A VARIANT OF S-1-ABSORBING PRIMENESS

Avanish K. Chaturvedi and Rohit K. Verma
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16U99,16N80; Secondary 13A15.
Keywords and phrases: $S-1$-absorbing primary submodule, $S-1$-absorbing prime submodule, multiplication module.

The authors like to thank the referee for his valuable suggestions.
The research of the second author is supported by a grant from University Grants Commission, India (UGC Ref. No.: 1089/(CSIR-UGC NET DEC. 2017)).

Abstract

Let R be a commutative ring with nonzero identity. Let $S \subseteq R$ be a multiplicative closed subset of R and M be a unital module. A submodule N of M with $\left(N:_{R} M\right) \cap S=\phi$ is said to be S-1-absorbing primary, if $a b m \in N$ for some non-unit elements $a, b \in R$ and $m \in M$, then there exists an $s \in S$ such that $s a b \in \sqrt{N:_{R} M}$ or $s m \in N$. In the present work, we discuss some properties, characterizations and applications of S-1-absorbing primary submodules of a module.

1 Introduction

In commutative algebra, prime submodules (prime ideals) have very significant role to characterize different classes of modules (rings). In 2020, Badawi et al. introduced the idea of 1-absorbing primary ideal as a generalization of primary ideals. In 2021, Farzalipour et al. [3] generalized the notion of prime submodules to S-1-absorbing prime submodules and discussed some applications. They called that a submodule N of M with $\left(N:_{R} M\right) \cap S=\phi$ is an S-1-absorbing prime, if there exists an $s \in S$ whenever $a b m \in N$ for some non-unit elements $a, b \in R$ and $m \in M$, then $s a b \in\left(N:_{R} M\right)$ or $s m \in N$.

We know that a prime submodule (prime ideal) is always a primary submodule (primary ideal). Therefore, it motivates us to study the notion of $S-1$-absorbing primary submodules as a natural generalization of S-1-absorbing prime submodules.

Definition 1.1. Let R be a commutative ring with nonzero identity. Let $S \subseteq R$ be a multiplicative closed subset of R and M be a unital module. A submodule N of M with $\left(N:_{R} M\right) \cap S=\phi$ is said to be S-1-absorbing primary, if $a b m \in N$ for some non-unit elements $a, b \in R$ and $m \in M$, then there exists an $s \in S$ such that $s a b \in \sqrt{N:_{R} M}$ or $s m \in N$.

During investigation, we find that many properties of $S-1$-absorbing prime submodules do not hold in case of S-1-absorbing primary submodules of a module. In support, we provide some examples in Section 2. In Theorem 2.4, we give some characterizations of an S-1-absorbing primary submodule in terms of its radicals. In Theorem 2.6, we characterize an S-1-absorbing primary submodule N of a module M in terms of all S-1-absorbing primary submodules of M of the form $\left(N:_{M} s^{2}\right)$ for some $s \in S$.

In Remark 3.5(ii), we show that a result analogous to [3, Theorem 3.1] does not hold for S-1-absorbing primary ideal. In Theorem 3.6, we generalize it in case of S-1-absorbing primary ideal: Let M be a multiplication faithful R-module and S be a multiplicative closed subset of R. Let I be an S-1-absorbing primary ideal of R. Let a and b be two non-unit elements in R and $m \in M$. If $a b m \in I M$, then there exists an s in S such that $s a b \in \sqrt{I}$ or $s m \in I M$.

In Section 4, we study some properties of S-1-absorbing primary submodule of a finitely generated module. In Proposition 4.2, we prove that $\left(N:_{R} M\right)$ is an S-1-absorbing primary submodule of M. The converse is true if M is a multiplication module (In general it is not true see Remark 4.3). In Proposition 4.6, we provide a characterization of an S-1-absorbing
primary submodule of a finitely generated von-Neumann regular module. Finally, in Section 5, we discuss properties of S-1-absorbing primary submodule over a singleton multiplicative closed subset of the ring.

Throughout R is a commutative ring with nonzero identity and M is a unital module. Let N and L be two submodules of an R-module M and K be an ideal of a ring R. Then the residual N by L is $\left(N:_{R} L\right)=\{x \in R: x L \subseteq N\}$ and residual N by K is $\left(N:_{M} K\right)=\{m \in M: K m \subseteq$ $N\}$. We denote $\left(0:_{R} M\right)$ by $\operatorname{ann}(M)$ and $\left(N:_{M} R s\right)$ by $\left(N:_{M} s\right)$ where $R s$ is the principal ideal generated by an element $s \in R$. According to [6], a prime (resp. primary) submodule is a proper submodule N of M with the property that for $a \in R$ and $m \in M, a m \in N$ implies that $m \in N$ or $a \in\left(N:_{R} M\right)$ (resp. $a^{k} \in\left(N:_{R} M\right)$ for some positive integer k). In [10], a nonempty subset S of R is said to be a multiplicatively closed subset of R if (i) $0 \notin S$, (ii) $1 \in S$, and (iii) ss' $\in S$ for all $s, s^{\prime} \in S$.

2 Examples and characterizations

Example 2.1. (i). An S-1-absorbing prime submodule is always an S-1-absorbing primary but the converse need not be true. Let $R=\mathbb{Z}, M=\mathbb{Z}_{16}$ and $N=\{\overline{0}, \overline{8}\}$. Then $\left(N:_{R} M\right)=\{a \in$ $\left.\mathbb{Z} \mid a \mathbb{Z}_{16} \subseteq N\right\}=8 \mathbb{Z}$ and $\sqrt{N:_{R} M}=\left\{a \in \mathbb{Z} \mid a^{n} \mathbb{Z}_{16} \subseteq N\right.$, for some $\left.n \in \mathbb{N}\right\}=2 \mathbb{Z}$. Let $S=\{1\}$ be a multiplicative closed subset of R. Then $\left(N:_{R} M\right) \cap S=\phi$. Consider $a=2, b=2$ and $m=\overline{2}$ and so 2.2. $\overline{2} \in N$. This implies that 1.2.2 $\in \sqrt{N:_{R} M}$. Then N is an S-1-absorbing primary submodule of M. But $1.2 .2 \notin\left(N:_{R} M\right)$ and $1 . \overline{2} \notin N$. So N is not an S-1-absorbing prime submodule of M.
(ii). An S-1-absorbing primary submodule of a module need not be a primary submodule. Consider an example from [3, Example 2.1(iii)]. Let the \mathbb{Z}-module $\mathbb{Z} \times \mathbb{Z}_{4}$ and the zero submodule $N=0 \times 0$. Now $\left(N: \mathbb{Z}\left(\mathbb{Z} \times \mathbb{Z}_{4}\right)\right)=0$ and $\left.\sqrt{N: \mathbb{Z}\left(\mathbb{Z} \times \mathbb{Z}_{4}\right.}\right)=0$. Let $S=\mathbb{Z}-0$ and put $s=4$. Then N is an S-1-absorbing prime submodule of M. Therefore N is an S-1-absorbing primary submodule of M. Now, let $a=4$ and $m=(0, \overline{1})$. Then $a m=4(0, \overline{1}) \in N$, but $\left.4 \notin \sqrt{N: \mathbb{Z}\left(\mathbb{Z} \times \mathbb{Z}_{4}\right.}\right)$ and $(0, \overline{1}) \notin N$. Hence N is not a primary submodule of M.
(iii). Let N be a proper submodule of an R-module M such that $\left(N:_{R} M\right)$ is a prime ideal of R. Then the notions of $S-1$-absorbing primary and $S-1$-absorbing prime submodules are same for N.

Further, we discuss sufficient conditions for a submodule to be an S-1-absorbing primary submodule.

Proposition 2.2. Let $S \subseteq R$ be a multiplicative closed subset of R and M be an R-module.
(i) Let P be a primary submodule of M with $\left(P:_{R} M\right) \cap S=\phi$. Then P is an S-1-absorbing primary submodule of M.
(ii) Let S_{1} and S_{2} are multiplicative closed subset of R such that $S_{1} \subseteq S_{2}$ and P be an $S_{1}-1$ absorbing primary submodule of M with $\left(P:_{R} M\right) \cap S_{2}=\phi$. Then P is an S_{2}-1-absorbing primary submodule of M.
(iii) P is an S-1-absorbing primary submodule of M if and only if P is an S^{*}-1-absorbing primary submodule of M.
(iv) Let P be an S-1-absorbing primary submodule of M with $\left(S^{-1} P: S^{-1} M\right) \cap S=\phi$. Then $S^{-1} P$ is an S-1-absorbing primary submodule of $S^{-1} M$.

Proof. (1). Clear.
(2). Let $a b m \in P$, for some non-units $a, b \in R$ and $m \in M$. Since P is an $S_{1}-1$-absorbing primary submodule of M with $\left(P:_{R} M\right) \cap S_{2}=\phi$, therefore there exists $s_{1} \in S_{1}$ such that $s_{1} a b \in \sqrt{P:_{R} M}$ or $s_{1} m \in P$. Since $S_{1} \subseteq S_{2}$, therefore $s_{1} \in S_{2}$. Hence P is an S_{2}-1-absorbing primary submodule of M.
(3). Let P be an S-1-absorbing primary submodule of M. First, we show that $\left(P:_{R} M\right) \cap$ $S^{*}=\phi$. Let $x \in\left(P:_{R} M\right) \cap S^{*}=\phi$. Then $x \in S^{*}$. This implies that $\frac{x}{1}$ is a unit of $S^{-1} R$ and so $\frac{x}{1} \cdot \frac{a}{s}=1$, for some $a \in R$. Thus $x a=s$ or $s^{\prime} s=s^{\prime} x a$ for some $s^{\prime} \in S$. Also, $s^{\prime \prime}=s^{\prime} s=s^{\prime} x a$. It follows that $s^{\prime \prime} \in\left(P:_{R} M\right) \cap S$, which is a contradiction as $\left(P:_{R} M\right) \cap S=\phi$. Thus
$\left(P:_{R} M\right) \cap S^{*}=\phi$. Since $S \subseteq S^{*}, P$ is an S^{*}-1-absorbing primary submodule of M by (2). Conversely, let $a b m \in P$ for some non-units $a, b \in R$ and $m \in M$. Then there exists $s \in S^{*}$ such that $s^{\prime} a b \in \sqrt{P:_{R} M}$ or $s^{\prime} m \in P$ as P is an $S^{*}-1$-absorbing primary submodule of M. Since $\frac{s^{\prime}}{1}$ is a unit of $S^{-1} R, \frac{s^{\prime}}{1} \frac{a^{\prime}}{s}=1$. It gives $s^{\prime} a^{\prime}=s$. It follows that $s_{1} s=s_{1} s^{\prime} a^{\prime}$ for some $s_{1} \in S$. Also, $s^{\prime \prime}=s_{1} s=s_{1} s^{\prime} a^{\prime}$. Now, $s^{\prime \prime} a b=s_{1} a^{\prime} s^{\prime} a b \in \sqrt{P:_{R} M}$ or $s^{\prime \prime} m=s_{1} a^{\prime} s^{\prime} m \in P$. Hence P is an $S-1$-absorbing primary submodule of M.
(4). Let P be an S-1-absorbing primary submodule of M. Let $\frac{r_{1}}{s_{1}} \frac{r_{2}}{s_{2}} \frac{m}{t} \in S^{-1} P$ for some non-units $\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}} \in S^{-1} R$ and $\frac{m}{t} \in S^{-1} M$. Then $x r_{1} r_{2} m \in P$ for some $x \in S$ and also r_{1} and r_{2} are non-units. Suppose that r_{1} is a unit, so there exists $x_{1} \in R$ such that $r_{1} x_{1}=1=x_{1} r_{1}$. Then we can write $\frac{r_{1}}{s_{1}} \frac{s_{1} x_{1}}{1}=1=\frac{s_{1} x_{1}}{1} \frac{r_{1}}{s_{1}}$. So $\frac{r_{1}}{s_{1}}$ is a unit, which is a contradiction. Since P is an $S-1-$ absorbing primary submodule of M, there exists an $s \in S$ such that $\operatorname{sxr}_{1} r_{2} \in \sqrt{P:_{R} M}$ or $s m \in$ P. Then $s \frac{r_{1}}{s_{1}} \frac{r_{2}}{s_{2}}=\frac{s x r_{1} r_{2}}{x s_{1} s_{2}} \in S^{-1} \sqrt{P:_{R} M} \subseteq \sqrt{S^{-1} P: S^{-1} M}$. So $s \frac{r_{1}}{s_{1}} \frac{r_{2}}{s_{2}} \in \sqrt{S^{-1} P: S^{-1} M}$ or $s \frac{m}{t}=\frac{s m}{t} \in S^{-1} P$. Hence $S^{-1} P$ is an S-1-absorbing primary submodule of $S^{-1} M$.

Remark 2.3. The converse of Proposition 2.2(4) need not be true. For example, consider the setup from [3, Example 2.3]. Let $\mathbb{Q} \times \mathbb{Q}$ be a \mathbb{Z}-module where \mathbb{Q} is the field of rational numbers. Let $S=\mathbb{Z}-\{0\}$ be a multiplicatively closed subset of \mathbb{Z} and $\mathbb{N}=\mathbb{Z} \times 0$ be a submodule of $\mathbb{Q} \times \mathbb{Q} . \operatorname{Now}\left(N:_{\mathbb{Z}}(\mathbb{Q} \times \mathbb{Q})\right)=0$ and $\sqrt{\mathbb{N}: \mathbb{Z}(\mathbb{Q} \times \mathbb{Q})}=0$. Let s be an element of S. Let p be a prime number with $\operatorname{gcd}(p, s)=1$. Then, we observe that for $a=p, b=p$ and $m=\left(\frac{1}{p}, 0\right)$, $a b m=(p, 0) \in N$. But $s p^{2} \notin \sqrt{\mathbb{N}:_{\mathbb{Z}}(\mathbb{Q} \times \mathbb{Q})}$ and $s\left(\frac{1}{p}, 0\right) \notin N$. Thus N is not an S-1-absorbing primary submodule of M. Also, by [3, Example 2.3], $S^{-1} N$ is a 1 -absorbing prime submodule of $S^{-1}(\mathbb{Q} \times \mathbb{Q})$. Hence $S^{-1} N$ is an S-1-absorbing primary submodule of $S^{-1}(\mathbb{Q} \times \mathbb{Q})$.

Now we provide some characterizations of an S-1-absorbing primary submodule of a module.
Theorem 2.4. Let S be a multiplicative closed subset of R and M be an R-module. Let $N \subseteq M$ with $\left(N:_{R} M\right) \cap S=\phi$. Then the following are equivalent:
(i) N is an S-1-absorbing primary submodule of M.
(ii) There exists an $s \in S$ such that if abN$\subseteq \subseteq N$ for some non-units $a, b \in R$ and a submodule N_{1} of M, then either $s a b \in \sqrt{N:_{R} M}$ or $s N_{1} \subseteq N$.
(iii) There exists an $s \in S$ such that if IJ $N_{1} \subseteq N$ for some ideals $I, J \in R$ and a submodule N_{1} of M, then either $s I J \subseteq \sqrt{N:_{R} M}$ or $s N_{1} \subseteq N$.

Proof. (1) $\Longrightarrow(2)$. Let $a b N_{1} \subseteq N$ for some non-units $a, b \in R$ and a submodule N_{1} of M. Suppose that $s N_{1} \nsubseteq N$. Then there exists some non-unit $n_{1} \in N$ such that $s n_{1} \notin N$. But $a b n_{1} \in N$ and N is an S-1-absorbing primary submodule of M. Then $s a b \in \sqrt{N:_{R} M}$.
(2) \Longrightarrow (3). Let $I J N_{1} \subseteq N$ for some ideals $I, J \in R$ and a submodule N_{1} of M. Suppose $s I J \nsubseteq \sqrt{N:_{R} M}$. Then there exist non-units $a \in I$ and $b \in J$ such that $s a b \notin \sqrt{N:_{R} M}$. But $a b N_{1} \subseteq N$. Then $s N_{1} \subseteq N$ by (2).
(3) \Longrightarrow (1). Let $a b m \in N$ for some non-units $a, b \in R$ and $m \in M$. Let $N_{1}=R m$, $I=R a$ and $J=R b$. Then $I J N_{1}=R a R b R m=R a b m \subseteq N$. Thus there exists an $s \in S$ such that $s I J \subseteq \sqrt{N:_{R} M}$ or $s N_{1} \subseteq N$. So $s R a R b \subseteq \sqrt{N:_{R} M}$ or $s R m \subseteq N$. It follows that $s a b \in \sqrt{N:_{R} M}$ or $s m \in N$. Hence N is an S-1-absorbing primary submodule of M.

Corollary 2.5. Let S be a multiplicative closed subset of R and N be an ideal of R with $N \cap S=$ ϕ. Then the following are equivalent:
(i) N is an S-1-absorbing primary ideal of R.
(ii) There exists an $s \in S$ such that if abI $\subseteq N$ for some non-units $a, b \in R$ and an ideal I of R, then either $s a b \in \sqrt{N}$ or $s I \subseteq N$.
(iii) There exists an $s \in S$ such that if $I J K \subseteq N$ for some ideals I, J and K of R, then either $s I J \subseteq \sqrt{N}$ or $s K \subseteq N$.

In the following, we generalize [3, Theorem 2.3].

Theorem 2.6. Let S be a multiplicative closed subset of R and M be an R-module. Let N be a submodule of M with $\left(N:_{R} M\right) \cap S=\phi$. Then the following are equivalent:
(i) N is an S-1-absorbing primary submodule of M.
(ii) $\left(N:_{M} s^{2}\right)$ is an S-1-absorbing primary submodule of M for some $s \in S$.

Proof. (1) \Longrightarrow (2). Let $a b m \in\left(N:_{M} s^{2}\right)$ for some non-units $a, b \in R$ and $m \in M$. Then $s^{2} a b m \in N$. Since N is an S-1-absorbing primary submodule of M, there exists an $s_{1} \in S$ such that $s_{1} s^{2} a b \in \sqrt{N:_{R} M}$ or $s_{1} m \in N$. Also, $s_{2} s a b \in \sqrt{N:_{R} M}$ or $s_{1} m \in N$ where $s_{1} s=s_{2}$. This implies that $s a b \in \sqrt{\left(N:_{R} M\right)}:_{R} s_{2} \subseteq \sqrt{N:_{R} M}:_{R} s_{2}^{2}$. Now, we show that $\sqrt{N:_{R} M}:_{R}$ $s_{2}^{2} \subseteq \sqrt{\left(N:_{R} M\right):_{R} s^{2}}$. Let $x \in \sqrt{N:_{R} M}:_{R} s_{2}^{2}$. So $s_{2}^{2} x \in \sqrt{N:_{R} M}$. Then $\left(s_{2}^{n}\right)^{2} x^{n} \in$ $\left(N:_{R} M\right)$ for some $n \in \mathbb{N}$, so $x \in \sqrt{\left(N:_{R} M\right):\left(s_{2}^{n}\right)^{2}}$. Also, $x \in \sqrt{\left(N:_{R} M\right):_{R}\left(s_{2}^{n}\right)^{2}} \subseteq$ $\sqrt{\left(N:_{R} M\right): s}$ by Lemma 3.3(ii). This implies that $x \in \sqrt{\left(N:_{R} M\right): s} \subseteq \sqrt{\left(N:_{R} M\right):_{R} s^{2}}$. Thus $\left(\sqrt{\left(N:_{R} M\right)}:_{R} s^{2}\right) \subseteq \sqrt{\left(N:_{R} M\right): s^{2}}$. So $s a b \in \sqrt{\left(N:_{R} M\right):_{R} s^{2}} \subseteq \sqrt{\left(N:_{R} s^{2}\right):_{R} M}$. Now $s_{1} m \in N$ implies that $m \in\left(N:_{M} s_{1}\right) \subseteq\left(N:_{M} s_{1}^{2}\right)$ and $\left(N:_{M} s_{1}^{2}\right) \subseteq\left(N:_{M} s\right) \subseteq\left(N:_{M}\right.$ s^{3}) by Lemma 3.3(ii). Then $s m \in\left(N:_{M} s^{2}\right)$. It follows that $\left(N:_{M} s^{2}\right)$ is an S-1-absorbing primary submodule of M.
(2) \Longrightarrow (1). Let $a b m \in N$. Then $a b m \in\left(N:_{M} s^{2}\right)$. Since $\left(N:_{M} s^{2}\right)$ is an S-1absorbing primary submodule of M, there exists $s \in S$ such that $s a b \in \sqrt{\left(N:_{R} s^{2}\right):_{R} M}$ or $s m \in\left(N:_{M} s^{2}\right)$. So $s^{n}(a b)^{n} \in\left(N:_{R} M\right):_{R} s^{2} \subseteq\left(N:_{R} M\right):_{R}\left(s^{2}\right)^{n}$ for some $n \in \mathbb{N}$. Then $\left(s^{2}\right)^{n} s^{n}(a b)^{n} \in\left(N:_{R} M\right)$. Thus $s_{1} a b \in \sqrt{\left(N:_{R} M\right)}$ where $s_{1}=s^{2} s$. Now $s m \in\left(N:_{M} s^{2}\right)$. Then $s^{2} s m \in N$. Hence N is an $S-1$-absorbing primary submodule of M.

3 General properties

Proposition 3.1. Let M and M^{\prime} be R-modules and $f: M \rightarrow M^{\prime}$ be an R-homomorphism.
(i) If N^{\prime} is an S-1-absorbing primary submodule of M^{\prime} with $\left(f^{-1}\left(N^{\prime}\right):_{R} M\right) \cap S=\phi$, then $f^{-1}\left(N^{\prime}\right)$ is an S-1-absorbing primary submodule of M.
(ii) If f is an epimorphism and N is an S-1-absorbing primary submodule of M with $\operatorname{Ker} f \subseteq$ N, then $f(N)$ is an S-1-absorbing primary submodule of M^{\prime}.

Proof. (1). Let $a b m \in f^{-1}\left(N^{\prime}\right)$ for some non-units $a, b \in R$ and $m \in M$. Then $f(a b m)=$ $\operatorname{abf}(m) \in N^{\prime}$. Since N^{\prime} is an S-1-absorbing primary submodule of M^{\prime} there exists $s \in S$ such that $s a b \in \sqrt{N^{\prime}:_{R} M^{\prime}}$ or $s f(m) \in N^{\prime}$. Now, we show that $\sqrt{N^{\prime}:_{R} M^{\prime}} \subseteq \sqrt{f^{-1}\left(N^{\prime}\right):_{R} M}$. Let $x \in \sqrt{N^{\prime}:{ }_{R} M^{\prime}}$. Then $x^{n} M^{\prime} \subseteq N^{\prime}, n \in \mathbb{N}$. Now, $f\left(x^{n} M\right)=x^{n} f(M) \subseteq x^{n} M^{\prime} \subseteq N^{\prime}$, so $f\left(x^{n} M\right) \subseteq N^{\prime}$. This implies that $x^{n} M \subseteq x^{n} M+\operatorname{Ker} f=f^{-1}\left(f\left(x^{n} M\right)\right) \subseteq f^{-1}\left(N^{\prime}\right)$. So, $x^{n} M \subseteq f^{-1}\left(N^{\prime}\right)$. It follows that $x \in \sqrt{f^{-1}\left(N^{\prime}\right):_{R} M}$. Then $\sqrt{N^{\prime}:_{R} M^{\prime}} \subseteq \sqrt{f^{-1}\left(N^{\prime}\right):_{R} M}$. Thus either $s a b \in \sqrt{f^{-1}\left(N^{\prime}\right):_{R} M}$ or $s m \in f^{-1}\left(N^{\prime}\right)$. Hence $f^{-1}\left(N^{\prime}\right)$ is an S-1-absorbing primary submodule of M.
(2). First we show that $\left(f(N):_{R} M^{\prime}\right) \cap S=\phi$. Let $s \in\left(f(N):_{R} M^{\prime}\right) \cap S$. Then $s \in\left(f(N):_{R} M^{\prime}\right)$. So, $s M^{\prime} \subseteq f(N)$. This implies that $f(s M)=s f(M) \subseteq s M^{\prime} \subseteq f(N)$. So $s M \subseteq s M+\operatorname{Ker} f \subseteq N+\operatorname{Ker} f=N$. Then $s M \subseteq N$. It follows that $s \in\left(N:_{R} M\right)$, which is a contradiction as N is an S-1-absorbing primary submodule of M. Hence $\left(f(N):_{R} M^{\prime}\right) \cap S=\phi$. Let $a b m^{\prime} \in f(N)$ for some non-units $a, b \in R$ and $m^{\prime} \in M^{\prime}$. Since f is epimorphism, there exists an $m \in M$ such that $f(m)=m^{\prime}$. Then $f(a b m)=a b f(m)=a b m^{\prime} \in f(N)$. This implies that $a b m \in N+\operatorname{Ker} f \subseteq N$, so $a b m \in N$. Then there exists $s \in S$ such that $s a b \in \sqrt{N:_{R} M}$ or $s m \in N$ as N is an S-1-absorbing primary submodule of M. Since $\sqrt{N:_{R} M} \subseteq \sqrt{f(N):_{R} M^{\prime}}$, therefore $s a b \in \sqrt{f(N):_{R} M^{\prime}}$ or $s m^{\prime}=s f(m)=f(s m) \in f(N)$. Hence $f(N)$ is an $S-1-$ absorbing primary submodule of M^{\prime}.

Proposition 3.2. Let S be a multiplicative closed subset of R and L be a submodule of an R module M. Let N be a submodule of M and $L \subseteq N$. Then N is an S-1-absorbing primary submodule of M if and only if N / L is an S-1-absorbing primary submodule of M / L.

Proof. Let N be a submodule of M with $L \subseteq N$. Consider a canonical homomorphism π : $M \rightarrow M / L$ by $\pi(m)=m+L$ for all $m \in M$. Then N / L is an S-1-absorbing primary submodule of M / L by Proposition 3.1(ii). Conversely, suppose that N / L is an S-1-absorbing primary submodule of M / L. Let $a b m \in N$ for some non-units $a, b \in R$ and $m \in M$. Then $a b(m+L) \in N / L$. Since N / L is an S-1-absorbing primary submodule of M / L, there exists $s \in S$ such that $s a b \in \sqrt{N / L:_{R} M / L} \subseteq \sqrt{N:_{R} M}$ or $s(m+L) \in N / L$. Then $s a b \in \sqrt{N:_{R} M}$ or $s m \in N$. Hence N is an S-1-absorbing primary submodule of M.

As a consequence of the following result, we have [3, Lemma 2.2].
Lemma 3.3. Let S be a multiplicative closed subset of R and M be an R-module. If N is an S-1-absorbing primary submodule of M, then the following conditions hold for some $s \in S$:
(i) $\left(N:_{M} s_{1}^{2}\right) \subseteq\left(N:_{M} s\right)$ for all $s_{1} \in S$.
(ii) $\left(\left(N:_{R} M\right):_{R} s_{1}^{2}\right) \subseteq\left(\left(N:_{R} M\right):_{R} s\right)$ for all $s_{1} \in S$.

Proof. (1). Let $m \in\left(N:_{M} s_{1}^{2}\right)$. Then $s_{1}^{2} m \in N$. If s_{1} is a unit, then $m \in N$ and we are done. Suppose s_{1} is non-unit. Since N is an $S-1$-absorbing primary submodule of M, there exists an $s \in S$ such that $s s_{1}^{2} \in \sqrt{N:_{R} M}$ or $s m \in N$. If $s s_{1}^{2} \in \sqrt{N:_{R} M}$, then $\left(s s_{1}^{2}\right)^{n} \in\left(N:_{R} M\right)$ for some $n \in \mathbb{N}$. So $\left(s s_{1}^{2}\right)^{n} \in\left(N:_{R} M\right) \cap S$ which is not possible as N is an S-1-absorbing primary submodule of M. Then $s m \in N$ implies that $m \in\left(N:_{M} s\right)$. Thus $\left(N:_{M} s_{1}^{2}\right) \subseteq\left(N:_{M} s\right)$ for all $s_{1} \in S$.
(2). Let $x \in\left(\left(N:_{R} M\right):_{R} s_{1}^{2}\right)$. Then $x M \subseteq\left(N:_{M} s_{1}^{2}\right) \subseteq\left(N:_{M} s\right)$ by (1). This implies that $x \in\left(N:_{R} M\right):_{R} s$. Hence $\left(\left(N:_{R} M\right):_{R} s_{1}^{2}\right) \subseteq\left(\left(N:_{R} M\right):_{R} s\right)$ for all $s_{1} \in S$.

Corollary 3.4. [3, Lemma 2.2] Let S be a multiplicative closed subset of R and N be an S-1absorbing prime submodule of an R-module M. The following statements hold for some $s \in S$:
(i) $\left(N:_{M} s^{\prime 2}\right) \subseteq\left(N:_{M} s\right)$ for all $s^{\prime} \in S$.
(ii) $\left(\left(N:_{R} M\right):_{R} s^{\prime 2}\right) \subseteq\left(\left(N:_{R} M\right):_{R} s\right)$ for all $s^{\prime} \in S$.

Remark 3.5. (i) The converse of Lemma 3.3 need not be true. For example, consider the case from Remark 2.3. Then N is not an S-1-absorbing primary submodule of M. Let s_{1} be any element of S and s be some element of S. Then $\left(N:_{M} s_{1}^{2}\right)=0$ and $\left(N:_{M} s\right)=0$. Thus $\left(N:_{M} s_{1}^{2}\right) \subseteq\left(N:_{M} s\right)$.
(ii) We find that a result analogous to [3, Theorem 3.1] does not hold for S-1-absorbing primary ideal. For example, consider $M=\mathbb{Z}$ as \mathbb{Z}-module. We know that M is a faithful multiplication \mathbb{Z}-module. Let $N=8 \mathbb{Z}$ be a submodule of M and $S=\{1\}$ be a multiplicatively closed subset of \mathbb{Z}. Then $\left(N:_{R} M\right)=8 \mathbb{Z}$ and $\sqrt{N:_{R} M}=2 \mathbb{Z}$. Suppose $a=2, b=2$ and $m=2$, then $a b m \in N$. Consider $I=\left(N:_{R} M\right)$ which is an ideal of \mathbb{Z}. It is easy to see that $\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal. Here $I M=\left(N:_{R} M\right) M=N$ as M is a multiplicattion module. But 1.a.b $\notin\left(N:_{R} M\right)$ and $1 . m \notin N$. In the following, we generalize [3, Theorem 3.1] and get it's proof interesting by taking S-1-absorbing primary ideals in place of $S-1$-absorbing prime ideals.

Recall from [3], let M be an R-module. If P is a maximal ideal of R then $T_{P}(M)=\{m \in$ $M:(1-p) m=0$ for some $p \in P\}$. Clearly $T_{P}(M)$ is a submodule of M. Also, M is P-cyclic provided there exist $q \in P$ and $m \in M$ such that $(1-q) M \subseteq R m$.

Theorem 3.6. Let M be a multiplication faithful R-module and S be a multiplicative closed subset of R. Let I be an S-1-absorbing primary ideal of R. Let a and b be two non-unit elements in R and $m \in M$. If abm $\in I M$, then there exists an s in S such that $s a b \in \sqrt{I}$ or $s m \in I M$.

Proof. Let a, b, c be any non-unit elements of R. Then $a b c \in I$ implies that there exists an $s \in S$ such that $s a b \in \sqrt{I}$ or $s c \in I$ as I is an S-1-absorbing primary ideal of R. Let $a b m \in I M$, $m \in M$ and $s a b \notin \sqrt{I}$. Consider $K=\{r \in R: r s m \in I M\}$. If $K=R$, then we are done. If $K \neq R$, then there exists a maximal ideal P of R such that $K \subseteq P$. We show that $m \notin T_{P}(M)$. Let $m \in T_{P}(M)$, so there exists an element $p \in P$ such that $(1-p) m=0$. Then
$(1-p) \in K \subseteq P$ which is a contradiction. Hence $T_{P}(M) \neq M$. By [7, Theorem 1.2], M is a P-cyclic module as M is a multiplication module. Then there are $p^{\prime} \in P$ and $m^{\prime} \in P$ such that $\left(1-p^{\prime}\right) M \subseteq R m^{\prime}$. So $\left(1-p^{\prime}\right) s m \in R m^{\prime}$. Then, there is $r_{1} \in R$ such that $\left(1-p^{\prime}\right) s m=r_{1} m^{\prime}$. It gives $\left(1-p^{\prime}\right)$ sabm $=r_{1} a b m^{\prime} \in I M$ and $\left(1-p^{\prime}\right) s a b m \in R m^{\prime}$. Then, there exists $a_{1} \in I$ such that $\left(1-p^{\prime}\right) s a b m=a_{1} m^{\prime}$. Now, $r_{1} a b m^{\prime}=a_{1} m^{\prime}$. This implies that $r_{1} a b-a_{1} \in a n n\left(m^{\prime}\right)$. Then, $\left(1-p^{\prime}\right) M \subseteq R m^{\prime}$ implies that $\left(1-p^{\prime}\right) \operatorname{ann}\left(m^{\prime}\right) M \subseteq \operatorname{Rann}\left(m^{\prime}\right) m^{\prime}=0$. It follows that $\left(1-p^{\prime}\right) \operatorname{ann}\left(m^{\prime}\right) \subseteq \operatorname{ann}(M)$. Since M is faithful, therefore $\left(1-p^{\prime}\right) \operatorname{ann}\left(m^{\prime}\right)=0$. Thus $\left(1-p^{\prime}\right)\left(r_{1} a b-a_{1}\right)=0$. So $r_{1} a b\left(1-p^{\prime}\right)=a_{1}\left(1-p^{\prime}\right) \in I$. Hence $r_{1} a b\left(1-p^{\prime}\right) \in I$. Now, we have two cases for r_{1}. First suppose that r_{1} is a unit. Then $a b\left(1-p^{\prime}\right) \in I$. Now, if $\left(1-p^{\prime}\right)$ is a unit, then $a b \in I$. So $s a b \in \sqrt{I}$, a contradiction. Suppose that $\left(1-p^{\prime}\right)$ is non-unit. Then $s a b \in \sqrt{I}$ or $s\left(1-p^{\prime}\right) \in I$ as I is an S-1-absorbing primary ideal of R. If $s a b \in \sqrt{I}$, we have a contradiction. Let $s\left(1-p^{\prime}\right) \in I$, so $\left(1-p^{\prime}\right) s m \in I M$. Then $\left(1-p^{\prime}\right) \in K \subseteq P$ which is a contradiction. Now, suppose that r_{1} is a non-unit. If $\left(1-p^{\prime}\right)$ is a unit, then $r_{1} a b \in I$. So, $s a b \in \sqrt{I}$ or $s r_{1} \in I$ because I is an $S-1$-absorbing primary ideal of R. If sab $\in \sqrt{I}$, then a contradiction. Suppose $s r_{1} \in I$, then $s r_{1} m^{\prime} \in I M$. Also, $s r_{1} m^{\prime}=\left(1-p^{\prime}\right) s m$ implies that $\left(1-p^{\prime}\right) s m \in I M$. So, $\left(1-p^{\prime}\right) \in K \subseteq P$ which is a contradiction. If $\left(1-p^{\prime}\right)$ is a non-unit, then $r_{1} a b\left(1-p^{\prime}\right) \in I$ implies that $s a b \in \sqrt{I}$ or $s r_{1}\left(1-p^{\prime}\right) \in I$. Since I is an S-1-absorbing primary, $s a b \in \sqrt{I}$ or $s^{2} r_{1} \in \sqrt{I}$ or $s\left(1-p^{\prime}\right) \in I$. If $s a b \in \sqrt{I}$, we have a contradiction. If $s^{2} r_{1} \in \sqrt{I}$, then $\left(s^{n}\right)^{2} r_{1}^{n} \in I$ for some $n \in \mathbb{N}$. This implies that $r_{1}^{n} \in I:_{R}\left(s^{n}\right)^{2} \subseteq I:_{R} s$, by Lemma 3.3. So, $s r_{1}^{n} \in I$. Also, $s r_{1}^{n} m^{\prime} \in I M$. Thus $r_{1}^{n} \in K \subseteq P$. It follows that $r_{1} \in \sqrt{P}$. Since R is a commutative ring with identity, therefore P is a prime ideal. So, $r_{1} \in P$ which is a contradiction as P is a maximal ideal of R. Let $s\left(1-p^{\prime}\right) \in I$. This implies that $\left(1-p^{\prime}\right) s m \in I M$. Then, $\left(1-p^{\prime}\right) \in K \subseteq P$ which is again a contradiction. So, $K=R$. Hence $s m \in I M$.

Proposition 3.7. If N is a proper submodule of a Noetherian module M and S is a multiplicative closed subset of R with $\left(N_{i}:_{R} M\right) \cap S=\phi$ for each i, then N has an S-1-absorbing primary decomposition.

Proof. If N is a proper submodule of a Noetherian module M, N has a primary decomposition. Since every primary submodule with $\left(N_{i}:_{R} M\right) \cap S=\phi$ is an S-1-absorbing primary submodule, N has an S-1-absorbing primary decomposition.

4 Properties over a finitely generated module

Proposition 4.1. Let S be a multiplicative closed subset of R and M be a finitely generated R module. Let N be a submodule of M with $\left(S^{-1} N:_{R} S^{-1} M\right) \cap S=\phi$. Then the following are equivalent:
(i) N is an S-1-absorbing primary submodule of M.
(ii) $S^{-1} N$ is an S-1-absorbing primary submodule of $S^{-1} M$ and there exists an $s \in S$ with $\left(N:_{M} s_{1}^{2}\right) \subseteq\left(N:_{M} s\right)$ for all $s_{1} \in S$.

Proof. (1) $\Longrightarrow(2)$. It follows from Proposition 2.2(iv) and Lemma 3.3.
(2) \Longrightarrow (1). Let $a b m \in N$ for some non-units $a, b \in R$ and $m \in M$. Then $\frac{a b m}{1} \in S^{-1} N$. Since $S^{-1} N$ is an S-1-absorbing primary submodule of $S^{-1} M$ and M is finitely generated, therefore there exists an $s \in S$ such that $(s a b)^{n} S^{-1} M \subseteq S^{-1} N$ or $s m \in S^{-1} N$. So $(s a b)^{n} \in$ $\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)=S^{-1}\left(N:_{R} M\right)$ or $s m \in S^{-1} N$. Then $s_{1}(s a b)^{n} \in\left(N:_{R} M\right)$ for some $s_{1} \in S$. Also, $s_{1}^{n}(s a b)^{n} \in\left(N:_{R} M\right)$. Then $s_{3} a b \in \sqrt{N:_{R} M}$, where $s_{3}=s_{1} s$. Thus $s_{2} s_{3} a b \in \sqrt{N:_{R} M}, s_{2} \in S$. Let $s_{2} s m \in N$ for some $s_{2} \in S$. This implies that $s_{1} s_{2} s m \in N$. Hence N is an S-1-absorbing primary submodule of M.

In [7], an R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Since $I \subseteq\left(N:_{R} M\right)$, therefore $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$, so $N=\left(N:_{R} M\right) M$. Let $N=I_{1} M$ and $L=I_{2} M$ are submodules of a multiplication R module M. Then the product $N L$ of N and L is defined by $N L=I_{1} I_{2} M$. Now, we discuss some properties over a multiplication and finitely generated multiplication modules.

Proposition 4.2. Let S be a multiplicative closed subset of R and M be an R-module. If N is an S-1-absorbing primary submodule of M, then $\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal of R. The converse is true, whenever M is a multiplication module.

Proof. Let N be an S-1-absorbing primary submodule of M. Let $a b c \in N:_{R} M$ for some nonunits $a, b, c \in R$. So $a b(c M) \subseteq N$ or $R a R b(c M) \subseteq N$. Then by Theorem 2.4, there exists $s \in S$ such that $s R a R b \subseteq \sqrt{N:_{R} M}$ or $s(c M) \subseteq N$. Thus either $s a b \in \sqrt{N:_{R} M}$ or $s c \in\left(N:_{R} M\right)$. Hence $\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal of R. Conversely, let M be a multiplication module and $\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal of R. Let $I J N_{1} \subseteq N$ for some ideals I, J of R and some $N_{1} \subseteq M$. First, we show that $I J\left(N_{1}:_{R} M\right) \subseteq\left(I J N_{1}:_{R} M\right)$. Let $x \in$ $I J\left(N_{1}:_{R} M\right)$. So $x=I J a$ where $a \in N_{1}:_{R} M$. Thus $a M \subseteq N_{1}$. Then $x M=I J a M \subseteq I J N_{1}$, so $x M \subseteq I J N_{1}$. This implies that $x \in\left(I J N_{1}:_{R} M\right)$. Therefore $I J\left(N_{1}:_{R} M\right) \subseteq\left(I J N_{1}:_{R} M\right)$. Let $x \in\left(I J N_{1}:_{R} M\right)$, so $x M \subseteq I J N_{1}$. Then, $x M \subseteq N$, this implies that $x \in\left(N:_{R} M\right)$. So $\left(I J N_{1}:_{R} M\right) \subseteq\left(N:_{R} M\right)$. It follows that $I J\left(N_{1}:_{R} M\right) \subseteq\left(I J N_{1}:_{R} M\right) \subseteq\left(N:_{R} M\right)$. Since $\left(N:_{R} M\right)$ be an S-1-absorbing primary ideal of R, therefore there exists $s \in S$ such that $s I J \subseteq \sqrt{N:_{R} M}$ or $s\left(N_{1}:_{R} M\right) \subseteq\left(N:_{R} M\right)$ by Corollary 2.5. Also, either $s I J \subseteq \sqrt{N:_{R} M}$ or $s N_{1}=s\left(N_{1}:_{R} M\right) M \subseteq N$ as M is a multiplication module. Hence N is an S-1-absorbing primary submodule of M.

Remark 4.3. The converse of Proposition 4.2 need not be true in general. For example, consider the \mathbb{Z}-module $\mathbb{Z} \times \mathbb{Z}$. Let $N=6 \mathbb{Z} \times 0$ be a submodule of M. Then $(6 \mathbb{Z} \times 0): \mathbb{Z}(\mathbb{Z} \times \mathbb{Z})=0$. So $\left(N:_{\mathbb{Z}} M\right)$ is an S-absorbing primary ideal of R. Now we have $\sqrt{N: \mathbb{Z} M}=0$. Let $a=2$, $b=3$ and $m=(1,0)$. Then $a b m=2.3 .(1,0) \in N$. Let $S=\mathbb{Z}-6 \mathbb{Z}$. Then for any $s \in S$, $s a b \notin \sqrt{N: \mathbb{Z} M}$ and $s(1,0)=(s, 0) \notin N$. Hence N is not an S-1-absorbing primary submodule of M.

Proposition 4.4. Let S be a multiplicative closed subset of R and M be an R-module. Let N be a submodule of M with $\left(N:_{R} M\right) \cap S=\phi$. If M is a finitely generated multiplication module, then the following are equivalent:
(i) N is an S-1-absorbing primary submodule of M.
(ii) $K L P \subseteq N$ for some submodules K, L and P of M implies that there exists an $s \in S$ such that $s K L \subseteq \operatorname{rad}(N)$ or $s P \subseteq N$.

Proof. (1) $\Longrightarrow(2)$. Let $K L P \subseteq N$ for some submodules K, L and P of M. Then $(K: M)(L:$ $M)(P: M) M \subseteq N$. So $(K: M)(L: M) P \subseteq N$ as M is a multiplication module. By Theorem 2.4, there exists $s \in S$ such that $s(K: M)(L: M) \subseteq \sqrt{N:_{R} M}$ or $s P \subseteq N$. This implies that $s K L \subseteq \sqrt{N:_{R} M} M$ or $s P \subseteq N$. Since M is a multiplication module, $\sqrt{N:_{R} M} M=\operatorname{rad}(N)$ by [7, Theorem 2.12]. Then $s K L \subseteq \operatorname{rad}(N)$ or $s P \subseteq N$.
$(2) \Longrightarrow(1)$. Let $I J K \subseteq N: M$ for some ideals I, J and K of R. So $I J K M \subseteq N$. Then $(I M)(J M)(K M) \subseteq N$ as M is a multiplication module. Since N is an S-1-absorbing primary submodule of M, therefore there exists $s \in S$ such that $s(I M)(J M) \subseteq \operatorname{rad}(N)$ or $s(K M) \subseteq N$. Also $s I J \subseteq \operatorname{rad}(N): M$ or $s K \subseteq N: M$. Since M is finitely generated, $(\operatorname{rad}(N): M)=\sqrt{N:_{R} M}$ by [5, Theorem 4.4]. Then $s I J \subseteq \sqrt{N:_{R} M}$ or $s K \subseteq\left(N:_{R} M\right)$. Thus by Corollary $2.5,\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal of R. Hence by Proposition $4.2, N$ is an S-1-absorbing primary submodule of M.

In the following, we generalize [3, Theorem 3.3].
Theorem 4.5. Let S be a multiplicative closed subset of R and M be an R-module. Let N be a submodule of M with $\left(N:_{R} M\right) \cap S=\phi$ and M be a finitely generated multiplication module. Then the following are equivalent:
(i) N is an S-1-absorbing primary submodule of M.
(ii) $\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal of R.
(iii) $N=I M$ for some S-1-absorbing primary ideal I of R with $\operatorname{ann}(M) \subseteq I$.

Proof. (1) $\Longleftrightarrow(2)$. It follows from Proposition 4.2.
(2) \Longrightarrow (3). Let $\left(N:_{R} M\right)$ is an S-1-absorbing primary ideal of R. Then N is an S-1-absorbing primary submodule of a multiplication module M. So $N=I M$ for some S-1absorbing primary ideal I of R. Let $x \in \operatorname{ann}(M)=\left(0:_{R} M\right)$, so $x M=0 \in N=I M$. This implies that $x \in I$. Thus $\operatorname{ann}(M) \subseteq I$.
(3) \Longrightarrow (1). Let $J K L \subseteq N$ for some ideals J, K of R and some submodule $L \subseteq M$. Then $J K\left(L:_{R} M\right) M \subseteq N=I M$ as N is a submodule of a multiplication module M, so $J K\left(L:_{R} M\right) M \subseteq I M$. By [8, Theorem 9], $J K\left(L:_{R} M\right) \subseteq I+a n n M=I$ as M is a finitely generated multiplication module. This implies that $J K\left(L:_{R} M\right) \subseteq I$ as $\operatorname{ann}(M) \subseteq I$. Then by Corollary 2.5 , there exists $s \in S$ such that $s J K \subseteq \sqrt{I}$ or $s\left(L:_{R} M\right) \subseteq I$. Now, let $x \in \sqrt{I}$. Then $x^{n} M \subseteq I M=N$, so $x \in \sqrt{N:_{R} M}$. Thus $s J K \subseteq \sqrt{N:_{R} M}$ or $s L=s\left(L:_{R} M\right) M \subseteq$ $I M=N$. Hence N is an S-1-absorbing primary submodule of M.

In [4], an R-module M is said to be von-Neumann regular module if for each $m \in M$, there exists $a \in R$ such that $R m=a M=a^{2} M$. It is easy to see that von-Neumann regular modules are multiplication (see [9]). Also, if M is a finitely generated von-Neumann regular module, then $I M \cap J M=I J M$ for every ideal I and J of R by [4, Lemma 6 and Theorem 1]. Now, we discuss some properties over a finitely generated von-Neumann regular module.

Proposition 4.6. Let S be a multiplicative closed subset of R and M be a finitely generated vonNeumann regular R-module. Let P be a submodule of M with $\left(P:_{R} M\right) \cap S=\phi$. Then P is an S-1-absorbing primary submodule of M if and only if there exists $s \in S$ such that $K \cap L \cap N \subseteq P$ for some submodules K, L and N of M implies that either $s(K \cap L) \subseteq \operatorname{rad}(P)$ or $s N \subseteq P$.

Proof. Let $K \cap L \cap N \subseteq P$ for some submodules K, L and N of M. Now $K L N=(K$: $M)(L: M)(N: M) M \subseteq K \cap L \cap N \subseteq P$. Since P is an S-1-absorbing primary submodule of M, there exists $s \in S$ such that $s K L \subseteq \operatorname{rad}(P)$ or $s N \subseteq P$ by Proposition 4.4. Since M is a finitely generated von-Neumann regular module, for any N, N^{\prime} of M we have $N N^{\prime}=(N$: $M)\left(N^{\prime}: M\right) M=(N: M) M \cap\left(N^{\prime}: M\right) M=N \cap N^{\prime}$ by [4, Lemma 6 and Theorem 1]. Then $s(K \cap L) \subseteq \operatorname{rad}(P)$ or $s N \subseteq P$. Conversely, let $K L N \subseteq P$ for some submodules K, L and N of M. Now $K \cap L \cap N=(K: M) M \cap(L: M) M \cap(N: M) M=(K: M)(L: M)(N: M) M \subseteq$ $K L N \subseteq P$. It follows by the assumption that there exists an $s \in S$ such that $s(K \cap L) \subseteq \operatorname{rad}(P)$ or $s N \subseteq P$. Thus by [4, Lemma 6 and Theorem 1], it follows that $s K L \subseteq \operatorname{rad}(P)$ or $s N \subseteq P$. Hence by Proposition $4.4, P$ is an S-1-absorbing primary submodule of M.

5 Properties over a singleton multiplicative closed subest of a ring

Recall from [2], a submodule N of M is said to be irreducible if it cannot be expressed as the intersection of two submodules of M.

Proposition 5.1. Let N be a proper submodule of an R-module M and $S=\{1\}$ be a multiplicative closed subset of R with $\left(N:_{R} M\right) \cap S=\phi$. If N is an irreducible submodule of M. Then the following are equivalent:
(i) N is an S-1-absorbing primary submodule of M.
(ii) $\left(N:_{M} r\right)=\left(N:_{M} r^{2}\right)$ for some non-unit $r \in R \backslash \sqrt{N:_{R} M}$.

Proof. (1) \Longrightarrow (2). Let N be an S-1-absorbing primary submodule of M. Since ($N:_{M}$ $r) \subseteq\left(N:_{M} r^{2}\right)$, first we show that $\left(N:_{M} r^{2}\right) \subseteq\left(N:_{M} r\right)$. Let $m \in\left(N:_{M} r^{2}\right)$, so $r^{2} m \in N$. Then $r^{2} \in \sqrt{N:_{R} M}$ or $m \in N$. If $r^{2} \in \sqrt{N:_{R} M}$, then $r \in \sqrt{N:_{R} M}$ which is a contradiction as $r \in R \backslash \sqrt{N:_{R} M}$. Suppose $m \in N$, so $r m \in N$. Then $m \in\left(N:_{M} r\right)$, so $\left(N:_{M} r^{2}\right) \subseteq\left(N:_{M} r\right)$. Hence $\left(N:_{M} r\right)=\left(N:_{M} r^{2}\right)$ for some non-unit $r \in R \backslash \sqrt{N:_{R} M}$.
(2) \Longrightarrow (1). Let $a b m \in N$ for some non-units $a, b \in R$ and $m \in M$. Suppose $a b \notin$ $\sqrt{N:_{R} M}$ and $m \notin N$. Then $a \notin \sqrt{N:_{R} M}$ and $b \notin \sqrt{N:_{R} M}$. If $a \in \sqrt{N:_{R} M}$ and $b \in \sqrt{N:_{R} M}$, then $a b \in\left(\sqrt{N:_{R} M}\right)^{2} \subseteq \sqrt{N:_{R} M}$, which is a contradiction. So, we assume that $(N: a)=\left(N: a^{2}\right)$ or $(N: b)=\left(N: b^{2}\right)$ by hypothesis. Suppose $(N: a)=\left(N: a^{2}\right)$. Now $N \subseteq(N+\operatorname{Ram}) \cap(N+R b m)$, then we have to show that $(N+\operatorname{Ram}) \cap(N+R b m) \subseteq N$. Let $x \in$ $(N+\operatorname{Ram}) \cap(N+R b m)$. Then $x=p_{1}+r_{1} a m=p_{2}+r_{2} b m$. So, $a x=a p_{1}+r_{1} a^{2} m=a p_{2} r_{2} a b m$. Since $a p_{1} \in N, a p_{2} \in N$ and $r_{2} a b m \in N, r_{1} a^{2} m \in N$ implies that $r_{1} m \in\left(N: a^{2}\right)=(N: a)$.

So $r_{1} a m \in N$, also $x \in N$. Thus $(N+\operatorname{Ram}) \cap(N+R b m)=N$, which is a contradiction. By the similar argument for $(N: b)=\left(N: b^{2}\right)$, we have again a contradiction. Therefore N is an S-1-absorbing primary submodule of M.

Recall from [2], a module M is cancellative if whenever $a m=a n$ for elements $m, n \in M$ and $a \in R$, then $m=n$. Recall from [2], a submodule N of M is said to be pure if $r N=N \cap r M$ for every $r \in R$.

Proposition 5.2. Let N be a proper submodule of a cancellative R-module M and $S=\{1\}$ be a multiplicative closed subset of R with $\left(N:_{R} M\right) \cap S=\phi$. Then N is a pure submodule of M if and only if N is an S-1-absorbing primary submodule of M with $\sqrt{N:_{R} M}=\{0\}$.

Proof. Let N be a pure submodule of an R-module M with $a b m \in N$ for some non-units $a, b \in R$ and $m \in M$. Suppose $1 . a b \notin \sqrt{N:_{R} M}$. Then $a b m \in a b M \cap N=a b N$ as N is a pure submodule of M. This implies that $a b m=a b n$ for some $n \in N$. So $m=n \in N$. It gives $1 . m \in N$ as M is cancellative. Therefore N is an $S-1$-absorbing primary submodule of M. Now, let $0 \neq a \in \sqrt{N:_{R} M}$. Since $N \neq M$, there exists $x_{1} \in M \backslash N$ such that $a^{n} x_{1} \in$ $a^{n} M \cap N=a^{n} N$ for some $n \in \mathbb{N}$. So, there exists $x_{2} \in \mathbb{N}$ such that $a^{n} x_{1}=a^{n} x_{2}$. This implies that $x_{1}=x_{2}$ which is a contradiction. Hence $\sqrt{N:_{R} M}=\{0\}$. Conversely suppose that $a b m \in a b M \cap N$, so $a b m \in N$. Since N is an S-1-absorbing primary submodule of M, $1 . a b \in \sqrt{N:_{R} M}$ or $1 . m \in N$. Suppose that $a b \in \sqrt{N:_{R} M}$. Then $a b=0$ as $\sqrt{N:_{R} M}=\{0\}$. So we have $a b m=0 \in a b N$. Suppose that $1 . m \in N$. So $a b m \in a b N$, then $a b M \cap N \subseteq a b N$. Also, $a b N \subseteq a b M \cap N$. Thus $a b M \cap N=a b N$. Hence N is a pure submodule of M.

In the following, we find a sufficient condition for a ring R to be quasilocal. First we recall a result.

Lemma 5.3. [1, Lemma 1] Let R be a ring. Suppose that for every non-unit element w of R and for every unit element u of R, we have $w+u$ is a unit element of R. Then R is a quasilocal ring.

Proposition 5.4. Let $S=\{1\}$ be a multiplicative closed subset of a ring R. Let I be an $S-1$ absorbing primary ideal of R which is not a primary ideal of R. Then R is a quasilocal ring.

Proof. Let I be an S-1-absorbing primary ideal of R and I is not a primary ideal of R. Then there exist non-unit elements a and b with $a b \in I$ such that $a \notin \sqrt{I}$ and $b \notin I$. Let c be a non-unit element of R. Then $c a b \in I$ implies that $c a \in \sqrt{I}$ or $b \in I$ as I is an S-1-absorbing primary ideal of R. So, $c a \in \sqrt{I}$ as $b \notin I$. Now, consider a unit element u of R. Suppose that $c+u$ is not a unit element of R. Then $(c+u) a b \in I$ implies that $(c+u) a \in \sqrt{I}$ or $b \in I$ as I is an S-1-absorbing primary ideal of R. Then $(c+u) a \in \sqrt{I}$ as $b \notin I$. So $c a+u a \in \sqrt{I}$. Since $c a \in \sqrt{I}$, therefore $a \in \sqrt{I}$. This is a contradiction. Therefore, $c+u$ is a unit element of R. Hence R is a quasilocal ring.

References

[1] A. Badawi and E.Y. Celikel, On 1-absorbing primary ideals of commutative rings, J. Algebra Appl. 19 (6) (2020) 2050111:1-12.
[2] M.K. Dubey and P. Aggarwal, On 2-absorbing primary submodules of modules over commutative ring with unity, Asian-Eur. J. Math. 8 (4) (2015) 1550064:1-12.
[3] F. Farzalipour and P. Ghiasvand, On S-1-absorbing prime submodules, J. Algebra Appl. 21 (6) (2022) 2250115:1-14.
[4] C. Jayaram and U. Tekir, von Neumann regular modules, Comm. Algebra 46 (5) (2018) 2205-2217.
[5] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra 20 (6) (1992) 1803-1817.
[6] H. Mostafanasab, E. Yetkin, U. Tekir and A.Y. Darani, On 2-absorbing primary submodules of modules over commutative rings, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 24 (1) (2016) 335-351.
[7] P.F. Smith and Z. El-Bast, Multiplication modules, Comm. Algebra 16 (4) (1988) 755-779.
[8] P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (3) (1988) 223-235.
[9] G. Ulucak, U. Tekir and S. Koc, On S-2-absorbing submodules and vn-regular modules, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 28 (2) (2020) 239-257.
[10] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Singapore, Springer, 2016.

Author information

Avanish K. Chaturvedi, Department of Mathematics, University of Allahabad, Prayagraj-211002, India.
E-mail: akchaturvedi.math@gmail.com, achaturvedi@allduniv.ac.in
Rohit K. Verma, Department of Mathematics, University of Allahabad, Prayagraj-211002, India.
E-mail: rkvdeptofmathald@gmail.com
Received: 2023-03-16
Accepted: 2023-11-11

