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Abstract In this short paper, we review the Euler-Rodrigues formula for three-dimensional
rotation via fractional powers of matrices. We derive the rotations by any angle through the
spectral behavior of the fractional powers of the rotation matrix by π

2 in R3 about some axis.

1 Introduction

The Euler-Rodrigues formula describes the rotation of a vector in three dimensions, it was first
discovered by Euler [4] and later rediscovered independently by Rodrigues [8] and it is related
to several interesting problems in computer graphics, dynamics, kinematics, mathematics, and
robotics, see Cheng and Gupta [2] and references therein.

Reviews of the Euler–Rodrigues formula in different mathematical forms can be found in the
literature, see e.g., Dai [3], Kahvecí, Yayli and Gök [5] and Mebius [6]. Here, we explored the
geometric aspect of the classical Balakrishnan formula in [1] to obtain a new algorithm for the
generation of a three-dimensional rotation matrix.

Fractional powers have been extensively studied in various branches of mathematics, playing
a significant role in the understanding of complex phenomena. They find applications in diverse
areas, including differential equations and fractional calculus, see e.g. [9], [7].

To our best knowledge, this treatment on the Euler–Rodrigues formula has not yet been
explored in the literature.

2 Three-dimensional rotations

Firstly, we present some facts of the theory of fractional powers of matrices. Secondly, we
establish the main results of this paper; namely, we review the Euler-Rodrigues formula via the
Balakrishnan formula on fractional powers of matrices.

2.1 Fractional powers of operators

In this subsection, we recall some definitions and summarize without proof the results of the
theory of fractional powers of matrices, in the sense of Balakrishnan [1].

Definition 2.1. For A ∈ Cn×n with no eigenvalues on (−∞, 0) and α ∈ R, Aα = eα log A, where
logA is the principal logarithm.

Thanks to Balakrishnan [1] we following results are well-known.

Proposition 2.2. Let 0 < α < 1. We have



244 Flank D. M. Bezerra and Lucas A. Santos

(i)

Aα =
sinαπ

π

∫ ∞

0
λα−1A(λI +A)−1dλ; (2.1)

(ii) Let β be a real number, then
(Aα)β = Aαβ .

2.2 Main results

In this subsection, we present the main results of this paper. We explored the geometric aspect of
the classical Balakrishnan formula (2.1) (see, e.g., Balakrishnan [1]) to obtain a new algorithm
for the generation of three-dimensional rotation matrices. Here, the matrix representations of
linear operators on R3 are considered using the standard basis of R3, and n̂ = (n1, n2, n3)
denotes a vector in R3 with n2

1 + n2
2 + n2

3 = 1.

Lemma 2.3. The matrix which represents the rotation by an angle π
2 about the axis n̂ = (n1, n2, n3)

is given by

A
(
n̂,

π

2

)
=

 n2
1 n1n2 − n3 n1n3 + n2

n1n2 + n3 n2
2 n2n3 − n1

n1n3 − n2 n2n3 + n1 n2
3

 . (2.2)

Proof. Choose two vectors, l̂ and m̂, such that {̂l, m̂, n̂} is a right-handed orthonormal basis. Let
u = âl+ bm̂+ cn̂, with a, b, c ∈ R, be any vector to be rotated by an angle π

2 counterclockwise
about the axis n̂. The resulting vector u′ is the vector u with its component in the l̂, m̂ plane
rotated by π

2

u′ = −b̂l+ am̂+ cn̂

= n̂× u+ ⟨u, n̂⟩n̂.

Consider the standard basis {ê1, ê2, ê3} of R3. If u is written as

u = u1ê1 + u2ê2 + u3ê3,

then

u′ = n̂× u+ ⟨u, n̂⟩n̂
= (n2u3 − n3u2 + u1n

2
1 + u2n1n2 + u3n1n3)ê1

+ (n3u1 − n1u3 + u1n1n2 + u2n
2
2 + u3n2n3)ê2

+ (n1u2 − n2u1 + u1n1n3 + u2n2n3 + u3n
2
3)ê3.

Therefore, the matrix representation of this rotation is

A
(
n̂,

π

2

)
=

 n2
1 n1n2 − n3 n1n3 + n2

n1n2 + n3 n2
2 n2n3 − n1

n1n3 − n2 n2n3 + n1 n2
3

 .□

Remark 2.4. Thanks to the characterization in (2.2) of the matrix which represents the rotation
by an angle π

2 about the axis n̂ = (n1, n2, n3) we can obtain a matrix characterization of the lin-

ear semigroup generated by A
(
n̂, π

2

)
, namely the uniformly continuous semigroup of bounded

linear operators generated by A
(
n̂, π

2

)
, denoted by T (·), has the following explicit representa-

tion

T (t) = etA(n̂,π2 ) =
∞∑
n=0

(tA(n̂, π
2 ))

n

n!
=

 n2
1(e

t − cos t) + cos t n1n2(et − cos t)− n3 sin t n1n3(et − cos t) + n2 sin t
n1n2(et − cos t) + n3 sin t n2

2(e
t − cos t) + cos t n2n3(et − cos t)− n1 sin t

n1n3(et − cos t)− n2 sin t n2n3(et − cos t) + n1 sin t n2
3(e

t − cos t) + cos t


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for any t ⩾ 0.

Remark 2.5. An explicit formula for the matrix elements of a general 3 × 3 rotation matrix can
be find in Rodrigues [8]; namely, if R(n̂, θ) denotes the a rotation by an angle θ about an axis
n̂ = (n1, n2, n3) (n2

1 + n2
2 + n2

3 = 1), whose elements are denoted by Rij(n̂, θ), then we have
the Rodrigues formula

Rij(n̂, θ) = cos(θ)δij + (1 − cos(θ))ninj − sin(θ)ϵijknk, (2.3)

where δij denotes the Kronecker delta, i.e.,

δij =

{
1, if i = j,

0, if i ̸= j,

and ϵijk denotes the Levi-Civita tensor, i.e.,

ϵijk =


1, if (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)},
−1, if (i, j, k) ∈ {(3, 2, 1), (1, 3, 2), (2, 1, 3)},
0, if i = j, or j = k, or k = i,

which is called the angle-and-axis parameterization of the three-dimensional rotation matrix.

We wish to derive all the rotations by any angle θ ∈ R through the rotation by π
2 and its

fractional powers. To get this result we first explicit, in the following theorem, the fractional
power, for 0 ≤ α ≤ 1, of the rotation A(n̂, π

2 ) in Lemma 2.3. It is one of the main results of this
work.

Theorem 2.6. Let A(n̂, π
2 ) be the matrix that represents the rotation by an angle π

2 about the
axis n̂ = (n1, n2, n3). For 0 ⩽ α ⩽ 1, the fractional power of the rotation A(n̂, π

2 ) is given by

Aα
(
n̂,

π

2

)
= n2

1(1 − cos(απ2 )) + cos(απ2 ) n1n2(1 − cos(απ2 ))− n3 sin(απ2 ) n1n3(1 − cos(απ2 ))) + n2 sin(απ2 )

n1n2(1 − cos(απ2 )) + n3 sin(απ2 ) n2
2(1 − cosαπ

2 ) + cosαπ
2 n2n3(1 − cosαπ

2 )− n1 sin(απ2 )

n1n3(1 − cosαπ
2 )− n2 sin(απ2 ) n2n3(1 − cos(απ2 )) + n1 sin(απ2 ) n2

3(1 − cosαπ
2 ) + cos(απ2 )

 .

Proof. The proof consists of the explicit calculation of the fractional power of the operator
A(n̂, π

2 ) through the formula (2.1) for 0 < α < 1.

A
(
n̂,

π

2

)α

=
sin(απ)

π

∫ ∞

0
λα−1A

(
n̂,

π

2

)(
λI +A

(
n̂,

π

2

))−1
dλ, 0 < α < 1. (2.4)

Note that(
λI +A

(
n̂,

π

2

))−1
=

1
(λ+ 1)(λ2 + 1)

a2(1 − λ) + λ(1 + λ) ab(1 − λ) + c(1 + λ) ac(1 − λ)− b(1 + λ)

ab(1 − λ)− c(1 + λ) b2(1 − λ) + λ(1 + λ) bc(1 − λ) + a(1 + λ)

ac(1 − λ) + b(1 + λ) bc(1 − λ)− a(1 + λ) c2(1 − λ) + λ(1 + λ)


and

A
(
n̂,

π

2

)(
λI +A

(
n̂,

π

2

))−1
=

1
(λ+ 1)(λ2 + 1)

 a2λ(λ− 1) + 1 + λ abλ(λ− 1)− cλ(1 + λ) acλ(λ− 1) + bλ(1 + λ)

abλ(λ− 1) + cλ(1 + λ) b2λ(λ− 1) + 1 + λ bcλ(λ− 1)− aλ(1 + λ)

acλ(λ− 1)− bλ(1 + λ) bcλ(λ− 1) + aλ(1 + λ) c2λ(λ− 1) + 1 + λ

 .
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Since

λ(λ− 1)
(λ+ 1)(λ2 + 1)

=
1

λ+ 1
− 1

λ2 + 1

λ+ 1
(λ+ 1)(λ2 + 1)

=
1

λ2 + 1

λ(λ+ 1)
(λ+ 1)(λ2 + 1)

=
λ

λ2 + 1

from right side of the equation (2.4) and A
(
n̂, π

2

)(
λI +A

(
n̂, π

2

))−1
, and by (2.1) we obtain

Aα
(
n̂,

π

2

)
= n2

1(1 − cos(απ2 )) + cos(απ2 ) n1n2(1 − cos(απ2 ))− n3 sin(απ2 ) n1n3(1 − cos(απ2 ))) + n2 sin(απ2 )

n1n2(1 − cos(απ2 )) + n3 sin(απ2 ) n2
2(1 − cosαπ

2 ) + cosαπ
2 n2n3(1 − cosαπ

2 )− n1 sin(απ2 )

n1n3(1 − cosαπ
2 )− n2 sin(απ2 ) n2n3(1 − cos(απ2 )) + n1 sin(απ2 ) n2

3(1 − cosαπ
2 ) + cos(απ2 )

 .

Finally, cases α = 0 and α = 1 are immediate, and the proof is complete. □

Corollary 2.7. The fractional power Aα(n̂, π
2 ) coincides with matrix R(n̂, απ

2 ) = [Rij(n̂,
απ
2 )],

where Rij(n̂,
απ
2 ) is given by (2.3), for 0 ⩽ α ⩽ 1.

We are now in a position to give our definition for the rotation matrix by an angle θ through
fractional powers of the rotation by π

2 .

Definition 2.8. The rotation by θ ∈ R, denoted by A(n̂, θ), is defined to be

A(n̂, θ) := A
2θ
π

(
n̂,

π

2

)
. (2.5)

Note that A(n̂, π
2 ) is such that the fractional power Aα(n̂, π

2 ) is well-defined for α ∈ R.
Theorem 2.6 states that the definition in (2.5) agrees with the classical one given by Rodrigues
formula in (2.3) for 0 ≤ θ ≤ π

2 . The following theorem extends this result for θ ∈ R.

Theorem 2.9. Let A(n̂, θ) be the rotation defined in (2.5). Then

A(n̂, θ) = R(n̂, θ) (2.6)

for any θ ∈ R.

Proof. Firstly for θ ⩾ 0, it is sufficient to show that (2.6) is satisfied for each

(n− 1)π
2

≤ θ ≤ nπ

2
,

for n ∈ N. We proceed by induction. The case n = 1 follows from Theorem 2.6. If we assume
(2.6) for n, we can prove the result for n+ 1. Set

nπ

2
≤ θ ≤ (n+ 1)π

2

so that
(n− 1)π

2
≤ θ − π

2
≤ nπ

2
Hence

A(n̂, θ) = A
2θ
π

(
n̂,

π

2

)
= A

2θ
π −1

(
n̂,

π

2

)
A
(
n̂,

π

2

)
= A

(
n̂, θ − π

2
)A

(
n̂,

π

2

)
(2.7)

and by induction hypothesis

A
(
n̂, θ − π

2

)
= R

(
n̂, θ − π

2

)
(2.8)
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combining (2.7) with (2.8) we obtain

A(n̂, θ) = R
(
n̂, θ − π

2

)
A
(
n̂,

π

2

)
= R(n̂, θ)R

(
n̂,−π

2

)
R
(
n̂,

π

2

)
= R(n̂, θ)

above we use some basic properties of the Euler-Rodrigues formula.
Secondly, for −π

2 ⩽ θ ⩽ 0, and proceeding analogously to the proof of Theorem (2.6) we
can obtain the expression

A−α
(
n̂,

π

2

)
= n2

1(1 − cos(απ2 )) + cos(απ2 ) n1n2(1 − cos(απ2 )) + n3 sin(απ2 ) n1n3(1 − cos(απ2 )))− n2 sin(απ2 )

n1n2(1 − cos(απ2 ))− n3 sin(απ2 ) n2
2(1 − cos(απ2 )) + cos(απ2 ) n2n3(1 − cos(απ2 )) + n1 sin(απ2 )

n1n3(1 − cos(απ2 )) + n2 sin(απ2 ) n2n3(1 − cos(απ2 ))− n1 sin(απ2 ) n2
3(1 − cos(απ2 )) + cos(απ2 )


and so the definition in (2.5) agrees with the classical one given by the Euler-Rodrigues formula
in (2.3) for −π

2 ⩽ θ ⩽ 0. Finally, an analogous argument of induction as in the first part of this
proof shows that (2.5) agrees with the Euler-Rodrigues formula in (2.3) for θ ⩽ 0. □

Corollary 2.10. The family {A(n̂, θ); θ ∈ R}, where

A(n̂, θ) = n2
1(1 − cos(θ)) + cos(θ) n1n2(1 − cos(θ))− n3 sin(θ) n1n3(1 − cos(θ)) + n2 sin(θ)

n1n2(1 − cos(θ)) + n3 sin(θ) n2
2(1 − cos(θ)) + cos(θ) n2n3(1 − cos(θ))− n1 sin(θ)

n1n3(1 − cos(θ))− n2 sin(θ) n2n3(1 − cos(θ)) + n1 sin(θ) n2
3(1 − cos(θ)) + cos(θ)


is a uniformly continuous group on R3 with infinitesimal generator G : R3 → R3 given by

G =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 .

Proof. That family {A(n̂, θ); θ ∈ R} is a group is an immediate consequence of the definition of
A(n̂, θ) in (2.5). We obtain G easily from the definition of infinitesimal generator of a group

D(G) =

{
u ∈ R3; lim

θ→0

A(n̂, θ)u− u

θ
exists

}
and

Gu = lim
θ→0

A(n̂, θ)u− u

θ
, for any u ∈ D(G).

Since G is a bounded linear operator, we conclude that {A(n̂, θ); θ ∈ R} is a uniformly continu-
ous group on R3. □

Remark 2.11. In particular, we can obtain the explicit expression of the logarithm of rotations
A(n̂, θ) thanks to the fact that the logarithm is the infinitesimal generator of the uniformly con-
tinuous group {Aα(n̂, θ);α ∈ R} on R3; namely, we have

logA(n̂, θ) =

 0 −θn3 θn2

θn3 0 −θn1

−θn2 θn1 0

 .
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