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Abstract This work is devoted to study the blow-up phenomenon in a reaction-diffusion equation, defined on a ball,
with a Dirichlet boundary condition. It is shown that the classical solutions of this problem have to blow up in finite time
at only the center point. Moreover, the blow-up growth rate estimate is investigated. Furthermore, to confirm and support
the obtained analytic blow-up results, we use a finite difference scheme for estimating numerically the blow-up time and the
blow-up growth rate constant, for a one-dimensional-space equation as a special case of the considered problem.

1 Introduction
We consider the initial-boundary problem:

ut = ∆u + λ(up+equ ), (x, t) ∈ BR × (0, T ) ,

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ BR

 (1.1)

where q, λ > 0; p > 1, and BR is a ball in Rn, and u0 ∈ C2(Rn), is non-negative non-zero, radially non-increasing
function, vanished on the boundary,
i.e. u0 (x) = 0 ∀ x ∈ ∂BR .
Many real-world phenomena can be modeled mathematically by partial differential equations. Therefore, since the last
century, many authors have studied various mathematical problems involving partial differential equations, see for instance
[1, 2, 3].
In time-dependent problems, it is known that, the blow-up phenomenon occurs in many real life problems such as heat
propagation and combustion theory [4, 5]. Therefore, since last decades, this phenomenon has been investigated extensively
by many authors, see [6, 7, 8, 9]. Generally, we say that the solution blows up, when it is not continuous globally in time.
Which means, the solution is unbounded after a finite time [5]. Mathematically, for a time-dependent problem, it is said that
the solution u(x, t) blows up, if there exists T > 0 , such that

| |u (x, t)| |∞
t→T−
−→ ∞ , where ||u(x, t)| |∞ = Supx|u (x, t) |

One of the common study problems, is the semilinear parabolic equation, defined in a bounded domain Ω with zero Dirichlet
boundary conditions [10, 11, 12, 13, 14]:

ut = ∆u + f(u), (x, t) ∈ Ω × (0, T ) ,

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ Ω

 (1.2)

where f is differentiable, positive, non-decreasing function in (0,∞).
In [10], Kaplan has proved the sufficient conditions for blow-up, which state that for a large size initial function, the blow-up
can occur in a finite time, if the function f satisfies the convexity property, in (0,∞), and the following condition holds:∫ ∞

u

dv

f(v)
< ∞, u ≥ 1 (1.3)

Later, Friedman and McLeod [11] have considered two special cases: where f a power or exponential function, and the
domain is a ball in Rn, and u0 is a large-size function and defined as in problem (1.1).
It was shown that the blow-up occurs only at the center point (x = 0), in a finite time T .
i.e. u (0, t)→∞, as t → T−.
For the polynomial type function: f (u) = up , p > 1, the upper point-wise estimate is derived in [11]:

u (x, t) ≤
C

|x|α
, xϵBR/{0}, t ∈ (0, T ), α ≥

2
p− 1

Additionally, the upper blow-up rate estimate is established as well:

u (0, t) ≤
C

(T − t)β
, t ∈ (0, T ) , β =

1
p− 1

, C > 0
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For the exponential type function: f (u) = eu, it was shown that there exist C > 0, α ∈ (0, 1) such that the upper
point-wise estimate is established as follows:

u(x, t) ≤ logC +
2
α

log
(

1
|x|

)
, x ∈ BR/{0}, t ∈ (0, T ) (1.4)

Furthermore, for some C2 > 0, the upper blow-up rate estimate can take the form:

u (x, t) ≤ logC2 − log (T − t) , x ∈ BR , t ∈ (0, T ) , (1.5)

In fact, problem (1.1) is considered a combination of the two special cases studied in [11]. This paper aims is to extend some
known blow-up results of previous studied problems to problem (1.1), Moreover, we show that the blow up in this problem
can only appear at the centre point. Additionally, for some C > 0, we prove that

(T − t)

E1(u)
≤ C, where E1 (u) =

∫ ∞

u

dv

vev

In addition, for a one-dimensional-space equation as a special case of the considered problem. We follow the numerical finite
difference techniques, used in [15, 16, 17, 18, 19], to estimate numerically both the blow-up growth rate constant and the
blow-up time.
This paper contains six sections: In the second section, it was proven that blow-up in problem (1.1) can occur in a finite time.
Then, some solutions’ properties of problem (1.1) are stated in section two. In the third section, the blow-up set of problem
(1.1) is investigated. Section four is devoted to studying the blow-up growth rate of problem (1.1). In section five, a numerical
experiment in one-dimensional space is given to support the obtained results. Finally, based on the obtained results, some
conclusions are pointed out in the last section.

2 Preliminaries
The uniqueness and existence of local classical solution to problem (1.1) are guaranteed by standard parabolic existence
theorems [20]. While, the next theorem states that, for a large-size initial function, the blow-up in problem (1.1) occurs in a
finite time.

Theorem 2.1. For a large size initial function, the blow-up of the solution occurs in a finite time. Moreover, the center point
belongs to the blow-up set.

Proof. Clearly, the function f (u) = λ(up+equ ) is convex in (0,∞), due to the positivity of its second derivatives in this
domain. In addition, we can show that

E1(u) =

∫ ∞

u

dv

λ(vp+eqv )
< ∞, u ≥ 1

Therefore, by Kaplan condition (1.3), the solution of problem (1.1) blows up in a finite time.
According to [11], the blow-up in the flowing problem occurs in finite time at only the center point.

ut = ∆u + λequ , (x, t) ∈ BR × (0, T ) ,

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ) ,

u (x, 0) = u0 (x) , x ∈ BR

 (2.1)

Since the solution of problem (1.1) is considered an upper-solution to the problem (2.1), it follows that the center point is a
blow-up point to problem (1.1).

The following lemma shows that the classical solution of problem (1.1) is increasing in time, positive, and radially non-
increasing.

Lemma 2.2. [13] Any classical-solution: u(x, t) to problem (1.1) satisfies:

(i) u > 0, in BR × (0, T )

(ii) u (x, t) = u(r, t) , where r = |x| =
√

x2
1 + x2

2 + . . . x2
n.

(iii) ur < 0 in (0, R]× (0, T ) .

(iv) ut > 0, in BR × (0, T ).

3 Blow-up Set
In this section, under certain assumption on initial function, we show that the center (x = 0) is the only possible blow-up
point to problem (1.1). For this, firstly, we need to recall this lemma:

Lemma 3.1. [12]
Let u be a blow-up solution to problem (1.2), with f ∈ C2 (0,∞), positive, and increasing. Assume that the initial

function satisfies the condition:

u0r (r) ≤ −θr , for 0 < r ≤ R, where θ > 0 (3.1)

If there exists a function F ∈ C2 (0,∞),such that F, F
′
, F

′′
> 0 in R+, and the following condition holds

f
′
F − fF

′
≥ 2ε FF

′
inR+ , (3.2)

then for some 0 < ε , J = rn−1ur + εrnF (u) ≤ 0 in (0, R)× (0, T ).
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Theorem 3.2. Assume that the condition (3.1) holds. Then blow-up in problem (1.1) occurs only at the center point.

Proof. Set f (u) = λ(up+equ ) , and F (u) = uδ + eαu, δ, α ∈ (0, 1)
It is clear that F, F

′
, F

′′
> 0 in R+. In order to apply Lemma 3.1, it is only left to prove that the inequality (3.2) holds.

The left hand side of inequality (3.2) takes the form:

f
′
(u)F (u)− f (u)F

′
(u) = λ

(
pup−1 + qequ

)(
uδ + eαu

)
− λ(up+equ )(δuδ−1 + αeαu)

= λ (p− δ)up+δ−1 + λ (q − α) e(q+α)u + λ (p− αu)up−1eαu + λ(qu− δ)uδ−1equ

On the other hand, one can show that

2εF (u)F
′
(u) = 2ε(uδ + eαu)(δuδ−1 + αeαu)

= 2εδu2δ−1 + 2εαe2αu + 2εαuδeαu + 2εδuδ−1eαu

By choosing δ, α, ε are small enough such that the following conditions are held:

(i) p ≥
(

1 + 2ε
λ

)
δ, q ≥

(
1 + 2ε

λ

)
α, p ≥ 1 + δ , p

α
≥ 2ε

λ
,

(ii)
(

δ
q
+ 2εδ

λ

)
≤ u ≤

(
p
α
− 2ε

λ

)
, in BR × (0, t) , t < T ,

we obtain that
f
′
(u)F (u)− f (u)F

′
(u) ≥ 2εF (u)F

′
(u) , in (0, s), s < ∞

Thus the condition (4.1) holds, and by Lemma 3.1 , it follows that

J = rn−1ur + εrn(uδ + eαu) ≤ 0, (r, t) ∈ (0, R)× (0, T )

It follows that
rn−1ur + εrneαu ≤ 0, (r, t) ∈ (0, R)× (0, T )

Which yields that −du
eαu ≥ εrdr

Integrating the both sides of last inequality, yields that

1
αeαu

≥
1
2
εr2 or eαu ≤

2
αε

.
1
r2

Thus u ≤ 1
α

log( 2
αε

) + 1
α

log ( 1
r2 )

Hence u ≤ 1
α

log( 2
αε

) + 1
α

log (1.1) − 2
α

log (r)
It follows that the upper point-wise estimate is has the form:

u (x, t) ≤ logC +
2
α

log
(

1
|x|

)
, x ∈ BR , t ∈ (0, T ), C > 0,

Hence, at any time value, for nonzero spatial vectors, the solution is bounded.

Remark 3.3. The assumption (3.1) is the sufficient but unnecessary condition to guarantee that the blow-up in problem (1.1)
occurs only at the center point.

4 Growth Rate Estimate
This section is devoted to deriving the upper blow-up growth-rate estimate to problem (1.1), under the assumption (3.1).
Firstly, we recall the following lemma.

Lemma 4.1. [12] Let u be a blow-up solution to problem (1.2), with f ∈ C2 (0, 1) , increasing, and f, f
′
, f

′′
> 0 in R+.

In addition, we assume that the condition (3.1) holds.
Set F (x, t) = ut − αf (u) , x ∈ BR , t ∈ (0, T ) , α > 0
Then F (x, t) ≥ 0, for (x, t) ∈ Bε × (τ, T ) , where tau ∈ (0, T ) , ε ∈ (0, R) .

Theorem 4.2. Let u be a blow-up solution of problem (1.1), in addition, assume that condition (3.1) holds. Then there exists
0 < C such that:

(T − t)

E1 (u)
≤ C , (4.1)

where E1 (u) =
∫∞
u

dv
(vp+eqv )

, for t close to T , x = 0.

Proof. Set f (u) = λ(up+equ ). By Lemma 4.1 it follows that
ut (0, t) ≥ αf (u(0, t)) = αλ((u(0, t))p+equ(0,t) ), for t close to , α > 0
Thus

du

(u(0, t))p+equ(0,t)
≥ λ α dt

Taking the Integration to the last inequality from t to T , and since u (0, t) t→T−→∞, yields that

E1 (u) ≥ λ α (T − t) , or
(T − t)

E1 (u)
≤ C,

where x = 0, t is close to T , C > 0

Remark 4.3. (i) The assumption (3.1) is the sufficient but unnecessary condition to guarantee that the upper blow-up
growth rate of problem (1.1) takes the form (4.1).

(ii) Since E1 (u(0, t))
t→T−→0 , it follows that 1

E1(u(0,t))
t→T−→∞, while (T − t)

t→T−→0.

(iii) The constant C is considered the growth rate constant for problem (1.1). In the next section, this constant will be
estimated numerically for a one-dimensional space problem.
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5 Numerical Example
In order to support the theoretical results, the explicit Euler finite-difference scheme is used in this section to compute the
numerical solutions for a one-dimensional space problem, as a special case of problem (1.1), where p = 2; q = λ =
1, namely: 

ut = uxx + (u2+eu ) , (x, t) ∈ (−1, 1)× (0, T ) ,

u (x, t) = 0, x = ∓1 , t ∈ (0, T ) ,

u (x, 0) = u0 (x) = 100
(
1 − x2

)
, x ∈ [−1, 1]

 (5.1)

Clearly, u0 is non-negative non-zero, symmetric, non-increasing function, and it is vanished on the boundary, and it takes its
maximum value at the centre point x = 0. In addition, the condition (3.1) holds. Therefore, by Theorem 2, the blow-up in
problem (5.1) can only occur at the centre point.
For problem (5.1). The main focus of this section is on estimating the numerical blow-up time and the blow-up growth rate
constant.

5.1 The Discrete Problem
We define the spatial grids points as follows:

xj = xj−1 + h , j = 1, 2, . . . ., J − 1, x0 = −1, xJ = 1,

where h = 2/J , J ∈ N
While, the time grids points are defined as follows:

t0 = 0, tn+1 = tn + k= nk, for n = 0, 1 , 2, . . . . . . ., k ∈ R+

The approximate value of u (xj , tn) , is denoted by Un
j , for 1 ≤ j ≤ J−1, and n > 0, By approximating uxx (xj , tn) by

the standard second order finite difference operator, and approximating ut (xj , tn) by the forward finite difference operator,
the discrete problem of problem (5.1) becomes as follows:

Un+1
j = (1 − 2r)Un

j + r
(
Un
j+1 + Un

j−1

)
+ kf

(
Un
j

)
Un

0 = Un
J = 0,

U0
j = u (xj , 0) = u0 (xj) ,

 (5.2)

where r = k/h2 , 1 ≤ j ≤ J − 1, n > 0, f
(
Un
j

)
= (U

n

j
)2+e

Un
j .

Moreover, we define | |Un| |∞ = maxj=0,...,J |Un
j | n ∈ N.

It is known that the order of this proposed method is O
(
k + h2

)
, [15]. Moreover, the space and time steps should be

chosen such that this the stability condition (2r ≤ 1) holds. In fact, the explicit Euler finite-difference scheme has been used
by some authors to estimate the numerical blow-up times for some types of one-dimensional semi-linear parabolic equations
[15, 16, 17, 18].
The next theorem [15], confirms that the solution of the discrete problem (5.2) is convergent to the exact solution of problem
(5.1) when the space-step, h , is small enough.

Theorem 5.1. Let Un = [Un
0 , Un

1 , . . . . . . , Un
J ], be a solution to problem (11), where the time step k ∈ (0, h2

2 ] . Then

(i) Un
j ≥ 0; and Un

J−j = Un
j

Un+1
j ≥ Un

j , n ≥ 0, 0 ≤ j ≤ J

(ii) ||Un − un|| ≤ Ch2, n ≥ 0, where un = [u0 (xj) , u (x1, tn) , . . . . . . , u (xJ , tn)].

i.e. Un → un, as h → 0,

It follows that the numerical solution obtained by (5.2) converges to the exact solution of problem (5.1).
In fact, the solution of problem (5.2) may not exist for any time-level, because they become unbounded. These solutions are
called blow-up solutions.

Definition 5.2. [15] If there exists m ∈ N such that | |Un| |∞ is unbounded, ∀ n ≥ m, then {Un} is called blow-up
solution to problem (5.1), and Tm

J = mk is considered the blow up time.

Remark 5.3. The blow-up solution and blow-up time, for problem (5.2) are considered the numerical blow-up solution, and
the numerical blow-up time, respectively, for problem (5.1). It is known that the numerical blow-up time is determined by
some factors, such as the type of nonlinearity, the size of initial function, and the values of space (time) steps.

The following theorem confirms that the numerical blow-up time obtained by problem (5.2) is convergent to the theoretical
blow-up time of problem (5.1).

Theorem 5.4. [15]: Let {Un} =
(
Un

0 , Un
1 , . . . ..Un

J

)
, n ∈ N, be a solution to problem (11), where k ∈ (0, h2

2 ) . Then
{Un}, blows up in the finite time Tm

J , for some m ∈ N. Moreover, then Tm
J → T, as J → ∞, where T is the blow-up

time of problem (5.1).



HORNS HYPERGEOMETRIC FUNCTIONS 267

5.2 Numerical Results

In this sub-section, we use the discrete problem (5.2) with using the Matlab software (R2020) to estimate numerically, the
blow-up time for problem (5.1). The blow-up time is taken at once when the condition: ||Un||∞ ≥ 106 is satisfied.
Moreover, for achieving the convergence, the time-step is chosen as k = h2/2.
Clearly, the obtained numerical solution is symmetric, and it takes its maximum at xJ/2 = 0 , Furthermore, we compute
numerically the blow-up growth rate constant of problem (5.1), which is given by (4.1) as follows:

CJ = max
0≤n≤m−1

C(n) , where C (n) = (Tm
J − tn) /E1(U

n
J/2).

For different space size- meshes ( J = 150, 200, 250 , 300 and 350), we presents in Table 1, the estimated numerical
blow-up times (Th = mk), and the blow-up growth rate constant: CJ , and the iterative errors bounds, obtained by using the
error-formula: EJ = |Tm

J+50 − Tm
J |, where m = m(J) denotes the first number of iteration, when the numerical solution

blows up.
The Figures 1, 2, 3, 4 and 5 present the evolution overtime in the numerical blow-up solutions of problem (5.1), for J =150,
200, 250 ,300 and 350 respectively, and 0 ≤ n ≤ m .
Based on the numerical results presented in Table 1 and in (Figure 1, 2, 3, 4 and 5, the following observations are obtained:

(i) The centre point is the only possible numerical blow-up point, and that supports the theoretical blow-up results, shown
in section 3.

(ii) The iterative errors are decreasing, as we refine the space (time) steps, which confirms that the numerical blow-up
times sequence is convergent.

(iii) The numerical blow-up growth rate can be estimated by the approximate constant CJ .

Table 1. Numerical blow-up times, estimated growth rates constants, and time errors bounds
J k m Th CJ EJ

150 8.8889E-05 17 0.001511113 3.2239E+06 1.1113E-04
200 5.0000E-05 28 0.001400000 1.3394E+99 8.800E-05
250 3.2000 E-05 41 0.001312000 1.5517E+14 4.534E-05
300 2.2222E-05 57 0.001266654 1.9269E+07 9.475E-06
350 1.6327E-05 77 0.001257179 2.0642E+06 . . . . . . . . . ..

Figure 1. The evolutions in the numerical blow-up solutions overtime with J = 150
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Figure 2. The evolutions in the numerical blow-up solutions overtime with J = 200

Figure 3. The evolutions in the numerical blow-up solutions overtime with J = 250

Figure 4. The evolutions in the numerical blow-up solutions overtime with J = 300
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Figure 5. The evolutions in the numerical blow-up solutions overtime with J = 350

6 Conclusions
This paper deals with the blow-up solutions of a semi-linear parabolic equation associated with Dirichlet boundary condition.
Namely, the blow-up set and growth rates are considered. Moreover, the numerical blow-up time and estimated growth rate
constant are computed, to a one-dimensional space semi-linear heat equation, using a finite difference scheme. The obtained
results show the solution of blow-up in problem (1.1) may occur in a finite time, and it can only occur at the origin point.
Moreover, on a numerical point of view, it is observed that the growth rate constant can determine the size of blow-up in the
considered problem.
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