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Abstract A complete characterization of the unit group U(FqG) of the group algebra FqG of
non–abelian group G of order 27 with exponent 3 over any finite field Fq is obtained.

1 Introduction

Let FG denotes the group algebra of the group G over the finite field F, U(FG) denote the unit
group of the group algebra FG. It is well known that by using Wedderburn-Malcev theorem ([1],
p.491), we have

U(FG) ∼= (1 + J(FG))⋊ U( FG
J(FG)

).

Thus a nice description of Wedderburn decomposition of FG
J(FG) is always very helpful to deter-

mine unit group of FG. See [2] for further details of the group algebras.
Determination of the unit group of group algebras has been always very fascinating and

challenging. A lot of work has been done in finding the algebraic structure of the unit group of the
group algebra FG([3]–[21]). In 2010, Gildea[22] determined the unit group of group algebra
F3k(C3 × D6). Again in 2011, Gildea([23]– [24]) determined unit group of group algebras
F2k(C2 ×D8) and F3k(C2

3 ⋊C2). In [25], we have characterized a possible unit group of group
algebra FpnS5, if p > 5. In this paper, we have characterized completely the unit group of the
group algebra Fq((Z3 × Z3) ⋊ Z3) for any finite field Fq, where Zn is the multiplicative group
of integral modulo n and H ⋊K denotes the semidirect product with H normal.

There are certain techniques to find the decomposition of group algebra FqG, when field char-
acteristic does not divide the order of the group. In this paper we use Ferraz[26] techniques.
Sandling[27] completely solved the problem to determine the unit group of group algebra FqG,
in case group G is finite abelian p-group. When group G is non-abelian, there are many papers
in the literature devoted to particular p-groups G, but the problem is not understood in full gen-
erality. Even if F be finite field, having p elements for some prime p, and G is a p-group, it is
certainly not easy to describe the unit group of the modular group algebra FG. The Modular Iso-
morphism Problem which asks whether non-isomorphic p-groups have always non-isomorphic
p-modular group algebras is still open problem.

Units of group rings are of paramount importance from an application point of view. Hurley
[28] establishes a relationship between the ring of matrices and group rings. Additionally,
Hurley [29] and Dholakia [30] provide a method for constructing convolution codes using units
from group rings. To obtain the derivation of rings, refer to the references [31] through [33].

We compute the disjoint conjugacy classes of (Z3 ×Z3)⋊Z3. There are 11 of them. For this,
we have used the presentation of (Z3 × Z3)⋊Z3 given by

(Z3 × Z3)⋊Z3 = {a, b, c : a3 = b3 = c3 = e, ab = ba, ac = ca, cb = abc}.

The 11 conjugacy classes of the group (Z3 × Z3)⋊Z3 are given as follows:
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[e], [a], [a2],

[b] = {b, ab, a2b},

[b2] = {b2, ab2, a2b2},

[c] = {c, ac, a2c},
[bc] = {bc, cb, acb},

[c2] = {c2, ac2, a2c2},

[b2c] = {b2c, ab2c, cb2},

[bc2] = {bc2, abc2, c2b},

[b2c2] = {b2c2, c2b2, ac2b2}.

2 Preliminaries

Throughout this paper, we denote a finite field with q = pn elements as F = Fq, and G represents
a finite group.

We utilize results from Ferraz’s work [26].
An element x ∈ G is termed as p-regular if p ∤ o(x), where o(x) denotes the order of the

element x. Let s be the least common multiple (l.c.m.) of the orders of the p-regular elements of
G, and θ be a primitive s-th root of unity over F. We define the multiplicative group TG,F as:

TG,F = {t | θ → θt is an automorphism of F(θ) over F}.

For p-regular elements g, which we denote as γg, we consider the sum of all conjugates of g
in G. The cyclotomic F-class of γg will be denoted by the set:

SF(γg) = {γgt | t ∈ TG,F}.

The following will be necessary for our discussion.

Proposition 2.1. [26] The number of simple components of FG
J(FG) is equal to the number of

cyclotomic F-classes in G.

Proposition 2.2. [26] Suppose the Galois group Gal(F(θ) : F) is cyclic and t be the number
of cyclotomic F−classes in G. If K1,K2, · · ·,Kt are the simple components of Z( FG

J(FG)) and
S1, S2, · · ·, St are the cyclotomic F−classes of G, then |Si| = [Ki : F] with a suitable ordering
of the indices.

Proposition 2.3. [2] (Perlis Walker) Let G be a finite abelian group of order n, and K be a field
such that char(K) ∤ n. Then

KG ∼= ⊕d/nadK(ζd)

where ζd denotes a primitive root of unity of order d, ad = nd

[K(ζd):K] , and nd denotes the number
of elements of order d.

Proposition 2.4. ([34], p.110) Let N be a normal subgroup of G such that G/N is p-solvable. If
|G/N | = npa where (p, n) = 1 then

J(FG)p
a

⊆ FG · J(FN) ⊆ J(FG)

In particular, if G is p-solvable of order npa where (p, n) = 1, then

J(FG)p
a

= 0.
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Proposition 2.5. ([2], Proposition 3.6.11) Let FG be a semisimple group algebra. If G
′

denotes
the commutator subgroup of G, then we can write

FG ∼= FGe
G

′ ⊕△(G,G
′
),

where FGe
G

′
∼= F( G

G′ ) is the sum of all commutative simple components of FG and △(G,G
′
) is

the sum of all the others. Here eG′ = Ĝ′

|G′ | where Ĝ′ is the sum of all elements of G
′
.

3 The Structure of U(Fq((Z3 × Z3) ⋊ Z3)), p ̸= 3.

Lemma 3.1. Let q = pn, where p ̸= 3 is a prime. The Wedderburn decomposition of Fq(Z3×Z3)
is given as follows:

Table 1.
Condition on n Wedderburn decomposition of Fq(Z3 × Z3)

n is even Fq ⊕ 8Fq

n is odd with p ≡ 1 mod 3 Fq ⊕ 8Fq

n is odd with p ≡ −1 mod 3 Fq ⊕ 4Fq2

Proof. When n is even, pn ≡ 1 mod 3, i.e., 3 | (pn − 1). This implies that the field Fq has a
primitive third root of unity. Therefore, by Proposition 2.3, we have

Fq(Z3 × Z3) ∼= Fq ⊕ 8Fq

Now, let n be odd. We divide this case into two subcases:
(1) p ≡ 1 mod 3 and (2) p ≡ −1 mod 3.
Subcase 1. If p ≡ 1 mod 3 and n is odd, then pn ≡ 1 mod 3. This implies that the field Fq

has a primitive third root of unity, and hence, by Proposition 2.3, we have

Fq(Z3 × Z3) ∼= Fq ⊕ 8Fq.

Subcase 2. If p ≡ −1 mod 3 and n is odd, then pn ̸≡ 1 mod 3. In this case, the field Fq

doesn’t have a primitive third root of unity, and hence, again by Proposition 2.3, we have

Fq(Z3 × Z3) ∼= Fq ⊕ 4Fq(ω)

where ω /∈ Fq is a third root of unity. Now, by using the simple fact that Fq(ω) ∼= Fq2 , we
have the lemma.

Theorem 3.2. Let q = pn, p ̸= 3 be a prime. The Wedderburn decomposition of Fq((Z3 ×Z3)⋊
Z3) is given as follows:

Table 2.
condition on n Wedderburn decomposition of Fq((Z3 × Z3)⋊Z3)

n is even Fq ⊕ 8Fq ⊕M3(Fq)⊕M3(Fq)

n is odd with p ≡ 1 mod 3 Fq ⊕ 8Fq ⊕M3(Fq)⊕M3(Fq)

n is odd with p ≡ −1 mod 3 Fq ⊕ 4Fq2 ⊕M3(Fq2)

Proof. Observe that Fq((Z3×Z3)⋊Z3)
Fq((Z3×Z3)⋊Z3)′

∼= Fq(C3 ×C3), as ((Z3 ×Z3)⋊Z3)′ ∼= C3 ×C3, where C3

denotes a cyclic group of order 3. Also, |(Z3 × Z3)⋊ Z3| = 27 = 33. Hence, the group algebra
Fq((Z3 × Z3) ⋊ Z3) is semi-simple, as p ∤ |G|. Here, q = pn, with p ̸= 3. By Proposition 2.5,
we have

Fq((Z3×Z3)⋊Z3) = Fq((Z3×Z3)⋊Z3)e((Z3×Z3)⋊Z3)′⊕Fq((Z3×Z3)⋊Z3)(((Z3×Z3)⋊Z3)
′−1))
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where e((Z3×Z3)⋊Z3)′ = e(C3×C3) =
̂(C3×C3)′

|C3×C3| =
∑

σ∈(C3×C3)
σ

9 , and

Fq((Z3×Z3)⋊Z3)e((Z3×Z3)⋊Z3)′ = sum of all commutative simple components of Fq((Z3×Z3)⋊Z3)

However,

Fq((Z3×Z3)⋊Z3)e((Z3×Z3)⋊Z3)
′ ∼= Fq(

((Z3 × Z3)⋊Z3)

((Z3 × Z3)⋊Z3)
′ ) ∼= Fq(C3×C3) ∼= Fq⊕8Fq or Fq⊕4Fq2 .

This gives the Wedderburn decomposition

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 8Fq ⊕
2∑

i=1

Mni(Fqki )

or

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 4Fq2 ⊕
2∑

i=1

Mni(Fqki )

for ni ≥ 2.
We divide the proof in two cases.
Case 1: When n is even and pn ≡ 1 mod 3, i.e., the field Fq contains a primitive third root

of unity. In this case, we have

SFq(γg) = {γg} for each group element g,

which means
|SFq(γg)| = 1

for each g ∈ (Z3 × Z3)⋊Z3. This leads to the conclusion

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 8Fq ⊕
2∑

i=1

Mni
(Fq),

by Lemma 3.1. By dimension constraints, we have

dimFq
(Fq((Z3 × Z3)⋊Z3)) = 1 + 8 + n2

1 + n2
2,

27 = 1 + 8 + n2
1 + n2

2,

18 = n2
1 + n2

2.

This equation has only one solution, namely, n1 = 3 and n2 = 3. Hence, in this case, we have

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 8Fq ⊕M3(Fq)⊕M3(Fq).

Case 2: Let n be odd. We further divide this case into two subcases:

(i) p ≡ 1 mod 3.

(ii) p ≡ −1 mod 3.

Subcase 1: If p ≡ 1 mod 3, and n is odd, observe that

SFq(γg) = {γg} for each group element g,

which means
|SFq(γg)| = 1
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for each g ∈ (Z3 × Z3) ⋊ Z3. Again, as p ≡ 1 mod 3 and n is odd, we have pn ≡ 1 mod 3,
indicating that the field Fq contains a primitive third root of unity. Thus, as in Case 1 when n is
even, by the above lemma, we obtain

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 8Fq ⊕M3(Fq)⊕M3(Fq).

Subcase 2: When p ≡ −1 mod 3 and n is odd, we have

SFq(γe) = {γe} i.e. |SFq(γe)| = 1,

SFq(γa) = {γa, γa2} i.e. |SFq(γa)| = 2,

SFq(γb) = {γb, γb2} i.e. |SFq(γb)| = 2,

SFq(γc) = {γc, γc2} i.e. |SFq(γc)| = 2,

SFq(γbc) = {γbc, γb2c2} i.e. |SFq(γbc)| = 2,

SFq(γb2c)
= {γb2c, γbc2} i.e. |SFq(γb2c)

| = 2,

That is, in this subcase, we have 2 = |Si| = |Ki : F| in Proposition 2.2 for i ̸= 1. Again, since
p ≡ −1 mod 3 and n is odd, so pn ̸≡ 1 mod 3. By using the above lemma, we have

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 4Fq2 ⊕Mn1(Fq2).

Equating dimensions on both sides, we have

dimFq
(Fq((Z3 × Z3)⋊Z3)) = 1 + 4 · 2 + 2n2

1,

27 = 9 + 2n2
1,

18 = 2n2
1.

The only possible solution to the equation is n1 = 3.
Hence, in this subcase, we have

Fq((Z3 × Z3)⋊Z3) ∼= Fq ⊕ 4Fq2 ⊕M3(Fq2).

Corollary 3.3. Let q = pn, where p > 3 be a prime, then U(Fq((Z3 ×Z3)⋊Z3)) i.e. unit group
of the group ring Fq((Z3 × Z3)⋊Z3) is given as follows :

Table 3.
condition on n U(Fq((Z3 × Z3)⋊Z3))

n is even F∗
q × 8F∗

q ×GL3(Fq)×GL3(Fq)

n is odd with p ≡ 1 mod 3 F∗
q × 8F∗

q ×GL3(Fq)×GL3(Fq)

n is odd with p ≡ −1 mod 3 F∗
q × 4F∗

q2 ×GL3(Fq2)

Proof. Proof is simple application of the fact that for any two ring R1 and R2, U(R1 ⊕ R2) =
U(R1)× U(R2).
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4 The Structure of U(Fq((Z3 × Z3) ⋊ Z3)), q = 3n.

If Fq is a finite field of characteristic p, and G is a finite p-group, then the Jacobson radi-
cal is the same as the augmentation ideal, and hence the dimension of the Jacobson radical,
dimFq

J(FqG) = |G| − 1. We have the following results.

Theorem 4.1. Let q = 3n, then Fq((Z3×Z3)⋊Z3)
J(Fq((Z3×Z3)⋊Z3))

∼= Fq.

Proof. An element x ∈ (Z3 ×Z3)⋊Z3 is 3-regular if 3 ∤ o(x). In our group under consideration,
the only 3-regular element is the identity element, denoted as e. Hence by Proposition 2.1, we
have Fq((Z3×Z3)⋊Z3)

J((Z3×Z3)⋊Z3))
∼= Fq.

Lemma 4.2. ([34], p.321) If the group M(p) is defined as

M(p) = ⟨a, b, c | ap = bp = cp = 1, ab = ba, ac = ca, cb = abc⟩,

then the index of nilpotency of J(FpmM(p)) is 4p− 3.

Theorem 4.3. Let q = 3n and G = (Z3 ×Z3)⋊Z3. Then U(FqG) ∼= (1+J(FqG))⋊F∗
q , where

1 + J(FqG) is a non-abelian group of exponent 9.

Proof. By Theorem 4.1, we have U( FqG
J(FqG))

∼= F∗
q . As G is non-abelian, bc ̸= cb for some

b, c ∈ G. Then, b − 1 and c − 1 are elements of the augmentation ideal ∆(G) ⊆ J(FqG).
Therefore, b = b− 1 + 1 and c = c− 1 + 1 are two non-commutating elements of 1 + J(FqG).
This proves that 1 + J(FqG) is non-abelian.

Since the group G is 3-solvable, by Proposition 2.4, we have (1 + J(FqG))27 = 1, which
means that the exponent of 1 + J(FqG) is 3, 9, or 27. Now, using Lemma 4.2, we find that the
index of nilpotency of J(FqG), 4p− 3 = 9, and hence the group 1+ J(FqG) is of exponent 3 or
9.

Observe that b− 1 ∈ J(FqG), so cb− c ∈ J(FqG), and

(cb− c)2 = (cb)2 − cbc− c2b+ c2

(cb− c)3 = 1 − (cb)2c− cbc2b+ cbc2 − c2bcb+ c2bc+ b− 1

= −b2 − ab2 + ab− a2b2 + a2b+ b ̸= 0.

This shows that 1 + J(FqG) is a non-abelian subgroup of U(FqG) with an exponent of 9.

5 The Structure of U(Fq((Zp × Zp) ⋊ Zp)), q = pn.

In this section, we generalize the result from the previous section to the group (Zp × Zp)⋊ Zp.
This group is a semidirect product of the groups Zp × Zp and Zp, where p is an arbitrary odd
prime. It has the following presentation:

(Zp × Zp)⋊Zp = ⟨a, b, c | ap = bp = cp = e, ab = ba, ac = ca, cb = abc⟩.

Theorem 5.1. Let q = pn and G = (Zp × Zp)⋊Zp for an odd prime p. Then FqG
J(FqG)

∼= Fq.

Proof. An element x ∈ G is p-regular if p ∤ o(x). Such an element is the identity element e
only, as each non-identity element of G is of order p. Therefore, FqG

J(FqG) has only one simple

component with dimension 1, i.e., FqG
J(FqG)

∼= Fq as dimFqG = p3 − 1 over Fq.

Theorem 5.2. Let q = pn and G = (Zp × Zp) ⋊ Zp for an odd prime p. Then U(FqG) ∼=
(1+ J(FqG))⋊F∗

q , where 1+ J(FqG) is a non-abelian subgroup of U(Fq(G)) with exponent p
or p2.
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Proof. By Theorem 5.1, we have U( FqG
J(FqG))

∼= F∗
q . As G is non-abelian, bc ̸= cb for some

b, c ∈ G. Now, b − 1 and c − 1 are elements of the augmentation ideal ∆(G) ⊆ J(FqG).
Therefore, b = b− 1 + 1 and c = c− 1 + 1 are two non-commutating elements of 1 + J(FqG).
This proves that 1 + J(FqG) is non-abelian.

Since the group G is p-solvable, by Proposition 2.4, we have (1 + J(FqG))p
3
= 1. This

implies that the exponent of 1 + J(FqG) is pi, where 1 ≤ i ≤ 3. However, Lemma 4.2 states
that the index of nilpotency of J(FqG) is equal to 4p− 3, and since p < 4p− 3 ≤ p2 for an odd
prime p, the exponent of 1 + J(FqG) is equal to p or p2. This proves the theorem.
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