α] and
denoted (ZK : Z[α]) or ind(α). A well known formula linking ∆(F ), dK , and ind(α) says that
for every rational prime p, νp(∆(F )) = νp(dK)+2νp(ind(α)). If ZK = ω1Z+ω2Z+ · · ·+ωnZ
for some (ω1, ω2, . . . , ωn) ∈ Zn

K , then {ω1, ω2, . . . , ωn} is said to be an integral basis of ZK .
If ZK has an integral basis of the form (1, θ, . . . , θn−1) for some θ ∈ ZK , then ZK is said to
have a power integral basis and the field K is said to be monogenic. Otherwise, the field K
is said to be not monogenic. In 1871, Dedekind was the first who gave an example of a non-
monogenic number field ([6, § 5, page 30]). He considered the cubic field K generated by a
root of x3 − x2 − 2x − 8 and showed that the rational prime 2 splits completely in K. So, if
we suppose that K is monogenic, then we would be able to find a cubic polynomial generating
K, that splits completely into distinct polynomials of degree 1 in F2[x]. Since there are only
two distinct polynomials of degree 1 in F2[x], this is impossible. Based on these ideas and using
Kronecker’s theory of algebraic number fields, Hensel gave necessary and sufficient condition on
the so-called "index divisors of K" for any rational prime p to be a prime common index divisor
[17]. The problem of determining an integral basis of ZK and studying the monogenity of a
number field K has been studied by several authors. Namely, Westlund calculated an integral
basis of pure prime number fields of degree p (see [28]). In [9], Funakura, calculated integral
bases and studied the monogenity of pure quartic number fields. In [14], Hameed and Nakahara
showed that if m ≡ 2, 3 (mod 4), then the octic number field generated by m

1
8 is monogenic.

Also, in [15], Hameed et al. proved that if m ≡ 1 (mod 4), then the octic number field generated
by m

1
8 is not monogenic. In [10], by applying the explicit form of the index, Gaál and Remete

obtained new results on monogenity of the number fields generated by m
1
n , where 3 ≤ n ≤ 9.

In [16], Hameed et al. studied the monogenity of pure number fields of degree 2r. In [18],
Jakhar reshowed Westlund’s results. In [19], Jakhar et al. gave an integral bases of pure number
fields in some particular cases. In [3], Ben Yakkou and El Fadil studied the monogenity of pure
number fields of degree pr with the square-free parameter. In [4] Ben Yakou and Kchit showed
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that if m ̸≡ ±1 (mod 9), then the number fields defined by x3r −m are monogenic, but these
fields are not monogenic if r ≥ 3 and m ≡ ±1 (mod 81). In [7], El Fadil and Gaál gave integral
bases and studied the monogenity of pure octic number fields. In [26], under the regularity of
polynomials, Remete gave explicitly an integral basis of the field Q( n

√
m), where m ̸= ±1 is

square-free and n ≥ 2. In [20], we studied the monogenity of pure number fields defined by
xp

r − a in some particular cases. The main goal of this paper is to calculate an integral basis of
any pure number field generated by a root α of a monic irreducible polynomial F (x) = xp

r − a,
with p a rational prime, r a positive integer and a ∈ Z, and to study the monogenity of these
number fields in some particular cases. In particular, our results generalize the previously given
in [3, 4, 7, 9, 14, 15, 18, 19, 28].

2 Main results

Let K = Q(α) be a pure number field generated by a root α of a monic irreducible polynomial
F (x) = xp

r − a ∈ Z[x], with p a fixed rational prime and r a positive integer. It is well known
that up to replace α by α

qs , and so a by a
qs , where s is the quotient of the Euclidean algorithm

of νq(a) by pr, we can assume that νq(a) < pr for every rational prime q. In such a way,
without loss of generality, we can assume that a =

∏pr−1
j=1 ajj , with a1, . . . , apr−1 are square-free

pairwise coprime integers. Let ZK be the ring of integers of K and Ci =
∏pr−1

j=1 a
⌊i j

pr ⌋
j for i =

1, . . . , pr − 1.
In Theorems 2.1 and 2.2, we give an integral basis of any number field defined by F (x) =
xp

r −a ∈ Z[x], and their proofs are slightly simpler than the proofs given by Jakhar et al. ([19]).

Theorem 2.1. B1 =
(

1, α, α
2

C2
, . . . , α

pr−1

Cpr−1

)
is a Z-integral basis of ZK if and only if p divides a

and p does not divide νp(a) or p does not divide a and νp(ap−1 − 1) = 1.

Theorem 2.2. If p does not divide a and νp(ap−1 − 1) ≥ 2, then

B2 =

(
1,

qi(α)

p⌊yi⌋Cpr−i
, 1 ≤ i ≤ pr − 1

)
is a Z-basis of ZK , where for every 0 ≤ i ≤ pr, qi(x) is the quotient upon to the Euclidean
division of F (x) by ϕ(x)i = (x− a)i and

(i) if νp(ap−1 − 1) = v ≥ r + 2, then

⌊yi⌋ = r − ti − 1,

(ii) if νp(ap
r − a) = v ≤ r + 1, then

⌊yi⌋ =

{
v − 1 if i ≤ pr−v+1,

r − ti − 1 if i ≥ pr−v+1.

Where ti ∈ {0, . . . , r − 1} is the smallest positive integer such that i − pti+1 ≤ 0 for every
i = 0, . . . , pr.

The following corollary characterizes when does ZK = Z[α]; that is when ZK is generated by
α and K is monogenic, unlike Gassert’s results [11, Theorem 1.1], which give just one meaning
and requires more details to reach our result.

Corollary 2.3. ZK = Z[α] if and only if a is a square-free integer and νp(ap − a) = 1.

The following theorem generalizes the result given in [3, Theorem 2.2], where a is a square-
free rational integer was previously considered.

Theorem 2.4. If p does not divide a and one of the following conditions holds:
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(i) p ̸= 2, r ≥ p and νp(ap − a) ≥ p+ 1,

(ii) p = 2, r = 2 and ν2(a− 1) ≥ 4,

(iii) p = 2, r ≥ 3 and ν2(a− 1) ≥ 5,

then K is not monogenic.

3 Preliminaries

Newton polygon techniques is a standard method which is rather technical but very efficient to
apply. We briefly describe the use of these techniques, which makes our proofs understandable.
For more details, we refer to [8] and [12].
Let K = Q(α) be a number field generated by a root α of a monic irreducible polynomial
F (x) ∈ Z[x]. We shall use Dedekind’s theorem [24, Chapter I, Proposition 8.3] relating the
prime ideal factorization of pZK and the factorization of F (x) modulo p (for rational primes p
not dividing (ZK : Z[α])). Also, we shall need Dedekind’s criterion [5, Theorem 6.1.4] on the
divisibility of (ZK : Z[α]) by rational primes.
For any rational prime p, let νp be the p-adic valuation of Q, Qp its p-adic completion, and Zp

the ring of p-adic integers. We keep the same notation for the Gauss’s extension of νp to Qp(x),
which is defined on Qp[x] by νp(

∑n
i=0 aix

i) = mini{νp(ai)}, ai ∈ Qp. Also, for nonzero
polynomials, P,Q ∈ Qp[x], we extend this valuation to νp(P/Q) = νp(P ) − νp(Q). Let ϕ ∈
Zp[x] be a monic lift to an irreducible factor of F (x) modulo p. Upon to the Euclidean division
by successive powers of ϕ, there is a unique ϕ-expansion of F (x); that is F (x) = a0(x) +
a1(x)ϕ(x)+· · ·+al(x)ϕ(x)l, where ai(x) ∈ Zp[x] and deg(ai) < deg(ϕ). For every i = 0, . . . , l,
let ui = νp(ai(x)). The ϕ-Newton polygon of F (x) with respect to p, is the lower boundary
convex envelope of the set of points {(i, ui), ai(x) ̸= 0} in the Euclidean plane, which we denote
byNϕ(F ). It is the process of joining the obtained edges S1, . . . , St ordered by increasing slopes,
which can be expressed asNϕ(F ) = S1+ · · ·+St. For every side Si ofNϕ(F ), its length l(Si) is
the length of its projection to the x-axis and its height h(Si) is the length of its projection to the
y-axis. We call d(Si) =gcd(l(Si), h(Si)) the degree of Si. The polygon determined by the sides
of the ϕ-Newton polygon with negative slopes is called the principal ϕ-Newton polygon of F (x),
and it is denoted by N+

ϕ (F ). As defined in [8, Def. 1.3], the ϕ-index of F (x), denoted indϕ(F ),
is deg(ϕ) multiplied by the number of points with natural integer coordinates that lie below or
on the polygon N+

ϕ (F ), strictly above the horizontal axis, and strictly beyond the vertical axis.
Let Fϕ be the field Fp[x]/(ϕ), then to every side S of N+

ϕ (F ), with initial point (s, us), and every
i = 0, . . . , l = l(S), let the residue coefficient ci ∈ Fϕ be defined as

ci =

 0, if (s+ i, us+i) lies strictly above S,(
as+i(x)

pus+i

)
mod(p, ϕ(x)), if (s+ i, us+i) lies on S.

where (p, ϕ(x)) is the maximal ideal of Zp[x] generated by p and ϕ. Let λ = −h/e be the slope
of S, where h and e are two positive coprime integers and l = l(S). Then d = l/e is the degree
of S. Since the points with integer coordinates lying on S are exactly (s, us), (s+ e, us−h), . . . ,
(s+de, us−dh). Thus if i is not a multiple of e, then (s+i, us+i) does not lie on S, and so ci = 0.
LetRλ(F )(y) = tdy

d+td−1y
d−1+· · ·+t1y+t0 ∈ Fϕ[y], called the residual polynomial of F (x)

associated to the side S, where for every i = 0, . . . , d, ti = cs+ie. If Rλ(F )(y) is square-free
for each side of the polygon N+

ϕ (F ), then we say that F (x) is ϕ-regular. Let F (x) =
∏r

i=1 ϕi
li

be the factorization of F (x) into powers of monic irreducible coprime polynomials over Fp, we
say that the polynomial F (x) is p-regular if F (x) is a ϕi-regular polynomial with respect to p for
every i = 1, . . . , r. Let N+

ϕi
(F ) = Si1 + · · ·+ Siri be the ϕi-principal Newton polygon of F (x)

with respect to p. For every j = 1, . . . , ri, let Rλij (F )(y) =
∏sij

s=1 ψ
aijs

ijs (y) be the factorization
of Rλij

(F )(y) in Fϕi
[y]. Then we have the following theorem of index of Ore:

Theorem 3.1. (Theorem of Ore)
Under the above hypothesis, we have the following:
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(i)

νp((ZK : Z[α])) ≥
r∑

i=1

indϕi
(F ).

The equality holds if F (x) is p-regular.

(ii) If F (x) is p-regular, then

pZK =
r∏

i=1

ri∏
j=1

sij∏
s=1

p
eij
ijs

is the factorization of pZK into powers of prime ideals of ZK , where eij is the smallest
positive integer satisfying eijλij ∈ Z and the residue degree of pijs over p is given by
fijs = deg(ϕi) · deg(ψijs) for every (i, j, s).

Corollary 3.2. Under the hypothesis above (Theorem 3.1), if for every i = 1, . . . , r, li =
1 or N+

ϕi
(F ) = Si has a single side of height 1, then νp((ZK : Z[α])) = 0.

An alternative proof of the index theorem of Ore is proposed in [8]. The main advantage of
that proposed proof is it gives an efficient method to calculate p-integral bases of ZK . We recall
here how one can do it. Assume that F (x) ≡

∏t
i=1 ϕi

li
(mod p) for some monic polynomials

ϕi ∈ Z[x] of degree mi, whose reductions are irreducible over Fp. We fix one of these polyno-
mials ϕ(x) = ϕi(x).
Let F (x) = a0(x) + a1(x)ϕ(x) + · · · + al(x)ϕ(x)l be the ϕ-expansion of F (x), qi(x) the quo-
tient of the Euclidean division of F (x) by ϕi(x). Then q1(x), . . . , ql(x) are obtained along the
computation of the coefficients of the ϕ-expansion of F (x):

F (x) = ϕ(x)q1(x) + a0(x),

q1(x) = ϕ(x)q2(x) + a1(x),
...

...
ql(x) = ϕ(x) · 0 + al(x) = al(x).

Let ri(x) be the residue of the Euclidean division of F (x) by ϕ(x)i. Thus, for every i = 1, . . . , l,
we have:

F (x) = ri(x) + qi(x)ϕ(x)
i,

ri(x) = a0(x) + a1(x)ϕ(x) + · · ·+ ai−1(x)ϕ(x)
i−1,

qi(x) = ai(x) + ai+1(x)ϕ(x) + · · ·+ al(x)ϕ(x)
l−i.

Let N+
ϕi
(F ) = S1 + · · · + Sti , with li = l(N+

ϕi
(F )). For every integer abscissa j = 0, . . . , li,

let yij ∈ Q be the ordinate of the point N ∈ N+
ϕi
(F ) of abscissa j. Then we have the following

theorem:

Theorem 3.3. ([8, Theorem 2.7])
If F (x) is p-regular, then the family{
qij(α)αk/p⌊yij⌋, 1 ≤ i ≤ t, 1 ≤ j ≤ li, 0 ≤ k ≤ mi

}
is a p-integral basis of ZK .

In what follows, we obtain

νp(ind(α)) ≥
t∑

i=1

indϕi(F ) =
t∑

i=1

mi ·
li∑

j=1

⌊yij⌋

 .

Our method is based on calculating a q-integral basis for every rational prime q dividing ∆(F ).
Once the q-integral bases are calculated for every rational prime q dividing ∆(F ), the following
theorem allows to recover an integral basis of ZK from the q-integral bases (see for instance [1,
Theorem 1.3.6]) by applying: νq(ind(α)) =

∑t
i=1 indϕi(F ) if and only if ind2(F ) = 0 for every

i = 1, . . . , t.
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Theorem 3.4. ([1, Theorem 1.3.6])
Let K = Q(α) be the number field generated by α a root of a monic ireductible polynomial
F (x) ∈ Z[x] of degree n. Let p1, p2, . . . , ps be the distinct rational prime integers dividing
(ZK : Z[α]) and{

1,
x
(1)
r0 + α

pkr1
r

,
x
(2)
r0 + x

(2)
r1 α+ α2

pkr2
r

, . . . ,
x
(n−1)
r0 + x

(n−1)
r1 α+ · · ·+ x

(n−1)
r n−2α

n−2 + αn−1

p
kr n−1
r

}

a pr-integral basis of K for every r = 1, 2, . . . , s. Define the integers X(j)
i (i = 1, 2, . . . , j −

1; j = 1, 2, . . . , n− 1) by

X
(j)
i ≡ x

(j)
ri (mod pkrj

r ) (r = 1, 2, . . . , s),

and let

Tj =
s∏

r=1

pkrj
r (j = 1, 2, . . . , n− 1).

Then{
1,
X

(1)
0 + α

T1
,
X

(2)
0 +X

(2)
1 α+ α2

T2
, . . . ,

X
(n−1)
0 +X

(n−1)
1 α+ · · ·+X

(n−1)
n−2 αn−2 + αn−1

Tn−1

}

is an integral basis of ZK .

Recall that the requirement, F (x) is p-regular is only a sufficient condition to have equality
in theorem of index of Ore and not necessarily.

If a factor of F (x) provided by Hensel’s lemma and refined by Newton polygon (in the
context of Ore program) is not irreducible over Qp, then in order to complete the factoriza-
tion of F (x) in Qp[x], Guardia, Montes, and Nart introduced the notion of higher order New-
ton polygon [12]. They showed, thanks to a theorem of index [12, Theorem 4.18], that af-
ter a finite number of iterations, the process provides all monic irreducible factors of F (x),
all prime ideals of ZK lying above a rational prime p, the index (ZK : Z[α]), and the abso-
lute discriminant of K. We recall some fundamental techniques of Newton polygon of high
order. For more details, we refer to [12] and [13]. A type of order r − 1 is a data t =
(g1(x),−λ1, g2(x),−λ2, . . . , gr−1(x),−λr−1, ψr−1(x)), where every gi(x) is a monic polyno-
mial in Zp[x], λi ∈ Q+ and ψr−1(y) is a polynomial over a finite field of pH elements, with

H =
r−2∏
i=0

fi and fi = deg(ψi(x)), satisfying the following recursive properties:

(0) F0 is the finite field of p elements.

(1) g1(x) is irreducible modulo p, ψ0(y) ∈ F0[y] (F0 = Fp) is the polynomial obtained by
reducing g1(x) modulo p, and F1 = F0[y]/(ψ0(y)).

(2) For every i = 1, . . . , r − 1, the Newton polygon of ith order, Ni(gi+1(x)), has a single side
of slope −λi.

(3) For every i = 1, . . . , r−1, the residual polynomial of ith order,Ri(gi+1)(y) = ψi(y) ∈ Fi[y]
is a monic irreducible polynomial in Fi[y], and Fi+1 = Fi[y]/(ψi(y)).

(4) For every i = 1, . . . , r − 1, gi+1(x) has minimal degree among all monic polynomials in
Zp[x] satisfying (2) and (3).

(5) ψr−1(y) ∈ Fr−1[y] is a monic irreducible polynomial, ψr−1(y) ̸= y, and Fr = Fr−1[y]/(ψr−1(y)).

Thus, F0 ⊂ F1 ⊂ · · · ⊂ Fr is a tower of finite fields, here the field Fi should not be confused
with the finite field of i elements. For every i = 1, . . . , r − 1, the residual polynomial of the ith
order, Ri(gi+1)(y) is an irreducible polynomial in Fi[y], and by the theorem of the product in
order i, the polynomial gi(x) is irreducible in Zp[x]. Let ω0 = [νp, x, 0] be the Gauss’s extension
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of νp to Qp(x). According to MacLane’s terminology ([21]), gi+1 is a key polynomial of ωi, and
it induces a valuation on Qp(x), denoted by ωi+1 = ei[ωi, gi, λi], where λi = hi/ei, ei and hi
are positive coprime integers. The valuation ωi+1 is called the augmented valuation of ωi with
respect to gi and λi and defined over Qp[x] as

ωi+1(F (x)) = min
{
eiωi(a

i
j(x)) + j(eiωi(gi) + hi), j = 0, . . . , ni

}
, (3.1)

where F (x) =
ni∑
j=0

aij(x)g
j
i (x) is the gi-expansion of F (x). According to the terminology

in [12], the valuation ωr is called the rth-order valuation associated to the data t. For every
order r ≥ 1, the gr-Newton polygon of F (x), with respect to the valuation ωr is the lower
boundary convex envelope of the set of points {(i, µi), i = 0, . . . , nr} in the Euclidean plane,
where µi = ωr(ari (x)g

i
r(x))). The relevant theorems from Montes-Guardia-Nart’s work are

theorem of the product, theorem of the polygon and theorem of the residual polynomial in high
order Newton polygon (see [12, Theorems 2.26, 3.1, 3.7]).

4 Proofs of main results

Proof. (of Theorem 2.1.)
Since ∆(F ) = ±prpr · apr−1 is the discriminant of F (x) and thanks to the formula linking ∆(F ),
dK , and ind(α), we need to calculate a q-integral basis of ZK for every rational prime q such that
q = p or q divides a.

(i) If q divides a and q ̸= p, then F (x) ≡ xp
r

(mod q). Let ϕ = x. ThenNϕ(F ) = S1 has a sin-
gle side of slope −λ1 = −νq(a)

pr , length l = pr, and ind1(F ) = indϕ(F ) =
∑pr−1

i=1 ⌊i iνq(a)
pr ⌋.

By [12, Theorem 4.18], νq((ZK : Z[α])) = ind1(F ) if and only if ind2(F ) = 0, where
ind2(F ) is the index of the second order of Newton polygon.

a. If gcd(p, νq(a)) = 1, then d(S1) = 1; that is Rλ1(F )(y) is irreducible, and so by
Theorem 3.3, νq(ind(α)) = indϕ(F ) =

∑pr−1
j=0 ⌊yj⌋ =

∑pr−1
j=1 ⌊ (p

r−j)νq(a)
pr ⌋.

b. If p divides νq(a), then let t = νp(νq(a)), e = pr−t, and d(S1) = pt is the degree of S1.
Thus Rλ1(F )(y) = yp

t − aq ∈ Fϕ[y], where aq ≡ a
qνq (a) (mod (q, ϕ(x))). As p ̸= q,

Rλ1(F )(y) is separable over Fϕ, and so by Theorem 3.3, νq(ind(α)) = indϕ(F ) =∑pr−1
j=1 ⌊yj⌋ =

∑pr−1
j=1 ⌊ (p

r−j)νq(a)
pr ⌋.

In both cases, F (x) is q-regular. By Theorem 3.3,
(

qj(α)

q⌊yj⌋
, j = 1, . . . , pr

)
is a q-integral

basis of ZK , where ⌊yj⌋ = ⌊pr−j
pr νq(a)⌋ for every j = 1, . . . , pr and ⌊y⌋ is the integral part

of y; the greatest integer b satisfying b ≤ y. Thus(
1,

α

q⌊
νq (a)

pr ⌋
,

α2

q⌊
2νq (a)

pr ⌋
, . . . ,

αpr−1

q⌊
(pr−1)νq (a)

pr ⌋

)
is a q-integral basis of ZK .

(ii) If q = p, then we have the following cases:

a. If p divides a, then F (x) ≡ xp
r

(mod p). Let ϕ = x. Then Nϕ(F ) = S1 joining
(0, νp(a)) and (pr, 0). Thus νp((ZK : Z[α])) ≥ indϕ(F ). More precisely, if p divides
a and p does not divide νp(a), then d(S1) = 1, and so its attached residual polynomial
is irreducible. Therefore νp((ZK : Z[α])) = indϕ(F ) and(

1,
α

p⌊
νp(a)

pr ⌋
,

α2

p⌊
2νp(a)

pr ⌋
, . . . ,

αpr−1

p⌊
(pr−1)νp(a)

pr ⌋

)
is a p-integral basis of ZK .
If p divides νp(a), then by Remark 4.1, νp((ZK : Z[α])) > indϕ(F ) and(

1,
α

p⌊
νp(a)

pr ⌋
,

α2

p⌊
2νp(a)

pr ⌋
, . . . ,

αpr−1

p⌊
(pr−1)νp(a)

pr ⌋

)
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is a Z-free set of ZK .

b. If p does not divide a, then F (x) ≡ xp
r − a (mod p) ≡ (x − a)p

r

(mod p). Let
ϕ = x− a. Then

F (x) = (x− a+ a)p
r − a

=
∑pr

k=0 (
pr

k )a
kϕp

r−k − a

= ϕp
r

+ (p
r

1 )aϕ
pr−1 + · · ·+ ( pr

pr−1)a
pr−1ϕ+ ap

r − a

(4.1)

If νp(ap−1 − 1) = 1, then Nϕ(F ) = S1 has a single side of height 1. Hence, by
Corollary 3.2, νp(ind(α)) = 0.

We conclude, using Theorem 2.1, that
(

1, α, α
2

C2
, . . . , α

pr−1

Cpr−1

)
is a Z-integral basis of ZK if and

only if p divides a and p does not divide νp(a) or p does not divide a and νp(ap−1 − 1) = 1.

Remark 4.1. If p divides νp(a), then a natural question is "under which conditions we get
νp(ind(α)) = indϕ(F ), and so B1 is an integral basis of ZK ? The answer is negative, that
means if p divides νp(a), then ind2(F ) ≥ 1. For this reason, let νp(a) = bps, with νp(b) = 0 and
s < r. Thus a = pbp

s ·A such that p does not divideA. Then F (x) = xp
r−pbps

A ≡ xp
r

(mod p).
Let ϕ(x) = x. Then Nϕ(F ) = S1 joining (0, bps) and (pr, 0) (see Figure 1), with slope −λ1 =
−b

pr−s . Its attached residual polynomial is Rλ1(F )(y) = yp
s − A = (y − A)p

s ∈ Fϕ[y]. In this
case, we have to use second order Newton polygon.

bps •

pr
•

Figure 1. Nϕ(F )

Let us take the example s = 1. Let t = (x, λ1, ψ1), with ψ1 = y−A. We have also f1 = m1 = 1
and e1 = pr−1 are the data of first order Newton polygon. Let ω2 = pr−1[νp, ϕ, b/pr−1] be the
valuation of second order Newton polygon and g2 = xp

r−1 − pbA the key polynomial of ω2,
where [νp, ϕ, b/pr−1] is the augmented valuation of νp with respect to ϕ and λ1 = b/pr−1. Let

F (x) = gp2 +
p−1∑
k=1

(
p

k

)
(pbA)p−kgk2 + pbp(Ap −A)

be the g2-expansion of F (x). By (3.1), we have ω2(x) = 1, ω2(g2) = bpr−1, ω2
(
(pk)g

k
2 (p

bA)p−k
)
=

bpr + pr−1, and ω2(pbp(Ap − A)) ≥ bpr + pr−1. Hence, according to νp(Ap − A) = 1 or
νp(Ap − A) ≥ 2, the Newton polygon of second order is given by the following figure (Figure
2):

In both cases ind2(F ) ≥ m1 ·f1 · ind(N2(F )) and ind(N2(F )) ≥ 1 because its length is pr−1 ≥ 2
and its height is greater than e1 ≥ 2.

Proof. (of Theorem 2.2)
In order to prove this theorem we need to calculate a p-integral basis when p does not divide a
and νp(ap−1 − 1) ≥ 2, and then collect it with the other q-integral bases when q ̸= p divides a,
found in the proof of Theorem 2.1.
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p
p

-bpr + pr−1 •

p
1

-bpr •

νp(Ap −A) = 1

p
p

−bpr + pr−1

•

p
1

•

-bpr •

νp(Ap −A) ≥ 2

Figure 2. N2(F )

p does not divide a implies that F (x) ≡ xp
r − a (mod p) ≡ (x − a)p

r

(mod p). Let ϕ = x − a
as the lift to Z[x] to the irreducible factor of F (x) modulo p. Then

F (x) = (x− a+ a)p
r − a,

=
∑pr

k=0 (
pr

k )a
kϕp

r−k − a,

= ϕp
r

+ (p
r

1 )aϕ
pr−1 + · · ·+ ( pr

pr−1)a
pr−1ϕ+ ap

r − a,

Let v = νp(ap−1 − 1), then the number of sides of the Newton polygon depends on v. Two cases
arise:

(i) If v ≥ r + 2, then N+
ϕ (F ) = S1 + · · ·+ Sr+1 has r + 1 sides joining (0, v), (1, r), (p, r −

1), . . . , (pr−1, 1), and (pr, 0). Thus every side has degree 1 (see Figure 3, v ≥ r + 2). So,
for every i = 1, . . . , r + 1, the residual polynomial Rλi(F )(y) attached to Si is irreducible
over Fϕ as it is of degree 1. Hence F (x) is p-regular, and by Theorem 3.3,(

qi(α)

p⌊yi⌋
, 1 ≤ i ≤ pr

)
,

is a p-integral basis of ZK , with ⌊yi⌋ = r− ti − 1, where ti ∈ {0, . . . , r− 1} is the smallest
positive integer such that i − pti+1 ≤ 0 for every i = 0, . . . , pr. Since qpr(x) ∈ Z and
⌊ypr⌋ = 0, then (

1,
qi(α)

p⌊yi⌋
, 1 ≤ i ≤ pr − 1

)
,

is a p-integral basis of ZK .
Likewise, let p1, . . . , ps be the distinct rational primes whose dividing a. So, for every
j = 1, . . . , s 1,

α

p
⌊

tj
pr ⌋

j

,
α2

p
⌊

2tj
pr ⌋

j

, . . . ,
αpr−1

p
⌊
(pr−1)tj

pr ⌋
j

 is a pj-integral basis of ZK .

By Theorem 3.4, we get that(
1,

qi(α)

p⌊yi⌋Cpr−i
, 1 ≤ i ≤ pr − 1

)
,

is a Z-basis of K, with qi(α) and ⌊yi⌋ are defined above.

(ii) If v ≤ r + 1, then two cases arise.

a. If p ̸= 2, then Nϕ(F ) = S1 + · · · + Sv has v sides joining (0, v), (pr−v+1, v −
1), . . . , (pr−1, 1), and (pr, 0). Thus every side has degree 1 (see Figure 3, v ≤ r + 1).
So, for every i = 1, . . . , v, Rλi

(F )(y) is irreducible over Fϕ as it is of degree 1.
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b. If p = 2, Nϕ(F ) = S1 + · · · + Sv−1 has v − 1 sides joining (0, v), (pr−v+2, v − 2),
(pr−v+3, v − 3), . . . , (pr−1, 1), and (pr, 0) with d(Si) = 1 for every i = 2, . . . v, and
the residual polynomial attached to S1 is Rλ1(F )(y) = y2 +y+1 which is irreducible
over Fϕ.

In both cases F (x) is p-regular, and by Theorem 3.3,(
1,
qi(α)

p⌊yi⌋
, 1 ≤ i ≤ pr − 1

)
is a p-integral basis of ZK ,

with ⌊yi⌋ =

{
v − 1 if i ≤ pr−v+1,

r − ti − 1 if i ≥ pr−v+1,

where ti ∈ {0, . . . , r − 1} is the smallest positive integer such that i − pti+1 ≤ 0 for every
i = 0, . . . , pr. Using the same process, we get that(

1,
qi(α)

p⌊yi⌋Cpr−i
, 1 ≤ i ≤ pr − 1

)
,

is a Z-basis of K, with the qi(α) and the ⌊yi⌋ are defined above.

v •

pr
•

r -

r − 1 -

1 -

1
p

•

p
p

•

pr−1
p
•

v ≥ r + 2

pr
•

v •

v − 1 -

v − 2 -

1 -

pr−v+1
p

•

pr−v+2
p

•

pr−1
p
•

v ≤ r + 1

Figure 3. N+
ϕ (F )

Proof. (of Corollary 2.3)
According to the bases given in Theorems 2.1 and 2.2, we conclude that Z[α] is the ring of
integers of K if and only if νp(ap − a) = 1 and Ci = 1 for every i = 2, . . . , pr − 1, which means
that νp(ap − a) = 1 and a is square-free.

The index of a number field K is defined by

i(K) = gcd{(ZK : Z[θ]) | K = Q(θ) and θ ∈ ZK}.

A rational prime p dividing i(K) is called a prime common index divisor of K. If ZK has a
power integral basis, then i(K) = 1. Therefore a field having a prime common index divisor is
not monogenic.

For the proof of Theorem 2.2, we need the following lemma, which characterizes the rational
primes dividing i(K).

Lemma 4.2. ([27, Theorem 2.2])
Let p be a rational prime and K a number field. For every positive integer f , let Pf be the
number of distinct prime ideals of ZK lying above p with residue degree f and Nf the number
of monic irreducible polynomials of Fp[x] of degree f . Then p divides the index i(K) if and only
if Pf > Nf for some positive integer f .
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Remark 4.3. In order to prove Theorem 2.4 we do not need to determine the factorization of
pZK explicitly. But according to Lemma 4.2, we need only to show that Pf > Nf for an
adequate positive integer f . So in practice the second point of Theorem 3.1, could replaced
by the following: if li = 1 or dij = 1 or aijk = 1 for some (i, j, k) according to notation of
Theorem 3.1, then ψijk provides a prime ideal pijk of ZK lying above p with residue degree
fijk = mi · tijk, where tijk = deg(ψijk) and pZK = peijijkI , where the factorization of the ideal
I can be derived from the other factors of each residual polynomial of F (x).

Proof. (of Theorem 2.4).
Let v = νp(ap − a) and recall that F (x) = ϕp

r

(mod p), where ϕ = x − a. By the above
ϕ-expansion (4.1) of F (x), N+

ϕ (F ) is the lower boundary convex envelope of the set of points
{(0, v)} ∪ {(pr, r − j), 0 ≤ j ≤ r} in the Euclidean plane. More precisely, if v ≥ r + 2, then
N+

ϕ (F ) is the polygon joining the points {(0, v), (1, r), (p, r − 1) . . . , (pr, 0)} and if v ≤ r + 1,
then N+

ϕ (F ) is the polygon joining the points {(0, v), (pr−v+1, v − 1), . . . , (pr, 0)}.

(i) If p is an odd rational prime, then N+
ϕ (F ) = S1+ · · ·+Sg has g sides of degree 1 each, with

g ≥ min{v, r + 1} ≥ p + 1. So, Rλi
(F )(y) is irreducible over Fϕ for every i = 1, . . . , g.

Then F (x) is p-regular and by Theorem 3.1, there are at least p + 1 distinct prime ideals
of ZK lying above p with residue degree 1 each ideal factor. As there are just p monic
irreducible polynomials of degree 1 over Fp, by Lemma 4.2, p divides i(K). Hence K is
not monogenic.

(ii) If p = 2, r = 2, and v ≥ 4, then N+
ϕ (F ) = S1 +S2 +S3 has 3 sides of degree one each. So,

Rλi
(F )(y) is irreducible over Fϕ for every i = 1, 2, 3. Hence there are three distinct prime

ideals of ZK lying above 2 with residue degree 1 each ideal factor. As it is known, there
are just two monic irreducible polynomials of degree 1 over F2, by Lemma 4.2, 2 divides
i(K). Hence K is not monogenic.

(iii) If p = 2, r ≥ 3, and v ≥ 5, then N+
ϕ (F ) = S1 + · · ·+Sg has at least g− 1 sides of degree 1

each, with g ≥ min{v, r+ 1} ≥ 4. So, there are at least g− 1 ≥ 3 prime ideals of ZK lying
above 2 with residue degree 1 each ideal factor. By the same reason, 2 divides i(K) and so
K is not monogenic.

5 Examples

Let K = Q(α) be a number field generated by a root α of a monic irreducible polynomial
F (x) = xp

r − a ∈ Z[x], where p is a rational prime and r a positive integer.

(i) For r = 1, Theorems 2.1 and 2.2 generalize the results given in [18].

(ii) For a is square-free, Theorems 2.1 and 2.2 generalize the results given in [26].

(iii) For a is a square-free integer, then Theorem 2.4 generalizes the results given in [3].

(iv) For p = 3 and a a square-free integer, Theorem 2.4 generalizes the results given in [4].

(v) For p = 2 and r = 3, the main Theorems generalize the results given in [7].

(vi) For p = 2, r = 3 and a a square-free integer, Corollary 2.3 and Theorem 2.4 generalize the
results given in [14].

(vii) For p = 2 and a a square-free integer, our Corollary 2.3 and Theorem 2.4, show that the
results given in [16] hold.

(viii) For p = 7 and a = 15, we have ν5(a6 − 1) = 1 and a is square-free, then by Corollary
2.3, (1, α, . . . , α7r−1) is an integral basis of ZK for every positive integer r. Hence K is
monogenic.

(ix) For p = 5, r = 2, and a = 150, we have ν5(a) = 2, which is coprime with 5. By Theorem

2.1,

(
1, α, . . . , α12,

α13

5
,
α14

5
, . . . ,

α24

5

)
is an integral basis of K.
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(x) For p = 3, r = 2, and a = 80, we have ν3(a2 − 1) = 4 and ν2(a) = 4, then by Theorem
2.2, (

1, α, α2,
q6(α)

2
,
q5(α)

2
,
q4(α)

4
,
q3(α)

12
,
q2(α)

24
,
q1(α)

72

)
is an integral basis of ZK , where q6(α) = α3 − 6α2 + 21α − 56, q5(α) = α4 − 5α3 +
15α2 − 35α + 70, q4(α) = α5 − 4α4 + 10α3 − 202α2 + 35α − 56, q3(α) = α6 − 3α5 +
α4 − 10α3 + 15α2 − 21α+ 28, q2(α) = α7 − 2α6 + 3α5 − 4α4 + 5α3 − 6α2 + 7α− 8, and
q1(α) =

∑8
i=0(−1)iαi.

(xi) If p = 2, r = 4, and a = 1800, we have ν2(a) = 3, which is coprime with 2. By Theorem

2.1,

(
1, α, . . . α5,

α6

2
,
α7

2
,
α8

30
,
α9

30
,
α10

30
,
α11

60
, . . . ,

α15

60

)
is an integral basis of ZK .

(xii) If p = 2, r = 7, and a = 1050625, we have r ≥ 3 and ν2(a − 1) = 11 ≥ 5, then by
Theorem 2.4, K is not monogenic.

(xiii) If p = 5, r = 8, and a = 11602921876, we have r ≥ 6 and ν5(a4 − 1) = 6, then by
Theorem 2.4, K is not monogenic.

(xiv) If p = 11, r = 20, and a = 6044929680708, we have r ≥ 11 and ν11(a10 − 1) = 12 > 11,
then by Theorem 2.4, K is not monogenic.
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