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Abstract In this paper we study normal holonomy along transnormal curves in R4. The idea
of normal holonomy will be exploited in the form of rotation to construct transnormal curves
parallel to a 2-transnormal curve in R4.

1 Introduction

Let M be a smooth (C∞) connected m-manifold without boundary and let f : M −→ Rn be a
smooth embedding of M into Rn. Let V = f(M). Through each point p ∈ V there passes a
unique m-plane TpV tangent to V at p and a unique (n−m)-plane NpV normal to V at p. Thus,
there are maps T and N with T (p) = TpV and N(p) = NpV . The m-manifold V is transnormal
in Rn iff ∀p, q ∈ V , if q ∈ N(p), then N(q) = N(p) [15]. We define an equivalence relation on
V by writing p ∼ q to mean q ∈ N(p). The factor space V/ ∼ can be identified with the space
of normal planes to V , say W . Also N : V → W is a covering map [15]. The generating frame
of V at p is ϕ(p) = V ∩ N(p). It can be shown that, for all p, q ∈ V , ϕ(p) is isometric to ϕ(q)
[16]. If the cardinality of ϕ(p) is r, then V is called an r-transnormal manifold. The idea of
transnormality was introduced and discussed by S.Robertson [15, 16], and then by B.Wegner
[18, 19, 20]. For a survey article see [17].

A relatively new start of the work done on transnormality is due to K.Al-Banawi and S.Carter
concerning transnormal curves [2] and transnormal partial tubes [3]. Then in [4, 6, 7], K.Al-
Banawi had introduced a study of the geometry of transnormal tori in R4 regarding their focal
points, generating polytopes and radii as tori are spherical partial tubes. In [9], A.Al-sariereh
and K.Al-Banawi introduced an example of a transnormal partial tube around a non-transnormal
manifold. In [8], K.Al-Banawi studied the order of transnormal manifolds in Euclidean spaces.
Most recently, H.Al-Aroud and K.Al-Banawi deduced new results regarding transnormal sur-
faces in Euclidean spaces [1]. While K.Al-Banawi used Morse theory [12] in [5] to study
transnormal embeddings of S1, here we use normal holonomy to build parallel transnormal
curves in R4 of different orders.

2 Normal Holonomy along Parallel Curves

Let f : R −→ Rn be a regular smooth curve in the Euclidean space Rn with domain R. Let
{ν0, . . . , νn−1} be a frame field along f such that τf (t) = ν0(t) is the unit tangent of f at f(t).
The connection forms of the frame field of f are

ωij =<
dνi
dt

, νj >, i, j = 0, . . . , n− 1 (2.1)

Since d
dt < νi, νj >= 0, we have < dνi

dt , νj > + < νi,
dνj

dt >= 0. Thus, ωij + ωji = 0,
i, j = 0, . . . , n− 1. In particular ωii = 0, i = 0, . . . , n− 1.
The geometry of f is governed by the connection equations of the frame field of f , which are

dνi
dt

=
n−1∑
j=0

ωijνj , i = 0, . . . , n− 1 (2.2)
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Let Nf (t) = f(t)+νf (t) be the affine normal plane of f at f(t) where νf (t) is the normal vector
space of f at f(t).

Definition 2.1. [11] Let f, g : R −→ Rn be two regular smooth curves in Rn with domain R
and affine normal planes Nf and Ng. Then f and g are parallel iff for all t ∈ R, Nf (t) = Ng(t).

A section S of the normal bundle of f is called parallel, with respect to the connection of
f , if dS

dt is tangential for all t ∈ R. If S =
∑n−1

j=1 αjνj , then dS
dt = Adf

dt where A and αj ,
j = 1, . . . , n− 1, are functions of t.

Proposition 2.2. Let f, g : R −→ Rn be two regular smooth curves in Rn. Then f and g are
parallel iff g − f is a parallel section of the normal bundle of f .

Proof. Let S = g − f . If f and g are parallel, then S is a section of the normal bundle of f and
νf (t) = νg(t) for all t ∈ R. Hence τf (t) = τg(t) for all t ∈ R. Thus,

dS

dt
=

dg

dt
− df

dt
= (

||dgdt ||
||dfdt ||

− 1)
df

dt
.

Hence S is parallel. Conversely, if S is a parallel section of the normal bundle of f , then
dS
dt = Adf

dt where A is a function of t. Thus, dg
dt = (A + 1)dfdt , i.e. τf (t) = τg(t), for all

t ∈ R. But S is a section of the normal bundle of f . Hence for all t ∈ R, Nf (t) = Ng(t), and so
f and g are parallel . 2

A general proof for parallel immersions is in [19]. Proposition 2.2 suggests a method of
constructing curves parallel to f using parallel sections of the normal bundle of f in a method
usually called parallel transport [10].The local parallel sections of the normal bundle of f can
be characterized as solutions of a linear system of ordinary differential equations. This is the
idea of the next proposition.

Proposition 2.3. A section S =
∑n−1

j=1 αjνj of the normal bundle of f is parallel iff

dαi

dt
=

n−1∑
j=1

ωijαj , i = 1, . . . , n− 1 (2.3)

Proof. If S is parallel, then

n−1∑
j=1

αj
dνj
dt

+
n−1∑
j=1

dαj

dt
νj = A

df

dt
.

Thus,
n−1∑
j=1

αj <
dνj
dt

, νi > +
n−1∑
j=1

dαj

dt
< νj , νi >= 0, i = 1, . . . , n− 1.

So
n−1∑
j=1

ωjiαj +
dαi

dt
= 0, i = 1, . . . , n− 1.

That is,
dαi

dt
=

n−1∑
j=1

ωijαj , i = 1, . . . , n− 1.

Conversely, if S =
∑n−1

j=1 αjνj and dαi

dt =
∑n−1

j=1 ωijαj , i = 1, . . . , n−1, then for i = 1, . . . , n−
1,

<
dS

dt
, νi >=

∑n−1
j=1 αj <

dνj

dt , νi > +
∑n−1

j=1
dαj

dt < νj , νi > (2.4)

=
∑n−1

j=1 αjωji +
dαi

dt (2.5)

=
∑n−1

j=1 ωjiαj +
∑n−1

j=1 ωijαj = 0 (2.6)
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Thus, dS
dt is tangential. Hence S is parallel. 2

Recall that the notation f : [a, b] −→ R4 means that f is a differentiable map that is one to
one on [a, b) with f(a) = f(b). The evaluation of the solution of the above system at t0 + b− a
for given initial conditions at t0 defines a linear isometry, the normal holonomy map

hol : Nf (t0) −→ Nf (t0 + b− a) = Nf (t0),

which is orientation preserving. The idea of normal holonomy will be exploited in the form of
rotation to construct transnormal curves parallel to a 2-transnormal curve in R4.

3 Transnormal Parallel Curves in R4

Let f : [a, b] −→ R4 be a smooth simple closed curve in R4 with {ν0, ν1, ν2, ν3} as a frame field
along f such that τf (t) = ν0(t) is the unit tangent of f at f(t). Assume that ν1 is parallel. Thus,
ν = α2ν2 + α3ν3 is a parallel section of the normal bundle of f iff

dα2

dt
= ω23α3 and

dα3

dt
= ω32α2 (3.1)

Since hol is an isometry, it is natural to set α2 = cos θ, α3 = sin θ. Thus,

dθ

dt
= ω32,

and so

θ(t) =

∫ t

a

ω32dt+ θ(a) (3.2)

This shows that the normal holonomy map of f is given by a rotation around ν1 from ν2 by
the angle θ(b)− θ(a). The angle θ(b)− θ(a) is called the normal holonomy angle of f [13]. The
angle θ(t)− θ(a) is called the normal holonomy along f [14]. If f is 2-transnormal in R4, then
normal holonomy allows the construction of transnormal curves parallel to f . The condition that
ν1 is parallel is satisfied when ν1(t1) is chosen as

ν1(t1) =
f(t∗1)− f(t1)

||f(t∗1)− f(t1)||

where f(t∗1) is the opposite point of f(t1). The unit normal ν1 is parallel since

dν1

dt
(t1) = − 2

||f(t∗1)− f(t1)||
df

dt
(t1).

Let
S = {(f(t), ν) : t ∈ R, ν = ρ(ν2 cos θ(t) + ν3 sin θ(t)), ρ ∈ R+ ∪ {0}}.

Let
Sξf([a, b]) = {(f(t), ν) ∈ S, ||ν|| = ξ}.

The next corollary is a special case of Lemma 1 in [3].

Corollary 3.1. Let f : [a, b] −→ R4 be a 2-transnormal curve in R4 with p∗ = f(t∗) being the
opposite point of p = f(t), t, t∗ ∈ [a, b]. Then for all ξ > 0 sufficiently small, η|Sξf([a, b]) is an
immersion and for all p ∈ f([a, b]), for all (q, ν) ∈ Sξf([a, b]), η(q, ν) ∈ Nf (p) iff q ∈ {p, p∗}.

The next theorem follows a method suggested by Wegner in [20].

Theorem 3.2. Let f : [0, 2π] −→ R4 be a 2-transnormal curve in R4 with f(t1 + π) being
the opposite point of f(t1), t1 ∈ [0, 2π]. Assume that θ(t) = t

r is the normal holonomy along
f , r ∈ R+. If r is rational, then there exists a transnormal embedding g in R4 of finite order
parallel to f . If r is irrational, then there exists an injective transnormal immersion g in R4 of
infinite order parallel to f .
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Proof. By the above argument, the term ν = ν2 cos t
r +ν3 sin t

r is a parallel section of the normal
bundle of f with ω32 =

1
r . Choose ξ ∈ R+ as in Corollary 3.1, then

g = f + ξ(ν2 cos
t

r
+ ν3 sin

t

r
) (3.3)

is an immersion in R4 parallel to f . If r is rational, then r = c
d , c, d ∈ N with gcd(c, d) = 1.

Thus, the holonomy angle of f is 2πd
c . Since gcd(c, d) = 1, the least natural number k satisfying

the equation

k × 2πd
c

≡ 0 mod 2π (3.4)

is c. Hence the curve g joins up after c periods of f , i.e. the curve g is defined on [0, 2πc]. The
point g(0) lies on the ray containing ν2(0) with a distance ξ from f(0). Now for i = 1, . . . , c,
the point g(2πi) on g is the result of the rotation of g(0) about ν1 by an angle equal to 2πi

c . Such
a point lies in the plane spanned by ν2(0), ν3(0). The points g(0) and g(2πc) coincide. Thus,
if t1 ∈ [0, 2π], then the plane spanned by ν2(t1), ν3(t1) intersects g at c different points, namely
g(t1 + 2πi) , i = 0, . . . , c − 1. The points are the vertices of a regular c-gon, and so they form
a transitive set which lies on a circle centred at f(t1). Since f is 2-transnormal, then Nf (t1)
also contains another set of points on g which are the vertices of another regular c-gon centred at
f(t1+π). The points are g(t1+π+2πi) , i = 0, . . . , c−1. If g(t) ∈ Ng(t1), then g(t) ∈ Nf (t1).
By Corollary 1, f(t) is either f(t1) or f(t1 + π). Thus, if Im(g) is the image of g, then

Ng(t1) ∩ Im(g) = ∪c−1
i=0 {g(t1 + 2πi), g(t1 + π + 2πi)}.

The affine normal plane of g at all the above 2c points is Nf (t1) = Ng(t1). Hence g is a 2c-
transnormal embedding in R4. If r is irrational, then the equation k × 2π

r ≡ 0 mod 2π has no
solution for all k ∈ Z− {0}. Hence the curve g will not join up and

Ng(t1) ∩ Im(g) = ∪∞
i=0{g(t1 + 2πi), g(t1 + π + 2πi)}.

Again the affine normal plane of g at all the above points is Nf (t1) = Ng(t1). Hence g is a
transnormal immersion in R4 of infinite order. The immersion g is injective on [0,∞). 2

It should be mentioned here that the proof of Theorem 3.2 gives a good choice of numbers
to build transnormal curves of finite orders parallel to f . Simply, if r = c

d , c, d ∈ N with
gcd(c, d) = 1, then the curve g is 2c-transnormal. Also it is assumed in the proof that c ≥ 3. If
c = 1, the generating frame of g at g(t1) is {g(t1), g(t1 + π)}. If c = 2, the generating frame of
g is the vertices of a tetrahedron. When c ≥ 3, the generating frame of g at g(t1) is the vertices
of two regular c-gons centred at f(t1),f(t1 + π). Since the two regular c-gons are contained in
two parallel planes, the generating polytope of g is a regular right prism or a twisted regular right
prism.

The curve in the next example is due to Wegner [20].

Example 3.3. Consider the embedding f of S1 in R4 defined by

f(t) = (sin t, cos t, R sin 3t, R cos 3t) (3.5)

where 0 < R < 1√
3

and t is taken mod 2π. The curve f is 2-transnormal [20].
An orthonormal field along f is

τf (t) =
1√

1 + 9R2
(cos t,− sin t, 3R cos 3t,−3R sin 3t), (3.6)

ν1(t) = − 1√
1 +R2

(sin t, cos t, R sin 3t, R cos 3t), (3.7)

ν2(t) =
1√

1 + 9R2
(−3R cos t, 3R sin t, cos 3t,− sin 3t), (3.8)

ν3(t) =
1√

1 +R2
(−R sin t,−R cos t, sin 3t, cos 3t) (3.9)

with τf (t) being the unit tangent of f at f(t).
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The unit normal ν1 is parallel, and so ω12 = ω21 = ω13 = ω31 = 0. Also

dν2

dt
=

−3
√

1 +R2
√

1 + 9R2
ν3 (3.10)

dν3

dt
=

8R√
1 +R2

√
1 + 9R2

τf +
3
√

1 +R2
√

1 + 9R2
ν2 (3.11)

Thus, ω32 = 3
√

1+R2√
1+9R2 , and so the normal holonomy of f is θR(t) = 3

√
1+R2√

1+9R2 t, and the normal

holonomy angle is 6π
√

1+R2√
1+9R2 . Such an angle depends on R, and hence is denoted by θR.

If ν = α1ν1 + α2ν2 + α3ν3 is a parallel section of the normal bundle of f , then

dα1

dt
= 0 (3.12)

dα2

dt
=

−3
√

1 +R2
√

1 + 9R2
α3 (3.13)

dα3

dt
=

3
√

1 +R2
√

1 + 9R2
α2 (3.14)

The general solution of the above system is

α1 = µ (3.15)

α2 = ξ cos
3
√

1 +R2
√

1 + 9R2
t+ ξ̄ sin

3
√

1 +R2
√

1 + 9R2
t (3.16)

α3 = ξ sin
3
√

1 +R2
√

1 + 9R2
t− ξ̄ cos

3
√

1 +R2
√

1 + 9R2
t (3.17)

where ξ,ξ̄ and µ are constants.
Let ξ̄ = µ = 0. A parallel section of the normal bundle of f is

ν = ξ(ν2 cos
3
√

1 +R2
√

1 + 9R2
t+ ν3 sin

3
√

1 +R2
√

1 + 9R2
t).

A parallel curve to f is defined by

g(t) = f(t) + ξ(ν2(t) cos
3
√

1 +R2
√

1 + 9R2
t+ ν3(t) sin

3
√

1 +R2
√

1 + 9R2
t) (3.18)

where t is taken mod 2π and ξ as in Corollary 1. The curve g is parallel to f since

dg

dt
= (1 +

8ξR
(1 + 9R2)

√
1 +R2

sin
3
√

1 +R2
√

1 + 9R2
t)
df

dt
.

It is possible to construct transnormal curves parallel to f of different orders by choosing
suitable values of R. To construct a 2r-transnormal curve, r ≥ 1, consider the equation

6π
√

1 +R2
√

1 + 9R2
=

2πk
r

(3.19)

where k ∈ N and gcd(k, r) = 1. The last equation reduces to

R2 =
9r2 − k2

9k2 − 9r2 (3.20)

Since 0 < R2 < 1
3 , k is chosen such that

√
3r < k < 3r. But gcd(3r − 1, r) = 1 and for r ≥ 1,√

3r < 3r − 1 < 3r. Thus, choose k = 3r − 1, and so

R =
1
3

√
6r − 1

(4r − 1)(2r − 1)
(3.21)



6 Kamal A.S. Al-Banawi

If r = 1, then k = 2, R = 1
3

√
5
3 , θ 1

3

√
5
3
= 4π and g is also 2-transnormal.

A suitable odd multiple of π can serve as a holonomy angle of f , which leads to a 4-

transnormal curve parallel to f . In this case r = 2, k = 5, and hence R = 1
3

√
11
21 , θ 1

3

√
11
21
= 5π.

The curve is
g(t) = f(t) + ξ(ν2(t) cos

5
2
t+ ν3(t) sin

5
2
t) (3.22)

where f, ν2 and ν3 are the ones with R = 1
3

√
11
21 and t ∈ [0, 4π].

The curve is 4-transnormal with the generating frame

{g(t), g(t+ π), g(t+ 2π), g(t+ 3π)}.

For a 6-transnormal curve parallel to f , r = 3, k = 8, and so R = 1
3

√
17
55 , θ 1

3

√
17
55

= 16π
3 . The

curve is
g(t) = f(t) + ξ(ν2(t) cos

8
3
t+ ν3(t) sin

8
3
t) (3.23)

where f, ν2 and ν3 are the ones with R = 1
3

√
17
55 and t ∈ [0, 6π].

The curve is 6-transnormal with the generating frame

{g(t), g(t+ π), . . . , g(t+ 5π)}.

For an 8-transnormal curve parallel to f , r = 4, k = 11, and so R = 1
3

√
23

105 , θ 1
3

√
23

105
= 11π

2 . The
curve is

g(t) = f(t) + ξ(ν2(t) cos
11
4
t+ ν3(t) sin

11
4
t) (3.24)

where f, ν2 and ν3 are the ones with R = 1
3

√
23

105 and t ∈ [0, 8π].
The curve is 8-transnormal with the generating frame

{g(t), g(t+ π), . . . , g(t+ 7π)}.

In general, for any r ≥ 2, the curve

g(t) = f(t) + ξ(ν2(t) cos
3r − 1

r
t+ ν3(t) sin

3r − 1
r

t) (3.25)

where f, ν2 and ν3 are the ones with R = 1
3

√
6r−1

(4r−1)(2r−1) and t ∈ [0, 2πr], is a 2r-transnormal

curve parallel to f with a holonomy angle 2π(3r−1)
r .

If R is chosen such that the holonomy angle θR is an irrational multiple of 2π, then the
equation

kθR ≡ 0 mod 2π (3.26)

has no solution for all k ∈ Z−{0}, and so the result will be an injective immersion of R into R4

having an infinite order of transnormalilty. As an example, if R = 1
3 , then θ 1

3
= 2

√
5π and the

curve which is parallel to f is of infinite order of transnormality.
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