NORMAL HOLONOMY ALONG TRANSNORMAL CURVES IN \mathbb{R}^{4}

Kamal A.S. Al-Banawi
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 53C40, 53C42; Secondary 53A04, 53A40.
Keywords and phrases: Transnormal manifolds, generating frames, parallel curves, normal holonomy.

Abstract

In this paper we study normal holonomy along transnormal curves in \mathbb{R}^{4}. The idea of normal holonomy will be exploited in the form of rotation to construct transnormal curves parallel to a 2-transnormal curve in \mathbb{R}^{4}.

1 Introduction

Let M be a smooth $\left(C^{\infty}\right)$ connected m-manifold without boundary and let $f: M \longrightarrow \mathbb{R}^{n}$ be a smooth embedding of M into \mathbb{R}^{n}. Let $V=f(M)$. Through each point $p \in V$ there passes a unique m-plane $T_{p} V$ tangent to V at p and a unique $(n-m)$-plane $N_{p} V$ normal to V at p. Thus, there are maps T and N with $T(p)=T_{p} V$ and $N(p)=N_{p} V$. The m-manifold V is transnormal in \mathbb{R}^{n} iff $\forall p, q \in V$, if $q \in N(p)$, then $N(q)=N(p)$ [15]. We define an equivalence relation on V by writing $p \sim q$ to mean $q \in N(p)$. The factor space V / \sim can be identified with the space of normal planes to V, say W. Also $N: V \rightarrow W$ is a covering map [15]. The generating frame of V at p is $\phi(p)=V \cap N(p)$. It can be shown that, for all $p, q \in V, \phi(p)$ is isometric to $\phi(q)$ [16]. If the cardinality of $\phi(p)$ is r, then V is called an r-transnormal manifold. The idea of transnormality was introduced and discussed by S.Robertson [15, 16], and then by B.Wegner [18, 19, 20]. For a survey article see [17].

A relatively new start of the work done on transnormality is due to K.Al-Banawi and S.Carter concerning transnormal curves [2] and transnormal partial tubes [3]. Then in [4, 6, 7], K.AlBanawi had introduced a study of the geometry of transnormal tori in \mathbb{R}^{4} regarding their focal points, generating polytopes and radii as tori are spherical partial tubes. In [9], A.Al-sariereh and K.Al-Banawi introduced an example of a transnormal partial tube around a non-transnormal manifold. In [8], K.Al-Banawi studied the order of transnormal manifolds in Euclidean spaces. Most recently, H.Al-Aroud and K.Al-Banawi deduced new results regarding transnormal surfaces in Euclidean spaces [1]. While K.Al-Banawi used Morse theory [12] in [5] to study transnormal embeddings of \mathbf{S}^{1}, here we use normal holonomy to build parallel transnormal curves in \mathbb{R}^{4} of different orders.

2 Normal Holonomy along Parallel Curves

Let $f: \mathbf{R} \longrightarrow \mathbb{R}^{\mathbf{n}}$ be a regular smooth curve in the Euclidean space \mathbb{R}^{n} with domain \mathbf{R}. Let $\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}$ be a frame field along f such that $\tau_{f}(t)=\nu_{0}(t)$ is the unit tangent of f at $f(t)$. The connection forms of the frame field of f are

$$
\begin{equation*}
\omega_{i j}=<\frac{d \nu_{i}}{d t}, \nu_{j}>, \quad i, j=0, \ldots, n-1 \tag{2.1}
\end{equation*}
$$

Since $\frac{d}{d t}<\nu_{i}, \nu_{j}>=0$, we have $<\frac{d \nu_{i}}{d t}, \nu_{j}>+<\nu_{i}, \frac{d \nu_{j}}{d t}>=0$. Thus, $\omega_{i j}+\omega_{j i}=0$, $i, j=0, \ldots, n-1$. In particular $\omega_{i i}=0, i=0, \ldots, n-1$.
The geometry of f is governed by the connection equations of the frame field of f, which are

$$
\begin{equation*}
\frac{d \nu_{i}}{d t}=\sum_{j=0}^{n-1} \omega_{i j} \nu_{j}, \quad i=0, \ldots, n-1 \tag{2.2}
\end{equation*}
$$

Let $N_{f}(t)=f(t)+\nu_{f}(t)$ be the affine normal plane of f at $f(t)$ where $\nu_{f}(t)$ is the normal vector space of f at $f(t)$.
Definition 2.1. [11] Let $f, g: \mathbf{R} \longrightarrow \mathbb{R}^{\mathbf{n}}$ be two regular smooth curves in \mathbb{R}^{n} with domain \mathbf{R} and affine normal planes N_{f} and N_{g}. Then f and g are parallel iff for all $t \in \mathbf{R}, N_{f}(t)=N_{g}(t)$.

A section S of the normal bundle of f is called parallel, with respect to the connection of f, if $\frac{d S}{d t}$ is tangential for all $t \in \mathbf{R}$. If $S=\sum_{j=1}^{n-1} \alpha_{j} \nu_{j}$, then $\frac{d S}{d t}=A \frac{d f}{d t}$ where A and α_{j}, $j=1, \ldots, n-1$, are functions of t.

Proposition 2.2. Let $f, g: \mathbf{R} \longrightarrow \mathbb{R}^{\mathbf{n}}$ be two regular smooth curves in \mathbb{R}^{n}. Then f and g are parallel iff $g-f$ is a parallel section of the normal bundle of f.
Proof. Let $S=g-f$. If f and g are parallel, then S is a section of the normal bundle of f and $\nu_{f}(t)=\nu_{g}(t)$ for all $t \in \mathbf{R}$. Hence $\tau_{f}(t)=\tau_{g}(t)$ for all $t \in \mathbf{R}$. Thus,

$$
\frac{d S}{d t}=\frac{d g}{d t}-\frac{d f}{d t}=\left(\frac{\left\|\frac{d g}{d t}\right\|}{\left\|\frac{d f}{d t}\right\|}-1\right) \frac{d f}{d t}
$$

Hence S is parallel. Conversely, if S is a parallel section of the normal bundle of f, then $\frac{d S}{d t}=A \frac{d f}{d t}$ where A is a function of t. Thus, $\frac{d g}{d t}=(A+1) \frac{d f}{d t}$, i.e. $\tau_{f}(t)=\tau_{g}(t)$, for all $t \in \mathbf{R}$. But S is a section of the normal bundle of f. Hence for all $t \in \mathbf{R}, N_{f}(t)=N_{g}(t)$, and so f and g are parallel .

A general proof for parallel immersions is in [19]. Proposition 2.2 suggests a method of constructing curves parallel to f using parallel sections of the normal bundle of f in a method usually called parallel transport [10].The local parallel sections of the normal bundle of f can be characterized as solutions of a linear system of ordinary differential equations. This is the idea of the next proposition.
Proposition 2.3. A section $S=\sum_{j=1}^{n-1} \alpha_{j} \nu_{j}$ of the normal bundle of f is parallel iff

$$
\begin{equation*}
\frac{d \alpha_{i}}{d t}=\sum_{j=1}^{n-1} \omega_{i j} \alpha_{j}, \quad i=1, \ldots, n-1 \tag{2.3}
\end{equation*}
$$

Proof. If S is parallel, then

$$
\sum_{j=1}^{n-1} \alpha_{j} \frac{d \nu_{j}}{d t}+\sum_{j=1}^{n-1} \frac{d \alpha_{j}}{d t} \nu_{j}=A \frac{d f}{d t}
$$

Thus,

$$
\sum_{j=1}^{n-1} \alpha_{j}<\frac{d \nu_{j}}{d t}, \nu_{i}>+\sum_{j=1}^{n-1} \frac{d \alpha_{j}}{d t}<\nu_{j}, \nu_{i}>=0, \quad i=1, \ldots, n-1
$$

So

$$
\sum_{j=1}^{n-1} \omega_{j i} \alpha_{j}+\frac{d \alpha_{i}}{d t}=0, \quad i=1, \ldots, n-1
$$

That is,

$$
\frac{d \alpha_{i}}{d t}=\sum_{j=1}^{n-1} \omega_{i j} \alpha_{j}, \quad i=1, \ldots, n-1
$$

Conversely, if $S=\sum_{j=1}^{n-1} \alpha_{j} \nu_{j}$ and $\frac{d \alpha_{i}}{d t}=\sum_{j=1}^{n-1} \omega_{i j} \alpha_{j}, i=1, \ldots, n-1$, then for $i=1, \ldots, n-$ 1 ,

$$
\begin{array}{rlr}
<\frac{d S}{d t}, \nu_{i}> & = & \sum_{j=1}^{n-1} \alpha_{j}<\frac{d \nu_{j}}{d t}, \nu_{i}>+\sum_{j=1}^{n-1} \frac{d \alpha_{j}}{d t}<\nu_{j}, \nu_{i}> \\
& = & \sum_{j=1}^{n-1} \alpha_{j} \omega_{j i}+\frac{d \alpha_{i}}{d t} \\
& = & \sum_{j=1}^{n-1} \omega_{j i} \alpha_{j}+\sum_{j=1}^{n-1} \omega_{i j} \alpha_{j}=0 \tag{2.6}
\end{array}
$$

Thus, $\frac{d S}{d t}$ is tangential. Hence S is parallel.
Recall that the notation $f:[a, b] \longrightarrow \mathbb{R}^{4}$ means that f is a differentiable map that is one to one on $[a, b)$ with $f(a)=f(b)$. The evaluation of the solution of the above system at $t_{0}+b-a$ for given initial conditions at t_{0} defines a linear isometry, the normal holonomy map

$$
h o l: N_{f}\left(t_{0}\right) \longrightarrow N_{f}\left(t_{0}+b-a\right)=N_{f}\left(t_{0}\right)
$$

which is orientation preserving. The idea of normal holonomy will be exploited in the form of rotation to construct transnormal curves parallel to a 2-transnormal curve in \mathbb{R}^{4}.

3 Transnormal Parallel Curves in \mathbb{R}^{4}

Let $f:[a, b] \longrightarrow \mathbb{R}^{4}$ be a smooth simple closed curve in \mathbb{R}^{4} with $\left\{\nu_{0}, \nu_{1}, \nu_{2}, \nu_{3}\right\}$ as a frame field along f such that $\tau_{f}(t)=\nu_{0}(t)$ is the unit tangent of f at $f(t)$. Assume that ν_{1} is parallel. Thus, $\nu=\alpha_{2} \nu_{2}+\alpha_{3} \nu_{3}$ is a parallel section of the normal bundle of f iff

$$
\begin{equation*}
\frac{d \alpha_{2}}{d t}=\omega_{23} \alpha_{3} \quad \text { and } \quad \frac{d \alpha_{3}}{d t}=\omega_{32} \alpha_{2} \tag{3.1}
\end{equation*}
$$

Since hol is an isometry, it is natural to set $\alpha_{2}=\cos \theta, \alpha_{3}=\sin \theta$. Thus,

$$
\frac{d \theta}{d t}=\omega_{32}
$$

and so

$$
\begin{equation*}
\theta(t)=\int_{a}^{t} \omega_{32} d t+\theta(a) \tag{3.2}
\end{equation*}
$$

This shows that the normal holonomy map of f is given by a rotation around ν_{1} from ν_{2} by the angle $\theta(b)-\theta(a)$. The angle $\theta(b)-\theta(a)$ is called the normal holonomy angle of f [13]. The angle $\theta(t)-\theta(a)$ is called the normal holonomy along f [14]. If f is 2-transnormal in \mathbb{R}^{4}, then normal holonomy allows the construction of transnormal curves parallel to f. The condition that ν_{1} is parallel is satisfied when $\nu_{1}\left(t_{1}\right)$ is chosen as

$$
\nu_{1}\left(t_{1}\right)=\frac{f\left(t_{1}^{*}\right)-f\left(t_{1}\right)}{\left\|f\left(t_{1}^{*}\right)-f\left(t_{1}\right)\right\|}
$$

where $f\left(t_{1}^{*}\right)$ is the opposite point of $f\left(t_{1}\right)$. The unit normal ν_{1} is parallel since

$$
\frac{d \nu_{1}}{d t}\left(t_{1}\right)=-\frac{2}{\left\|f\left(t_{1}^{*}\right)-f\left(t_{1}\right)\right\|} \frac{d f}{d t}\left(t_{1}\right) .
$$

Let

$$
\mathcal{S}=\left\{(f(t), \nu): t \in \mathbb{R}, \nu=\rho\left(\nu_{2} \cos \theta(t)+\nu_{3} \sin \theta(t)\right), \rho \in \mathbb{R}^{+} \cup\{0\}\right\} .
$$

Let

$$
\mathcal{S}^{\xi} f([a, b])=\{(f(t), \nu) \in \mathcal{S},\|\nu\|=\xi\}
$$

The next corollary is a special case of Lemma 1 in [3].
Corollary 3.1. Let $f:[a, b] \longrightarrow \mathbb{R}^{4}$ be a 2-transnormal curve in \mathbb{R}^{4} with $p^{*}=f\left(t^{*}\right)$ being the opposite point of $p=f(t), t, t^{*} \in[a, b]$. Then for all $\xi>0$ sufficiently small, $\eta \mid \mathcal{S}^{\xi} f([a, b])$ is an immersion and for all $p \in f([a, b])$, for all $(q, \nu) \in \mathcal{S}^{\xi} f([a, b]), \eta(q, \nu) \in N_{f}(p)$ iff $q \in\left\{p, p^{*}\right\}$.

The next theorem follows a method suggested by Wegner in [20].
Theorem 3.2. Let $f:[0,2 \pi] \longrightarrow \mathbb{R}^{4}$ be a 2 -transnormal curve in \mathbb{R}^{4} with $f\left(t_{1}+\pi\right)$ being the opposite point of $f\left(t_{1}\right), t_{1} \in[0,2 \pi]$. Assume that $\theta(t)=\frac{t}{r}$ is the normal holonomy along $f, r \in \mathbb{R}^{+}$. If r is rational, then there exists a transnormal embedding g in \mathbb{R}^{4} of finite order parallel to f. If r is irrational, then there exists an injective transnormal immersion g in \mathbb{R}^{4} of infinite order parallel to f.

Proof. By the above argument, the term $\nu=\nu_{2} \cos \frac{t}{r}+\nu_{3} \sin \frac{t}{r}$ is a parallel section of the normal bundle of f with $\omega_{32}=\frac{1}{r}$. Choose $\xi \in \mathbb{R}^{+}$as in Corollary 3.1, then

$$
\begin{equation*}
g=f+\xi\left(\nu_{2} \cos \frac{t}{r}+\nu_{3} \sin \frac{t}{r}\right) \tag{3.3}
\end{equation*}
$$

is an immersion in \mathbb{R}^{4} parallel to f. If r is rational, then $r=\frac{c}{d}, c, d \in \mathbf{N}$ with $\operatorname{gcd}(c, d)=1$. Thus, the holonomy angle of f is $\frac{2 \pi d}{c}$. Since $\operatorname{gcd}(c, d)=1$, the least natural number k satisfying the equation

$$
\begin{equation*}
k \times \frac{2 \pi d}{c} \equiv 0 \bmod 2 \pi \tag{3.4}
\end{equation*}
$$

is c. Hence the curve g joins up after c periods of f, i.e. the curve g is defined on $[0,2 \pi c]$. The point $g(0)$ lies on the ray containing $\nu_{2}(0)$ with a distance ξ from $f(0)$. Now for $i=1, \ldots, c$, the point $g(2 \pi i)$ on g is the result of the rotation of $g(0)$ about ν_{1} by an angle equal to $\frac{2 \pi i}{c}$. Such a point lies in the plane spanned by $\nu_{2}(0), \nu_{3}(0)$. The points $g(0)$ and $g(2 \pi c)$ coincide. Thus, if $t_{1} \in[0,2 \pi]$, then the plane spanned by $\nu_{2}\left(t_{1}\right), \nu_{3}\left(t_{1}\right)$ intersects g at c different points, namely $g\left(t_{1}+2 \pi i\right), i=0, \ldots, c-1$. The points are the vertices of a regular c-gon, and so they form a transitive set which lies on a circle centred at $f\left(t_{1}\right)$. Since f is 2-transnormal, then $N_{f}\left(t_{1}\right)$ also contains another set of points on g which are the vertices of another regular c-gon centred at $f\left(t_{1}+\pi\right)$. The points are $g\left(t_{1}+\pi+2 \pi i\right), i=0, \ldots, c-1$. If $g(t) \in N_{g}\left(t_{1}\right)$, then $g(t) \in N_{f}\left(t_{1}\right)$. By Corollary 1, $f(t)$ is either $f\left(t_{1}\right)$ or $f\left(t_{1}+\pi\right)$. Thus, if $\operatorname{Im}(g)$ is the image of g, then

$$
N_{g}\left(t_{1}\right) \cap \operatorname{Im}(g)=\cup_{i=0}^{c-1}\left\{g\left(t_{1}+2 \pi i\right), g\left(t_{1}+\pi+2 \pi i\right)\right\}
$$

The affine normal plane of g at all the above $2 c$ points is $N_{f}\left(t_{1}\right)=N_{g}\left(t_{1}\right)$. Hence g is a $2 c$ transnormal embedding in \mathbb{R}^{4}. If r is irrational, then the equation $k \times \frac{2 \pi}{r} \equiv 0 \bmod 2 \pi$ has no solution for all $k \in \mathbf{Z}-\{0\}$. Hence the curve g will not join up and

$$
N_{g}\left(t_{1}\right) \cap \operatorname{Im}(g)=\cup_{i=0}^{\infty}\left\{g\left(t_{1}+2 \pi i\right), g\left(t_{1}+\pi+2 \pi i\right)\right\}
$$

Again the affine normal plane of g at all the above points is $N_{f}\left(t_{1}\right)=N_{g}\left(t_{1}\right)$. Hence g is a transnormal immersion in \mathbb{R}^{4} of infinite order. The immersion g is injective on $[0, \infty)$.

It should be mentioned here that the proof of Theorem 3.2 gives a good choice of numbers to build transnormal curves of finite orders parallel to f. Simply, if $r=\frac{c}{d}, c, d \in \mathbf{N}$ with $\operatorname{gcd}(c, d)=1$, then the curve g is $2 c$-transnormal. Also it is assumed in the proof that $c \geq 3$. If $c=1$, the generating frame of g at $g\left(t_{1}\right)$ is $\left\{g\left(t_{1}\right), g\left(t_{1}+\pi\right)\right\}$. If $c=2$, the generating frame of g is the vertices of a tetrahedron. When $c \geq 3$, the generating frame of g at $g\left(t_{1}\right)$ is the vertices of two regular c-gons centred at $f\left(t_{1}\right), f\left(t_{1}+\pi\right)$. Since the two regular c-gons are contained in two parallel planes, the generating polytope of g is a regular right prism or a twisted regular right prism.

The curve in the next example is due to Wegner [20].
Example 3.3. Consider the embedding f of \mathbf{S}^{1} in \mathbb{R}^{4} defined by

$$
\begin{equation*}
f(t)=(\sin t, \cos t, R \sin 3 t, R \cos 3 t) \tag{3.5}
\end{equation*}
$$

where $0<R<\frac{1}{\sqrt{3}}$ and t is taken $\bmod 2 \pi$. The curve f is 2 -transnormal [20]. An orthonormal field along f is

$$
\begin{align*}
& \tau_{f}(t)=\frac{1}{\sqrt{1+9 R^{2}}}(\cos t,-\sin t, 3 R \cos 3 t,-3 R \sin 3 t) \tag{3.6}\\
& \nu_{1}(t)=-\frac{1}{\sqrt{1+R^{2}}}(\sin t, \cos t, R \sin 3 t, R \cos 3 t) \tag{3.7}\\
& \nu_{2}(t)=\frac{1}{\sqrt{1+9 R^{2}}}(-3 R \cos t, 3 R \sin t, \cos 3 t,-\sin 3 t) \tag{3.8}\\
& \nu_{3}(t)=\frac{1}{\sqrt{1+R^{2}}}(-R \sin t,-R \cos t, \sin 3 t, \cos 3 t) \tag{3.9}
\end{align*}
$$

with $\tau_{f}(t)$ being the unit tangent of f at $f(t)$.

The unit normal ν_{1} is parallel, and so $\omega_{12}=\omega_{21}=\omega_{13}=\omega_{31}=0$. Also

$$
\begin{gather*}
\frac{d \nu_{2}}{d t}=\frac{-3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} \nu_{3} \tag{3.10}\\
\frac{d \nu_{3}}{d t}=\frac{8 R}{\sqrt{1+R^{2}} \sqrt{1+9 R^{2}}} \tau_{f}+\frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} \nu_{2} \tag{3.11}
\end{gather*}
$$

Thus, $\omega_{32}=\frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}}$, and so the normal holonomy of f is $\theta_{R}(t)=\frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}}$, and the normal holonomy angle is $\frac{6 \pi \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}}$. Such an angle depends on R, and hence is denoted by θ_{R}. If $\nu=\alpha_{1} \nu_{1}+\alpha_{2} \nu_{2}+\alpha_{3} \nu_{3}$ is a parallel section of the normal bundle of f, then

$$
\begin{gather*}
\frac{d \alpha_{1}}{d t}=0 \tag{3.12}\\
\frac{d \alpha_{2}}{d t}=\frac{-3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} \alpha_{3} \tag{3.13}\\
\frac{d \alpha_{3}}{d t}=\frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} \alpha_{2} \tag{3.14}
\end{gather*}
$$

The general solution of the above system is

$$
\begin{gather*}
\alpha_{1}=\mu \tag{3.15}\\
\alpha_{2}=\xi \cos \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t+\bar{\xi} \sin \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t \tag{3.16}\\
\alpha_{3}=\xi \sin \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t-\bar{\xi} \cos \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t \tag{3.17}
\end{gather*}
$$

where $\xi, \bar{\xi}$ and μ are constants.
Let $\bar{\xi}=\mu=0$. A parallel section of the normal bundle of f is

$$
\nu=\xi\left(\nu_{2} \cos \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t+\nu_{3} \sin \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t\right)
$$

A parallel curve to f is defined by

$$
\begin{equation*}
g(t)=f(t)+\xi\left(\nu_{2}(t) \cos \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t+\nu_{3}(t) \sin \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t\right) \tag{3.18}
\end{equation*}
$$

where t is taken $\bmod 2 \pi$ and ξ as in Corollary 1. The curve g is parallel to f since

$$
\frac{d g}{d t}=\left(1+\frac{8 \xi R}{\left(1+9 R^{2}\right) \sqrt{1+R^{2}}} \sin \frac{3 \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}} t\right) \frac{d f}{d t}
$$

It is possible to construct transnormal curves parallel to f of different orders by choosing suitable values of R. To construct a $2 r$-transnormal curve, $r \geq 1$, consider the equation

$$
\begin{equation*}
\frac{6 \pi \sqrt{1+R^{2}}}{\sqrt{1+9 R^{2}}}=\frac{2 \pi k}{r} \tag{3.19}
\end{equation*}
$$

where $k \in \mathbf{N}$ and $\operatorname{gcd}(k, r)=1$. The last equation reduces to

$$
\begin{equation*}
R^{2}=\frac{9 r^{2}-k^{2}}{9 k^{2}-9 r^{2}} \tag{3.20}
\end{equation*}
$$

Since $0<R^{2}<\frac{1}{3}, k$ is chosen such that $\sqrt{3} r<k<3 r$. But $\operatorname{gcd}(3 r-1, r)=1$ and for $r \geq 1$, $\sqrt{3} r<3 r-1<3 r$. Thus, choose $k=3 r-1$, and so

$$
\begin{equation*}
R=\frac{1}{3} \sqrt{\frac{6 r-1}{(4 r-1)(2 r-1)}} \tag{3.21}
\end{equation*}
$$

If $r=1$, then $k=2, R=\frac{1}{3} \sqrt{\frac{5}{3}}, \theta_{\frac{1}{3} \sqrt{\frac{5}{3}}}=4 \pi$ and g is also 2-transnormal.
A suitable odd multiple of π can serve as a holonomy angle of f, which leads to a 4transnormal curve parallel to f. In this case $r=2, k=5$, and hence $R=\frac{1}{3} \sqrt{\frac{11}{21}}, \theta_{\frac{1}{3} \sqrt{\frac{11}{21}}}=5 \pi$. The curve is

$$
\begin{equation*}
g(t)=f(t)+\xi\left(\nu_{2}(t) \cos \frac{5}{2} t+\nu_{3}(t) \sin \frac{5}{2} t\right) \tag{3.22}
\end{equation*}
$$

where f, ν_{2} and ν_{3} are the ones with $R=\frac{1}{3} \sqrt{\frac{11}{21}}$ and $t \in[0,4 \pi]$.
The curve is 4-transnormal with the generating frame

$$
\{g(t), g(t+\pi), g(t+2 \pi), g(t+3 \pi)\}
$$

For a 6-transnormal curve parallel to $f, r=3, k=8$, and so $R=\frac{1}{3} \sqrt{\frac{17}{55}}, \theta_{\frac{1}{3} \sqrt{\frac{17}{55}}}=\frac{16 \pi}{3}$. The curve is

$$
\begin{equation*}
g(t)=f(t)+\xi\left(\nu_{2}(t) \cos \frac{8}{3} t+\nu_{3}(t) \sin \frac{8}{3} t\right) \tag{3.23}
\end{equation*}
$$

where f, ν_{2} and ν_{3} are the ones with $R=\frac{1}{3} \sqrt{\frac{17}{55}}$ and $t \in[0,6 \pi]$.
The curve is 6 -transnormal with the generating frame

$$
\{g(t), g(t+\pi), \ldots, g(t+5 \pi)\}
$$

For an 8-transnormal curve parallel to $f, r=4, k=11$, and so $R=\frac{1}{3} \sqrt{\frac{23}{105}}, \theta_{\frac{1}{3}} \sqrt{\frac{23}{105}}=\frac{11 \pi}{2}$. The curve is

$$
\begin{equation*}
g(t)=f(t)+\xi\left(\nu_{2}(t) \cos \frac{11}{4} t+\nu_{3}(t) \sin \frac{11}{4} t\right) \tag{3.24}
\end{equation*}
$$

where f, ν_{2} and ν_{3} are the ones with $R=\frac{1}{3} \sqrt{\frac{23}{105}}$ and $t \in[0,8 \pi]$.
The curve is 8 -transnormal with the generating frame

$$
\{g(t), g(t+\pi), \ldots, g(t+7 \pi)\}
$$

In general, for any $r \geq 2$, the curve

$$
\begin{equation*}
g(t)=f(t)+\xi\left(\nu_{2}(t) \cos \frac{3 r-1}{r} t+\nu_{3}(t) \sin \frac{3 r-1}{r} t\right) \tag{3.25}
\end{equation*}
$$

where f, ν_{2} and ν_{3} are the ones with $R=\frac{1}{3} \sqrt{\frac{6 r-1}{(4 r-1)(2 r-1)}}$ and $t \in[0,2 \pi r]$, is a $2 r$-transnormal curve parallel to f with a holonomy angle $\frac{2 \pi(3 r-1)}{r}$.

If R is chosen such that the holonomy angle θ_{R} is an irrational multiple of 2π, then the equation

$$
\begin{equation*}
k \theta_{R} \equiv 0 \bmod 2 \pi \tag{3.26}
\end{equation*}
$$

has no solution for all $k \in \mathbf{Z}-\{0\}$, and so the result will be an injective immersion of \mathbb{R} into \mathbb{R}^{4} having an infinite order of transnormalilty. As an example, if $R=\frac{1}{3}$, then $\theta_{\frac{1}{3}}=2 \sqrt{5} \pi$ and the curve which is parallel to f is of infinite order of transnormality.

References

[1] H. Al-Aroud and K. Al-Banawi, On transnormal surfaces in the Euclidean space, Sci.Int.(Lahore) 34(1), 13-15 (2022).
[2] K. Al-Banawi and S. Carter, Generating frames of transnormal curves, Soochow Journal of Mathematics 30(3), 261-268 (2004).
[3] K. Al-Banawi and S. Carter, Transnormal partial tubes, Contributions to Algebra and Geometry 46(2), 575-580 (2005).
[4] K. Al-Banawi, Focal points of 4-transnormal tori in \mathbb{R}^{4}, Georgian Mathematical Journal 16(2), 211-218 (2009).
[5] K. Al-Banawi, Morse theory on transnormal embeddings of \mathbf{S}^{m}, Applied Mathematical Sciences 7(107), 5311-5319 (2013).
[6] K. Al-Banawi, Generating polytopes of transnormal tori in \mathbb{R}^{4}, European Journal of Scientific Research 116(2), 214-220 (2013).
[7] K. Al-Banawi, On the radius of a transnormal spherical partial tube, Applied Mathematical Sciences $\mathbf{8}$ (17), 809-816 (2014).
[8] K. Al-Banawi, Order of transnormal manifolds in Euclidean spaces, Proceedings of the 8th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM2021), 179-184 (2021).
[9] A. Al-Sariereh and K. Al-Banawi, A transnormal partial tube around a non-transnormal manifold, World Applied Sciences Journal 34(7), 865-870 (2016).
[10] M. P.Do Carmo, Differential Geometry of Curves and Surfaces (Revised Second Edn), Dover Publications, New York (2016).
[11] H. R. Farran and S. A. Robertson, Parallel immersions in Euclidean space, J.London Math. Soc. 35(2), 527-538 (1987).
[12] J. Milnor, Morse Theory, Princeton Univ. Press, New Jersey (1963).
[13] B. O'Neill, Elementary Differential Geometry (Revised Second Edn), Academic Press, London (2006).
[14] J. Oprea, Differential Geometry and its Applications, Prentice-Hall, New Jersey (1997).
[15] S. A. Robertson, Generalised constant width for manifolds, Michigan Math. J. 11, 97-105 (1964).
[16] S. A. Robertson, On transnormal manifolds, Topology 6, 117-123 (1967).
[17] S. A. Robertson, Curves of constant width and transnormality, Bull. L.M.S. 16, 264-274 (1984).
[18] B. Wegner, Einige bemerkungen zur geometrie transnormaler mannigfaltigkeiten, J.Differential Geom. 16, 93-100 (1981).
[19] B. Wegner, Some remarks on parallel immersions, Coll. Math. Soc. J. Bolyai 56, 707-717 (1989/1991).
[20] B. Wegner, Self parallel and transnormal curves, Geom.Dedicata 38, 175-191 (1991).

Author information

Kamal A.S. Al-Banawi, Department of Mathematics and Statistics, Mu'tah University, Al-Karak, P.O.Box 7, Jordan.
E-mail: kbanawi@mutah.edu. jo
Received: 2023-01-02
Accepted: 2023-08-20

