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Abstract Let d be a positive integer, which is not a perfect square. Then, we determine
the form of d in which the period length of the continued fraction of

√
d is three. Using these

results, we express all positive integer solutions of the Pell equations x2 − dy2 = ±1,±4 in the
generalized Fibonacci and Lucas sequences.

1 Introduction

Let d be a positive integer, which is not a perfect square. The quadratic Diophantine equation
of the form

x2 − dy2 = ±1

and

x2 − dy2 = ±4

are called a Pell equation (see [1, 2, 3, 4]). For f, g ∈ Z (f ̸= 0, g ̸= 0, f2 + 4g2 > 0), we define
the generalized Fibonacci sequences Un(f, g) and the generalized Lucas sequences Vn(f, g) as
follows (see[6, 7]):

U0(f, g) = 0, U1(f, g) = 1, Un+1(f, g) = fUn(f, g) + gUn−1(f, g),

V0(f, g) = 2, V1(f, g) = f, Vn+1(f, g) = fVn(f, g) + gVn−1(f, g).

Jones [2] considered positive integer solutions of the Pell equations in the case of d = k2 ± 1
and k2 ± 4 and showed that all positive integer solutions of the equations x2 − dy2 = ±1,±4
can be expressed by the generalized Fibonacci sequences and the generalized Lucas sequences.
Keskin-Güney [5] gave the continued fractions of

√
d for these integers d and gave another proof

of the results of Jones [2].
In this paper, we consider positive integer solutions of the Pell equations x2 − dy2 = ±1, x2 −
dy2 = ±4 when the period length of the continued fraction of

√
d is three. The following are the

main results of this paper.

Theorem 1.1. Let d be a positive integer. Assume that there exist positive integers k and a
satisfying

a < k, d = k2 +
4ak + 1
4a2 + 1

.

Let (f, g) = (2k(4a2 + 1) + 4a, 1).
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(i) All positive integer solutions of the equation x2 − dy2 = 1 are given by

(xn, yn) =

(
1
2
V2n(f, g), (4a2 + 1)U2n(f, g)

)
with n ≥ 1.

(ii) All positive integer solutions of the equation x2 − dy2 = −1 are given by

(xn, yn) =

(
1
2
V2n−1(f, g), (4a2 + 1)U2n−1(f, g)

)
with n ≥ 1.

Theorem 1.2. Let d be a positive integer. Assume that there exist positive integers k and a
satisfying

a < k, d = k2 +
4ak + 1
4a2 + 1

.

Let (f, g) = (2k(4a2 + 1) + 4a, 1).

(i) All positive integer solutions of the equation x2 − dy2 = 4 are given by

(xn, yn) = (V2n(f, g), 2(4a2 + 1)U2n(f, g))

with n ≥ 1.

(ii) All positive integer solutions of the equation x2 − dy2 = −4 are given by

(xn, yn) = (V2n−1(f, g), 2(4a2 + 1)U2n−1(f, g))

with n ≥ 1.

This thesis is organized as follows: Section 2 review the primary results of continued fractions
and Pell equations. In section 3, we determine a positive integer d such that the period length of
the continued fraction of

√
d is three. In section 4, we prove Theorem 1.1 and Theorem 1.2.

2 PRELIMINARIES

Definition 2.1. Let α be a real number. A continued fraction of α is an expression of the form

α = a0 +
1

a1 +
1

a2 + . . .

. (a0 ∈ Z, a1, a2, . . . ∈ N)

This fraction is denoted by

α = [a0, a1, a2, . . .].

Then ⌊α⌋ = a0, where ⌊x⌋ is a floor function of x.

Lemma 2.2. Let d be a positive integer, which is not a perfect square. Then, the continued
fraction of

√
d is expressed by

√
d = [a0, a1, . . . , an, . . . ].

Then there exists a positive integer l satisfying
√
d = [a0, a1, . . . , al, a1, . . . , al, a1, . . . ].
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We use the notation
√
d = [a0, a1, . . . , al]

as a convenient abbreviation. The natural number l = l(
√
d) is called the period length of

√
d.

Lemma 2.3. Let d be a positive integer which is not perfect square.

(1) The continued fraction of
√
d can be expressed in the form
√
d = [a0, a1, a2, . . . , al−1, 2a0].

(2) The periodic terms of the continued fraction of
√
d are palindrome. That means

[a0, a1, a2, . . . , al−1, 2a0] = [a0, al−1, al−2, . . . , a1, 2a0].

Definition 2.4. Let
√
d = [a0, a1, a2, . . . ], then the nth convergent of

√
d is given by

pn
qn

= [a0, a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an−1 +
1
an

with n ≥ 0.

Next, we explain how to solve Pell equations using continued fractions.

Definition 2.5. Let d be a positive integer, which is not a perfect square. Then the equations

x2 − dy2 = ±1,±4

are called Pell equations.

Definition 2.6. Let the pair of integers (a, b) be a solution of the Pell equation. If both a and b
are positive, (a, b) is called a positive integer solution of the Pell equation x2 − dy2 = ±1,±4.
Also, if a+ b

√
d is the least possible value in solutions of Pell equations, then (a, b) is called the

fundamental solution.

First, we consider the fundamental solution of the equations x2 − dy2 = ±1.

Lemma 2.7. Let l(
√
d) = l.

(1) If l is even, then

(1-i) The fundamental solution of the equation x2 − dy2 = 1 is given by (pl−1, ql−1).

(1-ii) The equation x2 − dy2 = −1 has no integer solution.

(2) If l is odd, then
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(2-i) The fundamental solution of the equation x2 − dy2 = 1 is given by (p2l−1, q2l−1).

(2-ii) The fundamental solution of the equation x2 − dy2 = −1 is given by (pl−1, ql−1).

Next, we consider the fundamental solution of the equations x2 − dy2 = ±4.

Lemma 2.8. Let d ≡ 2, 3 (mod 4) or d ≡ 1 (mod 8). The positive integer solutions of the
equations x2 − dy2 = ±1 and x2 − dy2 = ±4 have a one-to-one correspondence by (a, b) 7→
(2a, 2b). In this correspondence, the fundamental solution of the equations x2 − dy2 = ±1
corresponds to the fundamental solution of the equations x2 − dy2 = ±4.

Lemma 2.9. Let d ≡ 5 (mod 8). Let ϵ be the fundamental unit of the ring of integer Z[ 1+
√
d

2 ]. If
ϵ ∈ Z[

√
d], then ϵ is the fundamental unit of Z[

√
d]. If ϵ ̸∈ Z[

√
d], then ϵ3 is the fundamental unit

of Z[
√
d].

It is known that there is a one-to-one correspondence between the unit of Z[
√
d] and the solution

of the equations x2 − dy2 = ±1. In particular, the fundamental unit of Z[
√
d] corresponds to the

fundamental solution of the equations x2 − dy2 = ±1.

Remark 2.10. Let ϵ in Lemma 2.9 be denoted by

ϵ = a+ b
1 +

√
d

2
=

(2a+ b) + b
√
d

2

where a, b ∈ Z. If 2a + b is even, then b is even. Also, If 2a + b is odd, then b is odd. Thus, if
both 2a+ b and b are odd, then

s+ t
√
d = ϵ3 ∈ Z[

√
d]

where (s, t) is the fundamental solution of the equations x2 − dy2 = ±1. Also, if both 2a + b
and b are even, then

s+ t
√
d = ϵ ∈ Z[

√
d]

where (s, t) is the fundamental solution of the equations x2 − dy2 = ±1.

If the fundamental solutions of the Pell equations exist, then all positive integer solutions are
given by the fundamental solution.

Theorem 2.11. Let (x1, y1) be the fundamental solution of the equation x2 − dy2 = 1. Then all
positive integer solutions to the equation x2 − dy2 = 1 are given by

xn + yn
√
d = (x1 + y1

√
d)n

with n ≥ 1.

Theorem 2.12. Let (x1, y1) be the fundamental solution of the equation x2 − dy2 = −1. Then
all positive integer solutions to the equation x2 − dy2 = −1 are given by

xn + yn
√
d = (x1 + y1

√
d)2n−1

with n ≥ 1. Also, the fundamental solution (x
′

1, y
′

1) of the equation x2 − dy2 = 1 is given by

x
′

1 + y
′

1

√
d =

(
x1 + y1

√
d
)2

.
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We consider the positive integer solutions of the equations x2 − dy2 = ±4.

Theorem 2.13. Let (x1, y1) be the fundamental solution of the equation x2 − dy2 = 4. Then all
positive integer solutions to the equation x2 − dy2 = 4 are given by

xn + yn
√
d =

(x1 + y1
√
d)n

2n−1

with n ≥ 1.

Theorem 2.14. Let (x1, y1) be the fundamental solution of the equation x2 − dy2 = −4. Then
all positive integer solutions to the equation x2 − dy2 = −4 are given by

xn + yn
√
d =

(x1 + y1
√
d)2n−1

4n−1

with n ≥ 1. Also, the fundamental solution (x
′

1, y
′

1) of the equation x2 − dy2 = 4 is given by

x
′

1 + y
′

1

√
d

2
=

(
x1 + y1

√
d

2

)2

.

Next, we review the properties of the generalized Fibonacci sequence and the generalized Lucas
sequence.

Definition 2.15. Let f, g ∈ Z (f ̸= 0, g ̸= 0, f2 + 4g > 0). The generalized Fibonacci sequence
{Un(f, g)} is defined by

U0(f, g) = 0, U1(f, g) = 1, Un+1(f, g) = fUn(f, g) + gUn−1(f, g)

for n ≥ 1, and the generalized Lucas sequence {Vn(f, g)} is defined by

V0(f, g) = 2, V1(f, g) = f, Vn+1(f, g) = fVn(f, g) + gVn−1(f, g)

for n ≥ 1, respectively.

Lemma 2.16. Let

α =
f +

√
f2 + 4g
2

, β =
f −

√
f2 + 4g
2

in Definition 2.15. Then, we obtain

Un(f, g) =
αn − βn

α− β
, Vn(f, g) = αn + βn.

For more information about continued fractions, Pell equations, and generalized Fibonacci and
Lucas sequence, one can consult [1], [3], and [4].

3 The period length of the continued fraction is three

In this section, we consider the period length of the continued fraction is 3.

Lemma 3.1. If l(
√
d) = 3, then the continued fraction of

√
d is [k, 2a, 2a, 2k] with k, a ∈ N.
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Proof. The continued fraction of
√
d is [k, s, t, 2k] with s, t ∈ N. Thus, we get

√
d = k +

1

s+
1

t+
1

2k + (
√
d− k)

.

Therefore, we obtain

(std− stk2 + d− sk − k2 − tk − 1) + (s− t)
√
d = 0. (3.1)

Hence, by {1,
√
d} is linearly independent, s = t holds. Thus, we get

d = k2 +
2sk + 1
s2 + 1

,

since equation (3.1). Also, by the fraction part is an integer, s is even. Hence, Lemma 3.1
holds.

We determine the positive integer d such that l(
√
d) = 3 since Lemma 3.1.

Theorem 3.2. l(
√
d) = 3 if and only if there exist positive integers k and a satisfying

a < k, d = k2 +
4ak + 1
4a2 + 1

.

Proof. Assume l(
√
d) = 3. Then,

√
d = [k, 2a, 2a, 2k] follows from Lemma 3.1. Thus, we get

√
d = k +

1

2a+
1

2a+
1

2k +
√
d− k

.

By the above equation, we get d = k2 + 4ak+1
4a2+1 . Also, 4ak + 1 ≥ 4a2 + 1 follows from d is a

positive integer. Therefore, we obtain k ≥ a. If k = a, l(
√
d) = 1, which is a contradiction.

Hence, k > a.
Now, assume that positive integers k and a satisfying a < k, d = k2+ 4ak+1

4a2+1 . Then, by k2+ 4ak+1
4a2+1

is a positive integer, we get k ≡ a (mod 4a2 +1). So, we obtain k = (4a2 +1)n+a with n ∈ N.
Thus,

√
d = k +

1√
d+ k

d− k2

= k +
1√
d+ k

4an+ 1

(3.2)

follows from ⌊
√
d⌋ = k. Then, we obtain

⌊
√
d+ k⌋ = 2k = 8a2n+ 2n+ 2a = 2a(4an+ 1) + 2n.

By 2n < 4an+ 1, we obtain⌊√
d+ k

d− k2

⌋
=

⌊ √
d+ k

4an+ 1

⌋
= 2a.

Next, we get
√
d+ k

d− k2 = 2a+

( √
d+ k

4an+ 1
− 2a

)
= 2a+

1
4an+ 1√

d− (4a2n− n+ a)

.
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Also,

4an+ 1√
d− (4a2n− n+ a)

=
(4an+ 1)(

√
d+ 4a2n− n+ a)

d− (4a2n− n+ a)2 =

√
d+ 4a2n− n+ a

4an+ 1
(3.3)

holds. Hence, by

⌊
√
d+ 4a2n− n+ a⌋ = k + 4a2n− n+ a = 2a(4an+ 1),

we get ⌊
4an+ 1√

d− (4a2n− n+ a)

⌋
=

⌊√
d+ 4a2n− n+ a

4an+ 1

⌋
= 2a.

Since equation (3.3), we obtain

4an+ 1√
d− (4a2n− n+ a)

= 2a+

(√
d+ 4a2n− n+ a

4an+ 1
− 2a

)
= 2a+

1
4an+ 1√
d− k

.

Moreover, we get

4an+ 1√
d− k

=
(4an+ 1)(

√
d+ k)

4ak + 1
4a2 + 1

=
√
d+ k.

By ⌊
√
d+ k⌋ = 2k, we obtain

√
d+ k = 2k + (

√
d+ k − 2k) = 2k +

1√
d+ k

d− k2

.

So, we obtain
√
d = [k, 2a, 2a, 2k] by the above equation and equation (3.2). From the assump-

tion, a ̸= k holds. Therefore, the proof follows.

Theorem 3.3. The equivalent holds.

l(
√
d) = 3 ⇐⇒ d = ((4a2 + 1)x+ a)2 + 4ax+ 1 (∃a,∃x ∈ N).

Proof. It was proven by Theorem 3.2.

Lemma 3.4. If l(
√
d) = 3, then 4 ∤ d.

Proof. Positive integers k and a exist from Theorem 3.2 satisfying a < k, d = k2 + 4ak+1
4a2+1 .

Assume 4 | d. We obtain

d = k2 +
4ak + 1
4a2 + 1

≡ 0 (mod 4).

So, we get

k2(4a2 + 1) + (4ak + 1) ≡ 0 (mod 4).

Thus, k2 ≡ 3 (mod 4). However, the congruence is a contradictory since x2 ≡ 0, 1 (mod 4)
with x ∈ N. Hence, the proof follows.
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4 Solutions of the Pell equations

First, we consider positive integer solutions of Pell equations x2 − dy2 = ±1 at l(
√
d) = 3. In

this section, we assume l(
√
d) = 3. Then, positive integers k and a satisfying

a < k, d = k2 +
4ak + 1
4a2 + 1

exist. Note that l(
√
d) is odd; x2 − dy2 = 1 and x2 − dy2 = −1 have positive integer solutions.

Theorem 4.1. The fundamental solution (x1, y1) of the equation x2 − dy2 = −1 is given by

x1 + y1
√
d = (k(4a2 + 1) + 2a) + (4a2 + 1)

√
d.

Proof. Let pn

qn
be the nth convergent of

√
d. By l(

√
d) = 3, x1 + y1

√
d = p2 + q2

√
d follows

from Lemma 2.7. Therefore, we get a conclusion from

p2

q2
= k +

1

2a+
1

2a

=
k(4a2 + 1) + 2a

4a2 + 1
.

Theorem 4.2. The fundamental solution (x1, y1) to the equation x2 − dy2 = 1 is given by

x1 + y1
√
d = ((k(4a2 + 1) + 2a) + (4a2 + 1)

√
d)2.

Proof. This Theorem holds by Theorem 2.12, 4.1.

We show that the generalized Fibonacci and Lucas sequences can express all positive integer
solutions of the equations x2 − dy2 = ±1.

Theorem 4.3. Let (f, g) = (2k(4a2 + 1) + 4a, 1).

(i) All positive integer solutions of the equation x2 − dy2 = 1 are given by

(xn, yn) =

(
1
2
V2n(f, g), (4a2 + 1)U2n(f, g)

)
with n ≥ 1.

(ii) All positive integer solutions of the equation x2 − dy2 = −1 are given by

(xn, yn) =

(
1
2
V2n−1(f, g), (4a2 + 1)U2n−1(f, g)

)
with n ≥ 1.

Proof. By Theorem 2.11, 2.12, 4.1, 4.2, all positive integer solutions of the equations x2−dy2 =
±1 are given by

xn + yn
√
d = ((k(4a2 + 1) + 2a) + (4a2 + 1)

√
d)n

with n ≥ 1. Note that if n is even, then the equation becomes the solution of the equation
x2 −dy2 = 1. If n is odd, then the equation becomes the solution of the equation x2 −dy2 = −1.
Now, we set

α = (k(4a2 + 1) + 2a) + (4a2 + 1)
√
d,

β = (k(4a2 + 1) + 2a)− (4a2 + 1)
√
d.
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Then, we get αn = xn + yn
√
d, βn = xn − yn

√
d. Therefore, we obtain

xn =
αn + βn

2
, yn =

αn − βn

2
√
d

.

Now, let

(f, g) = (2k(4a2 + 1) + 4a, 1).

Then, we obtain

xn =
αn + βn

2
=

1
2
Vn(f, g),

yn = (4a2 + 1)
αn − βn

α− β
= (4a2 + 1)Un(f, g).

Next, we consider positive integer solutions of the Pell equations x2 − dy2 = ±4 at l(
√
d) = 3.

Note that both x2 − dy2 = 4 and x2 − dy2 = −4 have positive integer solutions where l(
√
d) is

odd.

Lemma 4.4. If d ≡ 5 (mod 8) and l(
√
d) = 3, then both x and y of the fundamental solution of

the equation x2 − dy2 = −4 are even.

Proof. Let

ϵ = p+ q
1 +

√
d

2
=

(2p+ q) + q
√
d

2
(p, q ∈ Z)

be the fundamental unit of the ring of integer Z[ 1+
√
d

2 ]. Then, (2p + q, q) is the fundamental
solution of the equation x2 − dy2 = −4. Now, we assume both 2p+ q and q are odd. By Lemma
2.9, ϵ3 ∈ Z[

√
d] is the fundamental solution of the equation x2−dy2 = −1. Therefore, we obtain

ϵ3 =
(2p+ q)3 + 3(2p+ q)q2d+ (3(2p+ q)2q + q3d)

√
d

8
. (4.1)

By ϵ3 = (k(4a2 + 1)+ 2a)+ (4a2 + 1)
√
d, we get m = dq2−1

4 with m ∈ N. Since equation (4.1)
and (2p+ q)2 − dq2 = −4, we get

2p+ q =
k(4a2 + 1) + 2a

2m
, q =

4a2 + 1
2m− 1

.

Particularly,

2m− 1 | 4a2 + 1. (4.2)

These equations are substituted for the equation x2 − dy2 = −4. We obtain

(4a2 + 1)2(4m− 1)k2 + 4a(4a2 + 1)(4m− 1)k

+4(4a2m− a2 +m2 − 4m2(2m− 1)2) = 0.

By the quadratic formula, we get

k =
−4a(4a2 + 1)(4m− 1)±

√
D

2(4a2 + 1)2(4m− 1)
.

Hence, we obtain

D = 16m2(4a2 + 1)2(4m− 1)2(4m− 3).
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Since D is a square number, 4m− 3 becomes a square number. 4m− 3 is odd; we set 4m− 3 =
(2s− 1)2 with s ∈ N. Now, m = s2 − s+ 1. These equations are substituted for the equation of
k; we obtain

k =
2(−a±m(2s− 1))

4a2 + 1
.

By k > 0, the equation becomes

k =
2(−a+m(2s− 1))

4a2 + 1
. (4.3)

(i) Let a = 1, we get m = 1, 3. Assume m = 1, then k = 0 since s = 1, which is unsuitable.
Assume m = 3, then k = 16

5 since s = 2 which is unsuitable.

(ii) Let a > 1 and m = 1, we get s = 1. Then, the equation becomes −a + m(2s − 1) =
−a+ 1 < 0 which is unsuitable.

(iii) Let a > 1 and m > 1, we get s > 1. By equation (4.2), (4.3), we get

2m− 1 | −a+m(2s− 1).

Now, since

(2m− 1) = (2s2 − 2s+ 1),

−a+m(2s− 1) = 2s3 − 3s2 + 3s− 1 − a,

we obtain 2s2 − 2s+ 1 | 2s3 − 3s2 + 3s− 1 − a. Also,

2s3 − 3s2 + 3s− 1 − a

2s2 − 2s+ 1
= s− s2 − 2s+ 1 + a

2s2 − 2s+ 1

is a positive integer. So,

s2 − 2s+ 1 + a ≥ 2s2 − 2s+ 1

holds by 2s2 − 2s + 1 | s2 − 2s + 1 + a. Thus, we get a ≥ s2 = m + (s − 1). Also, we
found a > m and a > s− 1. Therefore, we obtain

−a+m(2s− 1) < −a+ a(2s− 1) = 2a(s− 1) < 2a2 < 4a2 + 1

and k < 2. However, if k = 1, i.e., a = 1, this result is unsuitable by (i).

Thus, there is a contradiction in all of the cases (i), (ii), (iii). Therefore, both 2p+ q and q are
even.

Condition l(
√
d) = 3 is vital in Lemma 4.4. For instance, if d = 5, then

√
5 = [2, 4] and l(

√
5) =

1. The fundamental solution (x, y) of the equation x2 − 5y2 = −4 becomes (x, y) = (1, 1).

Theorem 4.5. The fundamental solution (x1, y1) of the equation x2 − dy2 = −4 is given by

x1 + y1
√
d = 2(k(4a2 + 1) + 2a) + 2(4a2 + 1)

√
d.

Proof. Since l(
√
d) = 3 and Lemma 3.4, we get d ≡ 1, 2, 3 (mod 4). Also, by Theorem 4.1, the

fundamental solution of the equation x2−dy2 = −1 is given by (k(4a2+1)+2a)+(4a2+1)
√
d.

So, from Lemma 2.8, 4.4 and Remark 2.10, the fundamental solution of the equation x2 −dy2 =
−4 is given by

x1 + y1
√
d = 2(k(4a2 + 1) + 2a) + 2(4a2 + 1)

√
d.
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Theorem 4.6. The fundamental solution (x1, y1) of the equation x2 − dy2 = 4 is given by

x1 + y1
√
d = 2((k(4a2 + 1) + 2a) + (4a2 + 1)

√
d)2.

Proof. This Theorem holds by Theorem 2.14, 4.5.

Finally, we express all positive integer solutions of the equations x2 − dy2 = ±4 by the general-
ized Fibonacci and Lucas sequences when l(

√
d) = 3.

Theorem 4.7. Let (f, g) = (2k(4a2 + 1) + 4a, 1).

(i) All positive integer solutions of the equation x2 − dy2 = 4 are given by

(xn, yn) = (V2n(f, g), 2(4a2 + 1)U2n(f, g))

with n ≥ 1.

(ii) All positive integer solutions of the equation x2 − dy2 = −4 are given by

(xn, yn) = (V2n−1(f, g), 2(4a2 + 1)U2n−1(f, g))

with n ≥ 1.

Proof. By Theorem 2.13, 2.14, 4.5, 4.6, all positive integer solutions of the equations x2−dy2 =
±4 are given by

xn + yn
√
d = 2((k(4a2 + 1) + 2a) + (4a2 + 1)

√
d)n

with n ≥ 1. Note that if n is even, then the equation becomes the solution of the equation
x2 −dy2 = 4. If n is odd, then the equation becomes the solution of the equation x2 −dy2 = −4.
Now, we set

α = (k(4a2 + 1) + 2a) + (4a2 + 1)
√
d,

β = (k(4a2 + 1) + 2a)− (4a2 + 1)
√
d.

Then, we get 2αn = xn + yn
√
d, 2βn = xn − yn

√
d. Therefore, we obtain

xn = αn + βn, yn =
αn − βn

√
d

.

Now, let

(f, g) = (2k(4a2 + 1) + 4a, 1).

Then, we obtain

xn = αn + βn = Vn(f, g),

yn = 2(4a2 + 1)
αn − βn

α− β
= 2(4a2 + 1)Un(f, g).
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