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Abstract. The chromatic topological indices concept was introduced recently. Many other
variations concerning the chromatic topological indices have been studied lately. In this paper,
we have calculated the first and second rainbow chromatic Zagreb indices and rainbow chromatic
irregularity indices for central graph of some standard graph classes.

1 Introduction

We use simple, connected, undirected, and finite graphs throughout the study. For various defini-
tions, parameters, and other technical terms used in this study, we refer to[1, 2, 3, 4, 5, 6]. In the
field of graph theory, Graph Coloring is one of the most ever-growing fields. Graph coloring[7]
means assigning colors to the elements of graphs, such as vertices/edges. Proper coloring is
defined as graph coloring such that the adjacent vertices/edges get different colors. The term
chromatic number[8] refers to the minimum number of colors used to obtain a proper coloring
and is represented by χ(G). In this study, our focus is on vertex coloring[9]. We consider a
particular type of vertex coloring known as rainbow neighbourhood coloring[10]. In this color-
ing, we first assign the first color to the maximum independent vertex set. The second color to
the next maximum independent vertex set, and the procedure follows until all the vertices get
one or the other color. Topological indices[11] are numerical values that are associated with
the molecules. In Chemical graph theory, the topological indices act as a molecular descriptor.
Many topological indices are divided based on degree [12, 13] and distance [14, 15], amongst
which our focus is on degree-based topological indices, mainly Zagreb indices[16]. The chro-
matic versions of Zagreb indices have been studied recently in the literature[17]. The notion of
chromatic topological indices is being discussed in the literature[18]. The chromatic topological
indices play a vital role in understanding various chemical, physical and biochemical properties
associated with the molecules. There are many derived graph classes [19, 20, 21] such as middle
graphs, line graphs, total graphs, central graphs and so on. In this study, we consider the central
graph of a graph G and it is represented by C(G). By subdividing all the edges of the graph
G only once and joining the graph G non-adjacent vertices, the central graph[22] of a graph G
is obtained. For computational purpose, let C = {c1, c2, ..., cl} represents the set of colors used
in rainbow neighbourhood coloring and ηt,s denote the total number of edges with end points
having the color ct and cs. Here, t < s, 1 ≤ t, s ≤ χr(G). The strength of a particular color
in G is represented by θ(ci), which defines the cardinality of the specific color used. Through-
out the paper, we use the minimum coloring condition i.e, |ci+1| ≤ |ci| ∀i to color the vertices
of graphs. Inspired by variety of studies on different kinds of graph colorings and chromatic
Zagreb indices, we discuss the notion of rainbow chromatic Zagreb indices and rainbow chro-
matic irregularity indices for central graphs of some standard graph classes. For definitions and
informations related to various graphs used in the paper we refer to[23, 24, 25, 26, 27, 28].
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Definition 1.1. [18] The first rainbow chromatic Zagreb index of G, represented by Mφrt
1 (G), is

provided by Mφrt
1 (G) =

∑
u∈V (G)

c(u)2 where c follows rainbow neighbourhood coloring of graph.

Definition 1.2. [18] The second rainbow chromatic Zagreb index of G, represented by Mφrt
2 (G),

is provided by Mφrt
2 (G) =

∑
uv∈E(G)

c(u) · c(v) where c follows rainbow neighbourhood coloring

of graph.

Definition 1.3. [18] The rainbow chromatic irregularity index of G, represented by Mφrt
3 (G), is

provided by Mφrt
3 (G) =

∑
uv∈E(G)

|c(u)− c(v)| where c follows rainbow neighbourhood coloring

of graph.

Definition 1.4. [18] The rainbow chromatic total irregularity index of G, represented by Mφrt
4 (G),

is provided by Mφrt
4 (G) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| where c follows rainbow neighbourhood col-

oring of graph.

The working rule for the first and second rainbow chromatic Zagreb index, rainbow chro-
matic irregularity index, and rainbow chromatic total irregularity index is provided by the below
equations.

(i) Mφrt
1 (G) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2

(ii) Mφrt
2 (G) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(G)

tsηts

(iii) Mφrt
3 (G) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(G)

ηts|t− s|

(iv) Mφrt
4 (G) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s|

2 Main Results

Theorem 2.1. For the central graph of cycle graph C[Cn], n ≥ 4 we have,

i)Mφrt
1 (C[Cn]) =

{
n3+9n2+41n+9

12 ; n odd,
n3+9n2+38n

12 ; n even.

ii)Mφrt
2 (C[Cn]) =

{
n4+8n3+22n2−8n−23

32 ; n odd,
n4+8n3+20n2−16n

32 ; n even.

iii)Mφrt
3 (C[Cn]) =

{
n3+6n2−n+18

12 ; n odd,
n3+6n2−4n+24

12 ; n even.

iv)Mφrt
4 (C[Cn]) =

{
2n3+3n2+n

12 ; n odd,
2n3+3n2−2n

12 ; n even.

Proof. Case-1: Assume n to be odd.
In such case, we foremost color the even vertices say v2, v4, v6,... with the color say c1 and then
we color the odd vertices say v1, v3, v5,... with the color say c2, c3, c4,... which appears twice
based on the selection of the graph. The final vertex of the chosen graph will take the color say
cn+3

2
.

i) To compute Mφrt
1 of C[Cn], the vertices are colored in the order described above and we

have θ(c1) = n, θ(c2) = 2, θ(c3) = 2,..., θ(cn+3
2
) = 1. Thus, the associated first rainbow

chromatic Zagreb index is provided by,
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Mφrt
1 (C[Cn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = n3+9n2+41n+9

12

ii) To compute Mφrt
2 of C[Cn], the vertices are colored as described above and for

n = 5, we have η12 = 4, η13 = 4, η14 = 2, η23 = 3, η24 = 1 and η34 = 1.
n = 7, we have η12 = 4, η13 = 4, η14 = 4, η15 = 2, η23 = 3, η24 = 4, η25 = 1, η34 = 3, η35 = 2
and η45 = 1.
n = 9, we have η12 = 4, η13 = 4, η14 = 4, η15 = 4, η16 = 2, η23 = 3, η24 = 4, η25 = 4, η26 = 1,
η34 = 3, η35 = 4, η36 = 2, η45 = 3, η46 = 2 and η56 = 1.
The procedure continues for rest of the vertices based on the selection of the graph. Thus, the
associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Cn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Cn])

tsηts = n4+8n3+22n2−8n−23
32

iii) To compute Mφrt
3 of C[Cn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + η(n+1
2 )n+3

2
edges which contributes to 1 based on the color distance and

η13 + η24 + η35 + ... + η(n−1
2 )n+3

2
edges contributes to 2 based on the color distance and the

procedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Cn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Cn])

ηts|t− s| = n3+6n2−n+18
12

iv) To compute Mφrt
4 of C[Cn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, ..., {n+1

2 , n+3
2 } contributes to the color dis-

tance 1 and the combination {1, 3}, {2, 4}, ..., {n−1
2 , n+3

2 } contributes to the color distance 2 and
same procedure is followed based on the selection of the graph. Also, we have θ(c1) = n,
θ(c2) = 2, θ(c3) = 2,..., θ(cn+3

2
) = 1. Thus, the associated rainbow chromatic total irregularity

index is provided by,

Mφrt
4 (C[Cn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 2n3+3n2+n
12

Case-2: Assume n to be even.
In such case, we foremost color the even vertices say v2, v4, v6,... with the color say c1 and then
we color the odd vertices say v1, v3, v5,... with the color say c2, c3,..., cn+2

2
which appears twice

based on the selection of the graph. Then,

i) To compute Mφrt
1 of C[Cn], the vertices are colored as described above and we have θ(c1) = n,

θ(c2) = 2, θ(c3) = 2,..., θ(cn+2
2
) = 2. Thus, the associated first rainbow chromatic Zagreb index

is provided by,

Mφrt
1 (C[Cn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = n3+9n2+38n

12

ii) To compute Mφrt
2 of C[Cn], the vertices are colored as described above and for

n = 4, we have η12 = 4, η13 = 4, and η23 = 2.
n = 6, we have η12 = 4, η13 = 4, η14 = 4, η23 = 3, η24 = 3, and η34 = 3.
n = 8, we have η12 = 4, η13 = 4, η14 = 4, η15 = 4, η23 = 3, η24 = 4, η25 = 3, η34 = 3, η35 = 4
and η45 = 3.
The procedure continues for rest of the vertices based on the selection of the graph. Thus, the
associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Cn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Cn])

tsηts = n4+8n3+20n2−16n
32
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iii) To compute Mφrt
3 of C[Cn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + η(n2 )
n+2

2
edges which contributes to 1 based on the color distance and

η13 + η24 + η35 + ...+ η(n−2
2 )n+2

2
edges contributes to 2 based on the color distance and the pro-

cedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Cn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Cn])

ηts|t− s| = n3+6n2−4n+24
12

iv) To compute Mφrt
4 of C[Cn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, {3, 4}, ..., {n

2 ,
n+2

2 } contributes to the color
distance 1 and the combination {1, 3}, {2, 4}, {3, 5}, ..., {n−2

2 , n+2
2 } contributes to the color dis-

tance 2 and same procedure is followed based on the selection of the graph. Also, we have
θ(c1) = n, θ(c2) = 2, θ(c3) = 2,..., θ(cn+2

2
) = 2. Thus, the associated rainbow chromatic total

irregularity index is provided by,

Mφrt
4 (C[Cn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 2n3+3n2−2n
12

cn+3
2

c1 c2

c1

c2

c1

c3

c1

c3c1c4

c1

c4

c1

c1

(a) Fig. A

cn+2
2

c1 c2

c1

c2

c1

c3

c1

c3c1c4

c1

c4

c1

c1

(b) Fig. B

Figure 1 Fig. A and B shows rainbow neighbourhood coloring for (C[Cn]) graph with odd and even vertices respectively

Theorem 2.2. For the central graph of triangular snake graph C[Tn], n ≥ 1 we have,

i)Mφrt
1 (C[Tn]) =

2n3 + 9n2 + 22n+ 12
3

ii)Mφrt
2 (C[Tn]) =

3n4 + 10n3 + 27n2 + 44n− 12
6

iii)Mφrt
3 (C[Tn]) =

2n3 + 12n2 − 8n+ 12
3

iv)Mφrt
4 (C[Tn]) =

11n3 + 12n2 + 4n
6
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Proof. We use n+ 1 colors say c1, c2, c3 etc. to color the vertices of the chosen central graph of
the snake graph. Primarily, we color all the middle vertices of all the triangle with the color say
c1. Further, we color the remaining vertices of the first triangle with color say c2, then we color
the remaining vertices of the second triangle with the color say c3. Later, we color the remaining
vertices of the third triangle with the color say c4 and the pattern continues till all the remaining
vertices gets one or the other color.

i) In order to calculate Mφrt
1 of C[Tn], the color c1 appears 3n times, the color c2 appears thrice

and the color c3 appears twice and all the other colors say c4, c5, c6,... will be appearing two times
based on the graph we choose. Here, we have θ(c1) = 3n, θ(c2) = 3, θ(c3) = 2,..., θ(cn) = 2,
θ(cn+1) = 2. Thus, the associated first rainbow chromatic Zagreb index is provided by,

Mφrt
1 (C[Tn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = 2n3+9n2+22n+12

3

ii) To compute Mφrt
2 of C[Tn], the vertices are colored as described above and for

n = 1, we have η12 = 6.
n = 2, we have η12 = 8, η13 = 4 and η23 = 4.
n = 3, we have η12 = 8, η13 = 6, η14 = 4, η23 = 4, η24 = 6 and η34 = 2.
n = 4, we have η12 = 8, η13 = 6, η14 = 6, η15 = 4, η23 = 4, η24 = 6, η25 = 6, η34 = 2, η35 = 4
and η45 = 2.
.
.
.
n = n+ 1,we have η12 = 8, η13 = 6, η14 = 6,..., η1(n+1) = 4.
η23 = 4, η24 = 6, η25 = 6,..., η2(n+1) = 6.
η34 = 2, η35 = 4, η36 = 4,..., η3(n+1) = 4.
,..., ηn(n+1) = 2.
Thus, the associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Tn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Tn])

tsηts = 3n4+10n3+27n2+44n−12
6

iii) To compute Mφrt
3 of C[Tn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + ηn(n+1) edges which contributes to 1 based on the color distance and
η13 + η24 + η35 + ...+ ηn−1(n+1) edges contributes to 2 based on the color distance and the pro-
cedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Tn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Tn])

ηts|t− s| = 2n3+12n2−8n+12
3

iv) To compute Mφrt
4 of C[Tn], the vertices are colored as described above. Then, we have to

take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, {3, 4}, {4, 5}, ..., {n, n + 1} contributes to
the color distance 1 and the combination {1, 3}, {2, 4}, {3, 5}, ..., {n − 1, n + 1} contributes to
the color distance 2 and same procedure is followed based on the selection of the graph. Also,
we have θ(c1) = 3n, θ(c2) = 2, θ(c3) = 2,..., θ(cn) = 2, θ(cn+1) = 2. Therefore, the associated
rainbow chromatic total irregularity index is provided by the following formula,

Mφrt
4 (C[Tn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 11n3+12n2+4n
6
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c2 c1 c2 c1 c3 cn cn+1c1

c2 c3 cn+1

c1 c1 c1 c1 c1 c1

Figure 2 Rainbow neighbourhood coloring for (C[Tn]) graph

Theorem 2.3. For the central graph of path graph C[Pn], n ≥ 3 we have,

i)Mφrt
1 (C[Pn]) =

{
n3+9n2+41n−3

12 ; n odd,
n3+9n2+38n−12

12 ; n even.

ii)Mφrt
2 (C[Pn]) =

{
n4+8n3+22n2+8n−39

32 ; n odd,
n4+8n3+20n2−32

32 ; n even.

iii)Mφrt
3 (C[Pn]) =

{
n3+6n2−n−6

12 ; n odd,
n3+6n2−4n

12 ; n even.

iv)Mφrt
4 (C[Pn]) =

{
4n3+3n2−4n−3

24 ; n odd,
4n3+3n2−10n

24 ; n even.

Proof. Case-1: Assume n to be odd.
In such case, we foremost color the even vertices say v2, v4, v6,... with the color say c1 and then
we color the odd vertices say v1, v3, v5,... with the color say c2, c3, c4, c5,... which appears twice
based on the selection of the graph. The final vertex of the chosen graph will be getting the color
say cn+3

2
.

i) To compute Mφrt
1 of C[Pn], the vertices are colored as described above and we have θ(c1) =

n−1, θ(c2) = 2, θ(c3) = 2,..., θ(cn+3
2
) = 1. Thus, the associated first rainbow chromatic Zagreb

index is provided by,

Mφrt
1 (C[Pn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = n3+9n2+41n−3

12
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ii) To compute Mφrt
2 of C[Pn], the vertices are colored as described above and for

n = 3, we have η12 = 3, η13 = 1 and η23 = 1.
n = 5, we have η12 = 3, η13 = 4, η14 = 1, η23 = 3, η24 = 2 and η34 = 1.
n = 7, we have η12 = 3, η13 = 4, η14 = 4, η15 = 1, η23 = 3, η24 = 4, η25 = 2, η34 = 3, η35 = 2
and η45 = 1.
n = 9, we have η12 = 3, η13 = 4, η14 = 4, η15 = 4, η16 = 1, η23 = 3, η24 = 4, η25 = 4, η26 = 2,
η34 = 3, η35 = 4, η36 = 2, η45 = 3, η46 = 2 and η56 = 1.
The procedure continues for rest of the vertices based on the selection of the graph. Thus, the
associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Pn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Pn])

tsηts = n4+8n3+22n2+8n−39
32

iii) To compute Mφrt
3 of C[Pn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + η(n+1
2 )n+3

2
edges which contributes to 1 based on the color distance and

η13 + η24 + η35 + ... + η(n−1
2 )n+3

2
edges contributes to 2 based on the color distance and the

procedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Pn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Pn])

ηts|t− s| = n3+6n2−n−6
12

iv) To compute Mφrt
4 of C[Pn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, ..., {n+1

2 , n+3
2 } contributes to the color dis-

tance 1 and the combination {1, 3}, {2, 4}, ..., {n−1
2 , n+3

2 } contributes to the color distance 2 and
same procedure is followed based on the selection of the graph. Also, we have θ(c1) = n − 1,
θ(c2) = 2, θ(c3) = 2,..., θ(cn+3

2
) = 1. Thus, the associated rainbow chromatic total irregularity

index is provided by,

Mφrt
4 (C[Pn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 4n3+3n2−4n−3
24

Case-2: Assume n to be even.
In such case, we foremost color the even vertices say v2, v4, v6,... with the color say c1 and then
we color the odd vertices say v1, v3, v5,... with the color say c2, c3,..., cn+2

2
which appears twice

based on the selection of the graph. Then,

i) To compute Mφrt
1 of C[Pn], the vertices are colored as described above and we have θ(c1) =

n−1, θ(c2) = 2, θ(c3) = 2,..., θ(cn+2
2
) = 2. Thus, the associated first rainbow chromatic Zagreb

index is provided by,

Mφrt
1 (C[Pn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = n3+9n2+38n−12

12

ii) To compute Mφrt
2 of C[Pn], the vertices are colored as described above and for

n = 4, we have η12 = 3, η13 = 3, and η23 = 3.
n = 6, we have η12 = 3, η13 = 4, η14 = 3, η23 = 3, η24 = 4, and η34 = 3.
n = 8, we have η12 = 3, η13 = 4, η14 = 4, η15 = 3, η23 = 3, η24 = 4, η25 = 4, η34 = 3, η35 = 4
and η45 = 3.
The procedure continues for rest of the vertices based on the selection of the graph. Thus, the
associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Pn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Pn])

tsηts = n4+8n3+20n2−32
32

iii) To compute Mφrt
3 of C[Pn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + η(n2 )
n+2

2
edges which contributes to 1 based on the color distance and

η13 + η24 + η35 + ... + η(n−2
2 )n+2

2
edges contributes to 2 based on the color distance and the
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procedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Pn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Pn])

ηts|t− s| = n3+6n2−4n
12

iv) To compute Mφrt
4 of C[Pn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, ..., {n

2 ,
n+2

2 } contributes to the color dis-
tance 1 and the combination {1, 3}, {2, 4}, ..., {n−2

2 , n+2
2 } contributes to the color distance 2 and

same procedure is followed based on the selection of the graph. Also, we have θ(c1) = n − 1,
θ(c2) = 2, θ(c3) = 2,..., θ(cn+2

2
) = 2. Thus, the associated rainbow chromatic total irregularity

index is provided by,

Mφrt
4 (C[Pn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 4n3+3n2−10n
24

c2 c1 c2 c1 c3 cn+3
2

c1

Figure 3 Rainbow neighbourhood coloring for (C[Pn]) graph with odd vertices

c2 c1 c2 c1 c3 cn+2
2

c1

Figure 4 Rainbow neighbourhood coloring for (C[Pn]) graph with even vertices

Theorem 2.4. For the central graph of star graph C[Sn], n ≥ 3 we have,

i)Mφrt
1 (C[Sn]) =

2n3 + 3n2 + 7n+ 12
6

ii)Mφrt
2 (C[Sn]) =

3n4 + 2n3 − 3n2 + 46n− 48
24

iii)Mφrt
3 (C[Sn]) =

n3 + 5n− 6
6

iv)Mφrt
4 (C[Sn]) =

2n3 − 3n2 + n

6
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Proof. We use n colors say c1, c2, c3,..., cn to color the vertices of the chosen central graph of
the star graph. Primarily, we color all the middle vertices of the star graph with the color say
c1. Further, we color the central vertex of the star graph with the color say c2. Later, all the
remaining vertices of the central graph of star graph gets the color say c2, c3, c4,..., cn once in
the given order as per the selection of the graph.

i) To compute Mφrt
1 of C[Sn], the color c1 appears n − 1 times, the color c2 appears twice

and all the other colors say c3,c4, c5,..., cn appears once based on the graph we choose. Now,
we have θ(c1) = n − 1, θ(c2) = 2, θ(c3) = 1,..., θ(cn) = 1. Thus, the associated first rainbow
chromatic Zagreb index is provided by,

Mφrt
1 (C[Sn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = 2n3+3n2+7n+12

6

ii) To compute Mφrt
2 of C[Sn], the vertices are colored as described above and we have

η12 = n, η13 = 1, η14 = 1,..., η1n = 1. η23 = 1, η24 = 1, η25 = 1, ..., η2n = 1 and similarly all
the other combinations appears once based on the selection of the graph.
Thus, the associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Sn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Sn])

tsηts = 3n4+2n3−3n2+46n−48
24

iii) To compute Mφrt
3 of C[Sn], the vertices are colored as described above and we have

η12 + η23 + η34 + ...+ ηn−1(n) = 2n− 2 edges which contributes to 1 based on the color distance
and η13 + η24 + η35 + ... + ηn−2(n) = n − 2 edges contributes to 2 based on the color distance
and the procedure continues based on the selection of the graph. Thus, the associated rainbow
chromatic irregularity index is provided by,

Mφrt
3 (C[Sn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Sn])

ηts|t− s| = n3+5n−6
6

iv) To compute Mφrt
4 of C[Sn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3},..., {n − 1, n} contributes to the color dis-
tance 1 and the combination {1, 3}, {2, 4},..., {n − 2, n} contributes to the color distance 2 and
same procedure is followed based on the selection of the graph. Also, we have θ(c1) = n − 1,
θ(c2) = 2, θ(c3) = 1,..., θ(cn) = 1. Thus, the associated rainbow chromatic total irregularity
index is provided by,

Mφrt
4 (C[Sn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 2n3−3n2+n
6

c2

c1 c1 c1

c2 c3 c4 cn

Figure 5 Rainbow neighbourhood coloring for (C[Sn]) graph
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Theorem 2.5. For the central graph of wheel graph C[Wn], n ≥ 4 we have,

i)Mφrt
1 (C[Wn]) =

{
n3+9n2+53n+57

12 ; n odd,
n3+9n2+50n+48

12 ; n even.

ii)Mφrt
2 (C[Wn]) =

{
n4+8n3+30n2+104n−15

32 ; n odd,
n4+8n3+28n2+96n

32 ; n even.

iii)Mφrt
3 (C[Wn]) =

{
n3+9n2+17n+21

12 ; n odd,
n3+9n2+14n+24

12 ; n even.

iv)Mφrt
4 (C[Wn]) =

{
7n3+15n2+23n+3

24 ; n odd,
7n3+15n2+14n

24 ; n even.

Proof. Case-1: Assume n to be odd.
In such case, we foremost color the even vertices say v2, v4, v6,... of the cycle and all the vertices
inside the cycle graph except the central vertex with the color say c1 and then we color the odd
vertices say v1, v3, v5,... of the cycle graph and the central vertex with the color say c2. The
remaining vertices gets the rest of the colors say c3, c4, c5,... which appears twice based on the
selection of the graph. The final vertex of the chosen graph will be getting the color say cn+3

2
.

i) To compute Mφrt
1 of C[Wn], the vertices are colored as described above and we have θ(c1) =

2n, θ(c2) = 2, θ(c3) = 2,..., θ(cn+3
2
) = 1. Thus, the associated first rainbow chromatic Zagreb

index is provided by,

Mφrt
1 (C[Wn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = n3+9n2+53n+57

12

ii) To compute Mφrt
2 of C[Wn], the vertices are colored as described above and for

n = 5, we have η12 = 11, η13 = 6, η14 = 3, η23 = 3, η24 = 1 and η34 = 1.
n = 7, we have η12 = 13, η13 = 6, η14 = 6, η15 = 3, η23 = 3, η24 = 4, η25 = 10, η34 = 3,
η35 = 2 and η45 = 1.
n = 9, we have η12 = 15, η13 = 6, η14 = 6, η15 = 6, η16 = 3, η23 = 3, η24 = 4, η25 = 4, η26 = 1,
η34 = 3, η35 = 4, η36 = 2, η45 = 3, η46 = 2 and η56 = 1.
The procedure continues for rest of the vertices based on the selection of the graph. Thus, the
associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Wn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Wn])

tsηts = n4+8n3+30n2+104n−15
32

iii) To compute Mφrt
3 of C[Wn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + η(n+1
2 )n+3

2
edges which contributes to 1 based on the color distance and

η13 + η24 + η35 + ...+ η(n−1
2 )n+3

2
edges contributes to 2 based on the color distance and the pro-

cedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Wn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Wn])

ηts|t− s| = n3+9n2+17n+21
12

iv) To compute Mφrt
4 of C[Wn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, ..., {n+1

2 , n+3
2 } contributes to the color dis-

tance 1 and the combination {1, 3}, {2, 4}, ..., {n−1
2 , n+3

2 } contributes to the color distance 2 and
same procedure is followed based on the selection of the graph. Also, we have θ(c1) = 2n,



RAINBOW CHROMATIC TOPOLOGICAL INDICES 281

θ(c2) = 2, θ(c3) = 2,..., θ(cn+3
2
) = 1. Thus, the associated rainbow chromatic total irregularity

index is provided by,

Mφrt
4 (C[Wn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 7n3+15n2+23n+3
24

Case-2: Assume n to be even.
In such case, we foremost color the even vertices say v2, v4, v6,... of the cycle and all the vertices
inside the cycle graph except the central vertex with the color say c1 and then we color the odd
vertices say v1, v3, v5,... of the cycle graph and the central vertex with the color say c2. The
remaining vertices gets the rest of the colors say c3, c4, c5,..., cn+2

2
which appears twice based on

the selection of the graph. Then,

i) To compute Mφrt
1 of C[Wn], the vertices are colored as described above and we have θ(c1) =

2n, θ(c2) = 2, θ(c3) = 2,..., θ(cn+2
2
) = 2. Thus, the associated first rainbow chromatic Zagreb

index is provided by,

Mφrt
1 (C[Wn]) =

∑
u∈V (G)

c(u)2 =
l∑

j=1
θ(cj) · j2 = n3+9n2+50n+48

12

ii) To compute Mφrt
2 of C[Wn], the vertices are colored as described above and for

n = 4, we have η12 = 10, η13 = 6, and η23 = 2.
n = 6, we have η12 = 12, η13 = 6, η14 = 6, η23 = 3, η24 = 3, and η34 = 3.
n = 8, we have η12 = 14, η13 = 6, η14 = 6, η15 = 6, η23 = 3, η24 = 4, η25 = 3, η34 = 3, η35 = 4
and η45 = 3.
The procedure continues for rest of the vertices based on the selection of the graph. Thus, the
associated second rainbow chromatic Zagreb index is provided by,

Mφrt
2 (C[Wn]) =

∑
uv∈E(G)

c(u) · c(v) =
t<s∑

1≤t,s≤χr(C[Wn])

tsηts = n4+8n3+28n2+96n
32

iii) To compute Mφrt
3 of C[Wn], the vertices are colored as described above and we have

η12 + η23 + η34 + ... + η(n2 )
n+2

2
edges which contributes to 1 based on the color distance and

η13 + η24 + η35 + ...+ η(n−2
2 )n+2

2
edges contributes to 2 based on the color distance and the pro-

cedure continues based on the selection of the graph. Thus, the associated rainbow chromatic
irregularity index is provided by,

Mφrt
3 (C[Wn]) =

∑
uv∈E(G)

|c(u)− c(v)| =
t<s∑

1≤t,s≤χr(C[Wn])

ηts|t− s| = n3+9n2+14n+24
12

iv) To compute Mφrt
4 of C[Wn], the vertices are colored as described above. Then, we have

to take into consideration the vertex pairs as well as all the color combinations which contributes
non zero distances. The combinations {1, 2}, {2, 3}, ..., {n

2 ,
n+2

2 } contributes to the color dis-
tance 1 and the combination {1, 3}, {2, 4}, ..., {n−2

2 , n+2
2 } contributes to the color distance 2 and

same procedure is followed based on the selection of the graph. Also, we have θ(c1) = 2n,
θ(c2) = 2, θ(c3) = 2,..., θ(cn+2

2
) = 2. Thus, the associated rainbow chromatic total irregularity

index is provided by,

Mφrt
4 (C[Wn]) = 1

2
∑

uv∈V (G)

|c(u)− c(v)| = 1
2

t<s∑
t,s∈C

θ(ct) · θ(cs)|t− s| = 7n3+15n2+14n
24
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cn+3
2

c1 c2
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c1

c3

c1
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c1

c1
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c1

c1

c1

c1

Figure 6 Rainbow neighbourhood coloring for (C[Wn]) graph with odd vertices
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c1 c2
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c1

c1

c1

c1

c1

c1

Figure 7 Rainbow neighbourhood coloring for (C[Wn]) graph with even vertices



RAINBOW CHROMATIC TOPOLOGICAL INDICES 283

3 Conclusion

This paper discusses the parameter known as the rainbow chromatic Zagreb indices and rainbow
chromatic irregularity indices of a graph G. This paper contains the calculations of the rainbow
chromatic irregularity and Zagreb indices for the central graphs of some graph classes, including
the path, triangular snake, cycle, star and wheel graphs. We can extend this paper by trying
various other types of graphs. This study can also be extended by determining the rainbow chro-
matic irregularity indices and rainbow chromatic Zagreb indices for various graph operations,
including the cartesian product of graphs, join of graphs, corona product of graphs, and union
of graphs, etc. Finding an algorithm to compute the rainbow chromatic irregularity and rainbow
chromatic Zagreb indices of graphs will also be a significant contribution. This idea might aid
in researching many properties connected to chemical compounds.
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