Normal category arising from the semigroup $O X_{n}$

K. K. Sneha and P. G. Romeo
Communicated by Ayman Badawi
MSC 2010 Classifications: Primary 20M10; Secondary 20M12.
Keywords and phrases: semigroup, Normal category, Normal cone, Finite chain, Order-preserving transformation.

The first author wishes to acknowledge the financial support of the Council for Scientific and Industrial Research, New Delhi (via JRF and SRF) in the preparation of this article.

Abstract

The cross-connection theory proposed by K. S. S. Nambooripad provides the construction of a regular semigroup from its principal left (right) ideals using a certain category called a normal category. In the present work, we study the structure of the semigroup $O X_{n}$, of singular order-preserving transformations on a finite chain $X_{n}=\{1<2<\cdots<n\}$, using the normal category. Here, we characterize all of Green's equivalences on the semigroup $O X_{n}$ and hence prove that $O X_{n}$ is a fundamental regular semigroup. Further, we construct a normal category called the powerset category $P_{o}\left(X_{n}\right)$ and prove that $P_{o}\left(X_{n}\right)$ is isomorphic to the principal left ideal category of $O X_{n}$, which is denoted as $\mathcal{L}\left(O X_{n}\right)$. Also, we construct the cone semigroup $T \mathcal{L}\left(O X_{n}\right)$ and prove that $T \mathcal{L}\left(O X_{n}\right)$ is isomorphic to $O X_{n}$.

1 Introduction

In describing the structure of regular semigroups, Grillet proposed the idea of cross-connections of regular partially ordered sets [5]. However, Grillet's theory was only intended to describe the structure of fundamental regular semigroups, a subclass of regular semigroups. In the early 1990s, K. S. S. Nambooripad generalized Grillet's cross-connection theory to the general class of regular semigroups, and in this context, he proposed the notion of "normal categories" [9]. These normal categories are further characterized as the principal left ideal category $\mathcal{L}(S)$ of some regular semigroup S. A normal category \mathcal{C} is a small category with subobjects in which an idempotent normal cone is associated with each object of \mathcal{C}, and each morphism has a normal factorization. All the normal cones in a normal category form a regular semigroup $T \mathcal{C}$ known as the semigroup of normal cones. In this article, we consider the semigroup $O X_{n}$ of singular order-preserving transformations on a finite chain X_{n} and characterize the category $\mathcal{L}\left(O X_{n}\right)$ with the power set category $P_{o}\left(X_{n}\right)$. The power set category $P_{o}\left(X_{n}\right)$ is a normal category constructed from the chain X_{n}.

This article is organized as follows. In section 2, we discuss the important concepts and results regarding the general theory of cross-connections proposed by K. S. S. Nambooripad. In section 3, Green's equivalences in the semigroup $O X_{n}$ have been provided. In section 4, we prove that the power set category $P_{o}\left(X_{n}\right)$ is normal and isomorphic to $\mathcal{L}\left(O X_{n}\right)$. Further, we obtained the semigroup of normal cones in $P_{o}\left(X_{n}\right)$. We illustrate our results on OX_{3}, the semigroup of singular order-preserving transformations that preserve order on a chain X_{3} with length 3 .

2 Preliminaries

In the sequel, we assume familiarity with the basic concepts in category theory [11] and semigroup theory [5, 6, 7, 10]. Also, the definitions and results on cross-connections are as in [4, 9]. Throughout this paper, we write transformations to the right of their argument and take the composition from left to right. For category $\mathcal{C}, v \mathcal{C}$ denote the set of objects of \mathcal{C} and $\mathcal{C}(a, b)$ the morphisms from a to b. We assume that the categories under consideration are small unless otherwise stated.

A category \mathcal{P} is said to be a preorder category if every hom-set of \mathcal{P} has at most one morphism. This property of a preorder category induces certain quasi-order relation " \subseteq " on $v \mathcal{P}$ and is given by $p \subseteq p^{\prime}$ if $\mathcal{P}\left(p, p^{\prime}\right) \neq \emptyset$. Moreover, \mathcal{P} is said to be a strict preorder if " \subseteq " is a partial order.

Definition 2.1. A small category \mathcal{C} is said to be a category with subobjects if there is a strict preorder subcategory \mathcal{P} of \mathcal{C} with $v \mathcal{P}=v \mathcal{C}$ having the following properties:
(1) every morphisms of \mathcal{P} is a monomorphism in \mathcal{C}.
(2) if $h=h^{\prime} k$ for $h, k \in \mathcal{P}$, then $h^{\prime} \in \mathcal{P}$.

The pair $(\mathcal{C}, \mathcal{P})$ is called the category with subobjects. If $c^{\prime} \subseteq c$, the unique morphism from c^{\prime} to c is called the inclusion morphism and is denoted by $j_{c^{\prime}}^{c}$. An inclusion $j_{c^{\prime}}^{c}$, splits if there exists $e: c \rightarrow c^{\prime} \in \mathcal{C}$ such that $j_{c^{\prime}}^{c} q=1_{c^{\prime}}$ and the morphism q is called a retraction. A factorization of a morphism $f \in \mathcal{C}$ of the form $f=e w j$ where e is a retraction, w is an isomorphism and j is an inclusion is called the normal factorization of f. The morphism $e w$ is known as the epimorphic component of f and is denoted by f° 。

Definition 2.2. Let \mathcal{C} be a category with subobjects and $d \in v \mathcal{C}$. A map $\gamma: v \mathcal{C} \rightarrow \mathcal{C}$ is called a cone with vertex d if
(1) $\gamma(c) \in \mathcal{C}(c, d)$ for all $c \in v \mathcal{C}$.
(2) If $c_{1} \subseteq c_{2}$, then $j_{c_{1}}^{c_{2}} \gamma\left(c_{2}\right)=\gamma\left(c_{1}\right)$

For a cone γ, let c_{γ} denote the vertex of γ. For $c \in v \mathcal{C}$, the morphism $\gamma(c): c \rightarrow c_{\gamma}$ is called the component of γ at c. A cone γ is said to be normal if there exists $c \in v \mathcal{C}$ such that $\gamma(c): c \rightarrow c_{\gamma}$ is an isomorphism. We denote by $\mathcal{T C}$, the set of all normal cones in \mathcal{C} and by M_{γ}, the set

$$
M_{\gamma}=\{c \in v \mathcal{C}: \gamma(c) \text { is an isomorphism }\} .
$$

Definition 2.3. A category \mathcal{C} with subobjects is called a normal category if the following holds
(1) Any morphism in \mathcal{C} has a normal factorization.
(2) Every inclusion in \mathcal{C} splits.
(3) For each $c \in v \mathcal{C}$ there is a normal cone γ with vertex c and $\gamma(c)=1_{c_{\gamma}}$.

Observe that given a normal cone γ and an epimorphism $f: c_{\gamma} \rightarrow d$, the map $\gamma * f: a \rightarrow \gamma(a) f$ from $v \mathcal{C}$ to \mathcal{C} is a normal cone with vertex d. Consider two normal cones γ and σ, then

$$
\gamma \cdot \sigma=\gamma *\left(\sigma\left(c_{\gamma}\right)\right)^{\circ}
$$

where $\left(\sigma\left(c_{\gamma}\right)\right)^{\circ}$ is the epimorphic part of $\sigma\left(c_{\gamma}\right)$, defines a binary composition on $\mathcal{T C}$.

Theorem 2.4. (Theorem III. 2 [9]) Let \mathcal{C} be a normal category. Then $\mathcal{T C}$, the set of all normal cones in \mathcal{C} is a regular semigroup with the binary operation

$$
\begin{equation*}
\gamma \cdot \sigma=\gamma *\left(\sigma\left(c_{\gamma}\right)\right)^{\circ} \tag{2.1}
\end{equation*}
$$

and $\gamma \in T \mathcal{C}$ is idempotent if and only if $\gamma\left(c_{\gamma}\right)=1_{c_{\gamma}}$.
Normal categories of a regular semigroup: There are two normal categories associated with a regular semigroup S, namely the principal left ideal category $\mathcal{L}(S)$ and the principal right ideal category $\mathcal{R}(S)$. The objects of $\mathcal{L}(S)$ are principal left ideals $S e$ generated by idempotents $e \in E(S)$. The morphisms are partial right translations $\rho(e, u, f): S e \rightarrow S f: u \in e S f$ such that for every $x \in S e, \rho(e, u, f): x \mapsto x u$. Dually, the objects of the category $\mathcal{R}(S)$ of principal right ideals are $e S$, generated by $e \in E(S)$ and the morphisms are partial left translations $\lambda(e, v, f): e S \rightarrow f S: v \in f S e$, which maps $x \mapsto v x$ for any $x \in e S$.

Proposition 2.5. Let S be a regular semigroup. Then $\mathcal{L}(S)$ is a normal category. $\rho(e, u, f)=\rho\left(e^{\prime}, v, f^{\prime}\right)$ if and only ife $\mathcal{L} e^{\prime}, f \mathcal{L} f^{\prime}, u \in$ $e S f, v \in e^{\prime} S f^{\prime}$ and $v=e^{\prime} u$. Let $\rho=\rho(e, u, f)$ be a morphism in $\mathcal{L}(S)$. For any $g \in \mathcal{R}_{u} \cap \omega(e)$ and $h \in E\left(\mathcal{L}_{u}\right), \rho=$ $\rho(e, g, g) \rho(g, u, h) \rho(h, h, f)$ is a normal factorization of ρ.

Proposition 2.6. Let S be a regular semigroup, $a \in S$ and $f \in E\left(\mathcal{L}_{a}\right)$. Then for each $e \in E(S)$, let $\rho^{a}(S e)=\rho(e$, ea, $f)$. Then ρ^{a} is a normal cone in $\mathcal{L}(S)$ with vertex $S f$ called the principal cone generated by a.

$$
M \rho^{a}=\left\{S e: e \in E\left(\mathcal{R}_{a}\right)\right\}
$$

ρ^{a} is an idempotent in $\mathcal{T} \mathcal{L}(S)$ iff $a \in E(S)$. The mapping $a \mapsto \rho^{a}$ is a homomorphism from S to $\mathcal{T} \mathcal{L}(S)$.

3 Semigroup of order-preserving transformations on a finite chain

Let $X_{n}=\{1<2<\cdots<n: n \in \mathbb{N}\}$ be a finite chain of length n. A transformation $f: X_{n} \rightarrow X_{n}$ is called order-preserving if $(i) f \leq(j) f$ whenever $i \leq j$. A transformation is said to be singular if it is not invertibele(not one-one and onto). The semigroup of all singular order-preserving mappings from X_{n} to itself under function composition is denoted by $O X_{n}$. To consider nontrivial cases only, we assume $n \geq 3$. The Green's relations in the semigroup $O X_{n}$ are characterized entirely by their images and kernels. It is known that $O X_{n}$ is a regular subsemigroup of $\mathcal{T} X_{n}$, the full transformation semigroup of X_{n}. The following proposition characterizes all the Green's equivalences in $O X_{n}$.

Lemma 3.1. The semigroup $O X_{n}$, of singular order-preserving transformations on a finite chain $X_{n}=\{1<2<\cdots<n: n \in \mathbb{N}\}$ is a regular semigroup. Let $f, g \in O X_{n}$, then the following holds.
(1) $f \leq_{\mathcal{R}} g$ if and only if ker $g \subseteq \operatorname{ker} f$.
(2) $f \leq_{\mathcal{L}} g$ if and only if $\operatorname{Im} f \subseteq \operatorname{Im} g$.

Proof. Let f be an order-preserving function on a finite chain X_{n} and let $\operatorname{Im} f=\left\{x_{1}<x_{2}<\cdots<x_{k}: x_{i} \in X_{n}, i=\right.$ $1,2, \cdots k\}$. Then there exists $n_{1}<n_{2}<\cdots<n_{k}=n \in \mathbb{N}$, such that

$$
(x) f= \begin{cases}x_{1}, & \text { if } x=1,2, \cdots, n_{1} \tag{3.1}\\ x_{i+1}, & \text { if } n_{i}<x \leq n_{i+1}, i=1,2, \cdots k-1\end{cases}
$$

Now define $g: X_{n} \rightarrow X_{n}$ by

$$
(x) g= \begin{cases}n_{i}, & \text { if } x=x_{i}, i=1,2, \cdots, k \tag{3.2}\\ n_{1}, & \text { if } x<x_{1} \\ n_{i}, & \text { if } x_{i}<x<x_{i+1}, i \in\{1,2, \cdots k-1\} \\ n_{k}, & \text { if } x>x_{k}\end{cases}
$$

Then clearly, g is an order-preserving singular transformation on X_{n} and thus $g \in O X_{n}$. Now consider,

$$
(x) f g f=\left(x_{1}\right) g f=\left(n_{1}\right) f=x_{1}=(x) f, \text { if } 1 \leq x \leq n_{1}
$$

and

$$
(x) f g f=\left(x_{i}\right) g f=\left(n_{i+1}\right) f=x_{i+1}=(x) f, \text { if } n_{i}<x \leq n_{i+1}, \text { where } i=1,2, \cdots k-1
$$

Hence $f g f=f$ and g is a generalized inverse of f. Hence $O X_{n}$ is a regular semigroup.
To prove the first assertion, suppose $f \leq_{\mathcal{R}} g$, then there exists some $h \in O X_{n}$ such that $f=g h$. Let $(x, y) \in k e r g$ then $(x) g=(y) g$. Then $(x) f=(y) f$ and $(x, y) \in$ ker f. Conversely, suppose that ker $g \subseteq$ ker f and let $\operatorname{Im} g=\left\{x_{1}<x_{2}<\right.$ $\left.\cdots<x_{k}: x_{i} \in X_{n}, i=1,2, \cdots, k\right\}$. Since g is an order-preserving function $\left(x_{i}\right) g^{-1}$ is an interval for each $i=1,2, \cdots, k$. Therefore let $A_{i}=\left(x_{i}\right) g^{-1}$ for $i=1,2, \cdots, k$. Then $A_{1} \cup A_{2} \cup \cdots \cup A_{k}=X_{n}$, and $A_{i} \cap A_{j}=\phi$ for $i \neq j$. Choose exactly one representative a_{i} from each interval. Since ker $g \subseteq \operatorname{ker} f, f$ is a constant on each A_{i}. Now define $h: X_{n} \rightarrow X_{n}$ by

$$
(x) h= \begin{cases}\left(a_{i}\right) f, & \text { if } x=x_{i}, i=1,2, \cdots, k \tag{3.3}\\ \left(a_{1}\right) f, & \text { if } x<x_{1}, \\ \left(a_{i}\right) f, & \text { if } x_{i}<x<x_{i+1}, i \in\{1,2, \cdots k-1\}, \\ \left(a_{k}\right) f, & \text { if } x>x_{k}\end{cases}
$$

Since both f and g are order-preserving h is also order- preserving and $h \in O X_{n}$. Let $x \in X_{n}$ then x is an element of exactly one A_{i} where $i=1,2, \cdots, k$. Let $x \in A j$ then $(x) g=x_{j}$ and

$$
(x) g h=\left(x_{j}\right) h=\left(a_{j}\right) f=(x) f
$$

thus $f=g h$. To prove the second assertion, assume $f \leq_{\mathcal{L}} g$, then it is obvious that $\operatorname{Im} f \subseteq \operatorname{Im} g$. Conversely, assume that $\operatorname{Im} f \subseteq$ $\operatorname{Im} g$ and let $\operatorname{Im} f=\left\{y_{1}<y_{2}<\cdots<y_{m}: y_{i} \in X_{n}, i=1,2, \cdots, m\right\}$. Now let $B_{i}=\left(y_{i}\right) g^{-1}$ for $i=1,2, \cdots, m$ then each B_{i} is an interval. Fix exactly one element from each B_{i}, say b_{i} and define $h: X_{n} \rightarrow X_{n}$ by $(x) h=b_{i}$ with $(f(x)) g^{-1} \in B_{i}$. Now it can be seen that $h \in O X_{n}$ and $f=h g$. Hence $f \leq_{\mathcal{L}} g$.

Proposition 3.2. Let f and g be elements of the semigroup $O X_{n}$ of singular order-preserving transformations on a finite chain X_{n}. Then,
(1) $f \mathcal{R} g$ if and only if ker $g=\operatorname{ker} f$,
(2) $f \mathcal{L} g$ if and only if $\operatorname{Im} f=\operatorname{Im} g$,
(3) $f \mathcal{H} g$ if and only if $f=g$,
(4) $f \mathcal{D} g$ if and only if $|\operatorname{Im} f|=|\operatorname{Im} g|$.

Proof. The proof of the first and second assertions follows immediately from Lemma 3.1. Now suppose that $f \mathcal{H} g$ then $f \mathcal{L} g$ and $f \mathcal{R} g$. Using (1) and (2) we have ker $f=\operatorname{ker} g$ and $\operatorname{Im} f=\operatorname{Im} g$. Since f and g are order-preserving, f and g must be identical. Now suppose $f \mathcal{D} g$ then by definition, there exists $h \in O X_{n}$ such that $f \mathcal{L} h \mathcal{R} g$. Then it follows from (1) and (2) of above that $\operatorname{Im} f=\operatorname{Im} h$ and ker $g=$ ker h. Since ker $g=$ ker h we have $|\operatorname{Im} g|=|\operatorname{Im} h|$ thus $|\operatorname{Im} g|=|\operatorname{Im} f|$. Conversely, assume that $|\operatorname{Im} g|=|\operatorname{Im} f|=m \leq n$. Let $\operatorname{Im} f=\left\{x_{1}<x_{2}<\cdots<x_{m}\right\}$ and $\operatorname{Im} g=\left\{y_{1}<y_{2}<\cdots<y_{m}\right\}$. For $n_{1}<n_{2}<\cdots<n_{k}=n, m_{1}<m_{2}<\cdots<m_{k}=n \in \mathbb{N}$, let

$$
(x) f= \begin{cases}x_{1}, & \text { if } x=1,2, \cdots, n_{1} \tag{3.4}\\ x_{i+1}, & \text { if } n_{i}<x \leq n_{i+1}, i=1,2, \cdots, k-1\end{cases}
$$

and

$$
(x) g= \begin{cases}y_{1}, & \text { if } x=1,2, \cdots, m_{1} \tag{3.5}\\ y_{i+1}, & \text { if } m_{i}<y \leq m_{i+1}, i=1,2, \cdots, k\end{cases}
$$

Now define,

$$
(x) h= \begin{cases}x_{1}, & \text { if } x=1,2, \cdots, m_{1} \tag{3.6}\\ x_{i+1}, & \text { if } m_{i-1}<y \leq m_{i}, i=2,3, \cdots k\end{cases}
$$

and it is easy to observe that $\operatorname{Im} f=\operatorname{Im} h$ and $\operatorname{ker} g=\operatorname{ker} h$ and thus $f \mathcal{D} g$.
Remark 3.3. Since the Green's \mathcal{H} relation in $O X_{n}$ is identity, the semigroup $O X_{n}$ is a fundamental regular semigroup which is a subsemigroup of full transformation semigroup of X_{n}.

Example 3.4. Let $X_{3}=1<2<3$ be the finite chain of length three. Then the semigroup $O X_{3}$ is given by

$$
O X_{3}=\left\{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3
\end{array}\right)\right\} .
$$

We denote the elements in $O X_{3}$ as follows.
$f=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 2\end{array}\right), g=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 3\end{array}\right), h=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 3\end{array}\right), u=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 2\end{array}\right), v=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 3\end{array}\right), w=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 3\end{array}\right), k_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1\end{array}\right), k_{2}=\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array} 2\right)$,
$k_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 3 & 3\end{array}\right)$.
Then we have $E\left(O X_{3}\right)=\left\{k_{1}, k_{2}, k_{3}, f, g, v, w\right\}$. Now we identify the Green's relations of $O X_{3}$.

$$
\begin{aligned}
& \operatorname{Im} k_{1}=\{1\} \quad \operatorname{Im} f=\operatorname{Im} u=\{1,2\} \\
& \operatorname{Im} k_{2}=\{2\} \quad \operatorname{Im} g=\operatorname{Im} v=\{1,3\} \\
& \text { Im } k_{3}=\{3\} \quad \operatorname{Im} h=\operatorname{Im} w=\{2,3\} \\
& \mathcal{L}\left(O X_{3}\right)=\left\{\left(k_{1}, k_{1}\right),\left(k_{2}, k_{2}\right),\left(k_{3}, k_{3}\right),(f, u),(g, v),(h, w)\right\} \\
& \text { ker } k_{1}=\text { ker } k_{2}=\text { ker } k_{3}=X_{3} \times X_{3} \\
& \text { ker } f=\operatorname{ker} g=\operatorname{ker} h=\{(1,1)(2,2),(3,3),(2,3)\} \\
& \text { ker } u=\text { ker } v=\text { ker } w=\{(1,1)(2,2),(3,3),(1,2)\}
\end{aligned}
$$

In $O X_{3}$ we get $k_{1} \mathcal{R} k_{2} \mathcal{R} k_{3}, \quad f \mathcal{R} g \mathcal{R} h$ and $u \mathcal{R} v \mathcal{R} w$ and the egg box diagram becomes

4 The category of Principal left ideals of $\boldsymbol{O X} \boldsymbol{X}_{\boldsymbol{n}}$

In this section, we characterize the normal category $\mathcal{L}\left(O X_{n}\right)$ associated with the principal left ideals of $O X_{n}$. Here, we use S and $O X_{n}$ mutually to denote the semigroup of order-preserving singular transformations on X_{n}. For any proper nontrivial subchain A of X_{n}, let e_{A} denote the idempotent transformation with image A. Note that e_{A} is not uniquely determined by A.

Lemma 4.1. Let $A, B \subsetneq X_{n}$ and $\rho\left(e_{A}, u, e_{B}\right)$ be a morphism from $S e_{A}$ to $S e_{B}$. Then for any $x \in A$, xu $\in B$. Also $\rho\left(e_{A}, u, e_{B}\right)=\rho\left(e_{A}^{\prime}, v, e_{B}^{\prime}\right)$ if and only if $x u=x v$ for all $x \in A$, where e_{A}, e_{A}^{\prime} are idempotents with image A and e_{B}, e_{B}^{\prime} are idempotents with image B.

Proof. By the definition of a morphism in $\mathcal{L}(S), u \in e_{A} S e_{B}$ and $X u \subseteq X e_{B}=B$. In particular $x u \in B$ for all $x \in A$. To prove the second assertion, let $\rho\left(e_{A}, u, e_{B}\right)=\rho\left(e_{A}^{\prime}, v, e_{B}^{\prime}\right)$ then by Proposition $2.5 u=e_{A} v$. Also since e_{A} is an idempotent map with image A it can be seen that $\left.e_{A}\right|_{A}=1_{A}$. Hence $x u=x v$ for all $x \in A$. Conversely, if $x u=x v$ for all $x \in A$, then since $u \in e_{A} S e_{B}, e_{A} u=u$ and by our assumption $e_{A} u=e_{A} v$. Hence $u=e_{A} v$ and using Proposition 2.5 we have $\rho\left(e_{A}, u, e_{B}\right)=\rho\left(e_{A}^{\prime}, v, e_{B}^{\prime}\right)$.
Proposition 4.2. All normal cones in the category $\mathcal{L}\left(O X_{n}\right)$ are principal cones.
Proof. Let γ be a normal cone in $\mathcal{L}\left(O X_{n}\right)$, with $c_{\gamma}=S e_{A}$ for some $e_{A} \in E\left(O X_{n}\right)$. For any $x \in X_{n}, e_{x}$ denotes the constant map whose image is x and $S e_{x}=\left\{e_{x}\right\}$. Consider $\gamma\left(S e_{x}\right)$ for $x \in X_{n}$. Let $\gamma\left(S e_{x}\right)=\rho\left(e_{x}, u_{x}, e_{A}\right)$ then by Lemma $4.1 x u_{x} \in A$. Since $\gamma\left(S e_{x}\right)$ is uniquely determined by x, u_{x} is uniquely determined by x. Define α on X_{n} as follows.

$$
x \alpha=x u_{x} \quad \text { for all } x \in X_{n} \text { and } u_{x} \text { as above }
$$

Since u_{x} is uniquely determined by x, α is well defined. Since $x u_{x} \in A$ for all $x \in X_{n}, \alpha$ is a function from X_{n} with image contained in A. Now we prove that α is an order-preserving transformation. If possible, assume that α is not an order-preserving function. Then there exists $x, y \in X_{n}$ such that $x \alpha<y \alpha$ for $x>y$. Now consider the set $Y=\{x, y\}$ such that $S x, S y \subseteq S e_{Y}$ and $\gamma\left(S e_{Y}\right)=\rho\left(e_{Y}, u, e_{A}\right)$. Since $S x, S y \subseteq S e_{Y}$ we have

$$
\gamma\left(S e_{x}\right)=j_{S e_{x}}^{S e_{Y}} \gamma\left(S e_{Y}\right) \text { and } \gamma(S y)=j_{S y}^{S e_{Y}} \gamma\left(S e_{Y}\right)
$$

That is

$$
\rho\left(e_{x}, u_{x}, e_{A}\right)=\rho\left(e_{x}, e_{x}, e_{Y}\right) \rho\left(e_{Y}, u, e_{A}\right)=\rho\left(e_{x}, e_{x} u, e_{A}\right)
$$

Similarly we get $\rho\left(e_{y}, u_{y}, e_{A}\right)=\rho\left(e_{y}, e_{y} u, e_{A}\right)$. From these two equations, we get $x \alpha=x u_{x}=x e_{x} u=x u$ and $y \alpha=y u$. Hence $x u<y u$ for $x>y$, which contradicts that u is order-preserving. Therefore, $\alpha \in S$ is an order-preserving transformation with image α contained in A. Since γ is a normal cone, there is a component $\gamma\left(S e_{C}\right)$ is an isomorphism and let $\gamma\left(S e_{C}\right)=\rho\left(e_{C}, \beta, e_{A}\right)$. Then by Lemma $4.1 x \beta \in A$ for all $x \in C$. Since $\gamma\left(S e_{C}\right)$ is an isomorphism $\beta \mathcal{L} e_{A}$, and $\operatorname{Im} \beta=A$. Now, we show that Im $\alpha=A$. Let $y \in A$, then there exists $x \in C$ such that $x \beta=y$.

$$
\rho\left(e_{x}, u_{x}, e_{A}\right)=\gamma(S x)=j_{S x}^{S e_{C}} \gamma\left(S e_{C}\right)=\rho\left(e_{x}, e_{x} \beta, e_{A}\right)
$$

Thus $u_{x}=e_{x} \beta$ (using Proposition 2.5), so that $x \alpha=x u_{x}=x e_{x} \beta=x \beta=y$. Hence α is onto. Now we prove that $\gamma=\rho^{\alpha}$. Since $\operatorname{Im} \alpha=S e_{A}$ the vertex of ρ^{α} is $S e_{A}=c_{\gamma}$. For $B \subseteq X$, we prove that if $\gamma\left(S e_{B}\right)=\rho\left(e_{B}, v, e_{A}\right)$, then $\rho\left(e_{B}, v, e_{A}\right)=$ $\rho\left(e_{B}, e_{B} \alpha, e_{A}\right)$. For that, it is sufficient to prove that $x v=x e_{B} \alpha$ for all $x \in B$. If $x \in B$, then $S x \subseteq S e_{B}$ and by the definition of cones

$$
\gamma(S x)=j_{S x}^{S e_{B}} \gamma\left(S e_{B}\right)=\rho\left(e_{x}, e_{x}, e_{B}\right) \rho\left(e_{B}, v, e_{A}\right)=\rho\left(e_{x}, e_{x} v, e_{A}\right)
$$

But $\gamma(S x)=\rho\left(e_{x}, u_{x}, e_{A}\right)$, equating these we get $x u_{x}=x e_{x} v=x v$. That is for all $x \in B$ we have $x \alpha=x v$. Therefore $\rho\left(e_{B}, v, e_{A}\right)=\rho\left(e_{B}, e_{B} \alpha, e_{A}\right)$. Hence $\gamma=\rho^{\alpha}$ and all normal cones are of the form ρ^{α} for some $\alpha \in S$.

Theorem 4.3. The semigroup of normal cones in $\mathcal{L}\left(O X_{n}\right)$ is isomorphic to $O\left(X_{n}\right)$.
Proof. It is known that, the map $\phi: T \mathcal{L}\left(O X_{n}\right) \rightarrow \mathcal{L}\left(O X_{n}\right)$ defined by $(\alpha) \phi=\rho^{\alpha}$ is a semigroup homomorphism by Proposition 2.6. Using Proposition 4.2, the map ϕ is onto. Now we need to show that ϕ is injective. For, let $\alpha, \beta \in S$ such that $\rho^{\alpha}=\rho^{\beta}$. For any $x \in X_{n}, \rho^{\alpha}(S x)=\rho\left(e_{x}, e_{x} \alpha, e_{A}\right)$ where $e_{A} \mathcal{L} \alpha$ and $\rho^{\beta}(S x)=\rho\left(e_{x}, e_{x} \beta, e_{B}\right), e_{B} \mathcal{L} \beta$. Since $\rho^{\alpha}=\rho^{\beta}$, we have

$$
\rho\left(e_{x}, e_{x} \alpha, e_{B}\right)=\rho\left(e_{x}, e_{x} \alpha, e_{B}\right)
$$

By Lemma 4.1, $e_{x} \alpha=e_{x} \beta$. It follows that $x \alpha=x \beta$ for all $x \in X_{n}$ and $\alpha=\beta$.

4.1 Power set category

Let $X_{n}=\{1<2<\cdots<n\}$ be a non empty finite chain and to avoid trivialities, assume that $n \geq 3$. Given any finite chain, one can construct a category $P_{o}\left(X_{n}\right)$ from X_{n} whose objects are all proper subchains of X_{n} and morphisms are the order-preserving transformations between the subchains. $P_{0}\left(X_{n}\right)$ is called the power set category and it is a category with subobjects in which inclusions are set inclusions. That is we have the inclusion function $j=j_{A}^{B}: A \rightarrow B$ if $A \subseteq B$. In the following proposition we prove that $P_{o}\left(X_{n}\right)$ is a normal category.

Proposition 4.4. The power set category $P_{o}\left(X_{n}\right)$ is a normal category.

Proof. It is easy to see that $P_{o}\left(X_{n}\right)$ is a category with subobjects and the subobject relation is induced by the usual subchain relation. Given an inclusion $j_{A^{\prime}}^{A}$ where $A^{\prime} \subseteq A$, define a retraction $e: A \rightarrow A^{\prime}$ as follows:
Let $A^{\prime}=\left\{x_{1}<x_{2}<\cdots<x_{k}\right\}$ and $x_{i} \in X_{n}, i=1,2, \cdots, k$. Define

$$
(x) e= \begin{cases}x, & \text { if } x \in A^{\prime} \tag{4.1}\\ x_{i}, & \text { if } x_{i}<x<x_{i+1}, i \in\{1,2, \cdots k-1\} \\ x_{1}, & \text { if } x<x_{1} \\ x_{k}, & \text { if } x>x_{k}\end{cases}
$$

Clearly, $e \in S$ and $j e=1_{A^{\prime}}$. Given any morphism(order-preserving transformation) $f: A \rightarrow B$; let $B^{\prime}=\operatorname{Im} f$ and A^{\prime} is the cross-section of the partition of A determined by ker f. Then f has a normal factorization and $f=e u j$, where $u=\left.f\right|_{A^{\prime}}$ is a bijection and $j=j_{B^{\prime}}^{B}$. Given any $A \subseteq X_{n}$, let γ be a cone in $P_{o}\left(X_{n}\right)$ with vertex A is defined as follows. Let $u: X_{n} \rightarrow A$ be an order-preserving transformation such that $u(a)=a$ for all $a \in A$. For any $B \subseteq X_{n}$, define $\gamma(B)=\left.u\right|_{B}: B \rightarrow A$. Then γ is a normal cone with $\gamma(A)=1_{A}$. Thus $P_{o}\left(X_{n}\right)$ is a normal category.

In the following theorem it is shown that the categories $P_{o}\left(X_{n}\right)$ and $\mathcal{L}\left(O X_{n}\right)$ are isomorphic. For that, we show that there exists an inclusion preserving functor from $\mathcal{L}\left(O X_{n}\right)$ to $P_{o}\left(X_{n}\right)$ which is an order isomorphism, v-injective, v-surjective and fully-faithful.

Theorem 4.5. The categories $P_{o}\left(X_{n}\right)$ and $\mathcal{L}\left(O X_{n}\right)$ are isomorphic.

Proof. Define a functor $F: \mathcal{L}\left(O X_{n}\right) \rightarrow P_{o}\left(X_{n}\right)$ as follows: For $S e_{A} \in v \mathcal{L}\left(O X_{n}\right)$ and a morphism $\rho\left(e_{A}, u, e_{B}\right) \in \mathcal{L}\left(O X_{n}\right)$ we have

$$
v F\left(S e_{A}\right)=A \quad \text { and } \quad F\left(\rho\left(e_{A}, u, e_{B}\right)\right)=\left.u\right|_{A}
$$

Clearly, F is well defined by Proposition 3.2 and Lemma 4.1. Now let $\rho\left(e_{A}, u, e_{B}\right), \rho\left(e_{B}, v, e_{C}\right)$ be two composable morphisms in $\mathcal{L}\left(O X_{n}\right)$. Then

$$
\rho\left(e_{A}, u, e_{B}\right) \rho\left(e_{B}, v, e_{C}\right)=\rho\left(e_{A}, u v, e_{C}\right)
$$

Now $F\left(\rho\left(e_{A}, u v, e_{C}\right)\right)=\left.u v\right|_{A}=\left.\left.u\right|_{A} v\right|_{B}=F\left(\rho\left(e_{A}, u, e_{B}\right)\right) F\left(\rho\left(e_{B}, v, e_{C}\right)\right)$. Hence F is a functor. Using Proposition 3.2 it is easy to prove that F is inclusion preserving and $v F$ is an order isomorphism.

Now we prove that $v F$ is a bijection. For, Let $A \subseteq X_{n}$ such that $A=\left\{x_{1}<x_{2}<\cdots<x_{k}\right\}$. Then define

$$
(x) e= \begin{cases}x, & \text { if } x \in A \tag{4.2}\\ x_{1}, & \text { if } x<x_{1} \\ x_{i}, & \text { if } x_{i-1}<x<x_{i}, i \in\{2,3, \cdots k\} \\ x_{k}, & \text { if } x>x_{k}\end{cases}
$$

Clearly, e is an idempotent order-preserving transformation with $\operatorname{Im} e=A$. Now $F(S e)=\operatorname{Im} e=A$. Hence $v F$ is v-surjective. By Proposition 3.2 it follows that $v F$ is injective. To complete the proof only need to prove F is fully-faithful. Now let f be an order-preserving transformation from A to B. Then $e_{A} f$ is an order-preserving transformation with the image contained in B and $\left.e_{A} f\right|_{A}=f$. So $e_{A} f \in e_{A} S e_{B}$ and $\rho\left(e_{A}, e_{A} f, e_{B}\right): S e_{A} \rightarrow S e_{B}$ such that $F\left(\rho\left(e_{A}, e_{A} f, e_{B}\right)\right)=f$. Hence F is full. The proof of F is faithfull follows from Lemma 4.1. Hence the Theorem.

Since the category $P_{o}\left(X_{n}\right)$ is isomorphic to $\mathcal{L}\left(O X_{n}\right)$, the corresponding semigroups of normal cones $T \mathcal{L}\left(O X_{n}\right)$ and $T P_{o}\left(X_{n}\right)$ are isomorphic. But using Theorem 4.3 we get $T P_{o}\left(X_{n}\right)$ is isomorphic to $O X_{n}$. Summarising, we have the following theorem.

Theorem 4.6. $T P_{o}\left(X_{n}\right)$ is isomorphic to the semigroup S of singular order-preserving transformation on a finite chain X_{n}.

Remark 4.7. All normal cones in $P_{o}\left(X_{n}\right)$ can be described as follows. Let γ be a normal cone in $P_{o}\left(X_{n}\right)$ with vertex $A \subseteq X_{n}$. Then let $\alpha: X_{n} \rightarrow X_{n}$ be defined as follows.

$$
(x) \alpha=(x) \gamma(\{x\}), \text { for all } x \in X_{n}
$$

Then using a similar argument to the one in the proof of Proposition 4.2, we may observe that $\alpha \in S$ and $\gamma=\rho^{\alpha}$. Notice that the semigroup $O X_{n}$ is represented by T $P_{o}\left(X_{n}\right)$.

Example 4.8. The semigroup $O X_{3}$ consists of singular transformations on a finite chain $X_{3}=\{1<2<3\}$ of length three. In this example, we construct the categories $\mathcal{L}\left(O X_{3}\right)$ and $P_{o}\left(X_{3}\right)$. From Example 3.4, we have the semigroup $O X_{3}=\left\{k_{1}, k_{2}, k_{3}, f, g, h, u, v, w\right\}$ and the egg box diagram of $\mathbb{O} X_{3}$ is given below.

$$
\begin{array}{|l|l|l|}
\hline f & g & h \\
\hline u & v & w \\
\mathcal{D}_{2} \\
\hline
\end{array}
$$

$$
E\left(O X_{3}\right)=\left\{k_{1}, k_{2}, k_{3}, f, g, v, w\right\}
$$

$\mathcal{L}\left(O X_{3}\right)$ is the category whose objects are the principal left ideals of $O X_{3}$. Since $O X_{3}$ has 6 distinct \mathcal{L} classes, $\mathcal{L}\left(O X_{3}\right)$ has 6 objects and is given by $v \mathcal{L}\left(O X_{3}\right)=\left\{S f, S v, S w, S k_{1}, S k_{2}, S k_{3}\right\}$. To obtain the hom-sets in $\mathcal{L}\left(O X_{3}\right)$ we compute the following sets.

$$
\begin{gathered}
f S f=\left\{k_{1}, k_{2}, f\right\}, f S v=\left\{k_{1}, k_{3}, u\right\}, f S w=\left\{k_{2}, k_{3}, u\right\}, \\
f S k_{1}=\left\{k_{1}\right\}, \quad f S k_{2}=\left\{k_{2}\right\}, \quad f S k_{3}=\left\{k_{3}\right\}, \\
v S f=\left\{k_{1}, k_{2}, u\right\}, \quad v S v=\left\{k_{1}, k_{3}, v\right\}, \quad v S w=\left\{k_{2}, k_{3}, w\right\}, \\
v S k_{1}=\left\{k_{1}\right\}, \quad v S k_{2}=\left\{k_{2}\right\}, \quad v S k_{3}=\left\{k_{3}\right\}, \\
w S f=\left\{k_{1}, k_{2}, u\right\}, \quad w S v=\left\{k_{1}, k_{3}, v\right\}, \quad w S w=\left\{k_{2}, k_{3}, w\right\}, \\
w S k_{1}=\left\{k_{1}\right\}, \quad w S k_{2}=\left\{k_{2}\right\}, \quad w S k_{3}=\left\{k_{3}\right\}, \\
k_{1} S f=\left\{k_{1}, k_{2}\right\}, \quad k_{1} S v=\left\{k_{1}, k_{3}\right\}, k_{1} S w=\left\{k_{2}, k_{3}\right\}, \\
k_{1} S k_{1}=\left\{k_{1}\right\}, \quad k_{1} S k_{2}=\left\{k_{2}\right\}, \quad k_{1} S k_{3}=\left\{k_{3}\right\}, \\
k_{2} S f=\left\{k_{1}, k_{2}\right\}, \quad k_{2} S v=\left\{k_{1}, k_{3}\right\}, \quad k_{2} S w=\left\{k_{1}, k_{2}, k_{3}\right\}, \\
k_{2} S k_{1}=\left\{k_{1}\right\}, \quad k_{2} S k_{2}=\left\{k_{2}\right\}, \\
k_{2} S k_{3}=\left\{k_{3}\right\}, \\
k_{3} S f=\left\{k_{1}, k_{2}\right\}, \quad k_{3} S v=\left\{k_{1}, k_{3}\right\}, \quad k_{3} S w=\left\{k_{2}, k_{3}\right\}, \\
k_{3} S k_{1}=\left\{k_{1}\right\}, \quad k_{3} S k_{2}=\left\{k_{2}\right\}, \quad k_{3} S k_{3}=\left\{k_{3}\right\} .
\end{gathered}
$$

The hom-sets in the category $\mathcal{L}\left(O X_{3}\right)$ can be obtained as follows. By the definition of a morphism in $\mathcal{L}\left(O X_{3}\right)$ we get

$$
\mathcal{L}\left(O X_{3}\right)(S f, S f)=\{\rho(f, u, f): u \in f S f\}
$$

and we have the set $f S f=\left\{k_{1}, k_{2}, f\right\}$ thus

$$
\mathcal{L}\left(O X_{3}\right)(S f, S f)=\left\{\rho\left(f, k_{1}, f\right), \rho\left(f, k_{2}, f\right), \rho(f, f, f)\right\} .
$$

In the similar manner we get all the morphisms in $\mathcal{L}\left(O X_{3}\right.$.)

$$
\begin{aligned}
& \mathcal{L}\left(O X_{3}\right)(S f, S v)=\left\{\rho\left(f, k_{1}, v\right), \rho\left(k, k_{3}, v\right), \rho(f, u, v)\right\} \\
& \mathcal{L}\left(O X_{3}\right)(S f, S w)=\left\{\rho\left(f, k_{2}, w\right), \rho\left(f, k_{3}, w\right), \rho(f, u, w)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S f, S k_{1}\right)=\left\{\rho\left(f, k_{1}, k_{1}\right)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S f, S k_{2}\right)=\left\{\rho\left(f, k_{2}, k_{2}\right)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S f, S k_{3}\right)=\left\{\rho\left(f, k_{3}, k_{3}\right)\right\} \\
& \mathcal{L}\left(O X_{3}\right)(S v, S f)=\left\{\rho\left(v, k_{1}, f\right), \rho\left(v, k_{2}, f\right), \rho(v, u, f)\right\} \\
& \mathcal{L}\left(O X_{3}\right)(S v, S v)=\left\{\rho\left(v, k_{1}, v\right), \rho\left(v, k_{3}, v\right), \rho(v, v, v)\right\} \\
& \mathcal{L}\left(O X_{3}\right)(S v, S w)=\left\{\rho\left(v, k_{2}, w\right), \rho\left(v, k_{3}, w\right), \rho(v, w, w)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S v, S k_{1}\right)=\left\{\rho\left(v, k_{1}, k_{1}\right)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S v, S k_{2}\right)=\left\{\rho\left(v, k_{2}, k_{2}\right)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S v, S k_{3}\right)=\left\{\rho\left(v, k_{3}, k_{3}\right)\right\} \\
& \\
& \mathcal{L}\left(O X_{3}\right)(S w, S f)=\left\{\rho\left(w, k_{1}, f\right), \rho\left(w, k_{2}, f\right), \rho(w, u, f)\right\} \\
& \mathcal{L}\left(O X_{3}\right)(S w, S v)=\left\{\rho\left(w, k_{1}, v\right), \rho\left(w, k_{3}, v\right), \rho(w, v, v)\right\} \\
& \mathcal{L}\left(O X_{3}\right)(S w, S w)=\left\{\rho\left(w, k_{2}, w\right), \rho\left(w, k_{3}, w\right), \rho(w, w, w)\right\} \\
& \mathcal{L}\left(O X_{3}\right)\left(S w, S k_{1}\right)=\left\{\rho\left(w, k_{1}, k_{1}\right)\right\}
\end{aligned}
$$

```
L}(O\mp@subsup{X}{3}{})(Sw,S\mp@subsup{k}{2}{})={\rho(w,\mp@subsup{k}{2}{},\mp@subsup{k}{2}{})
L}(O\mp@subsup{X}{3}{})(Sw,S\mp@subsup{k}{3}{})={\rho(w,\mp@subsup{k}{3}{},\mp@subsup{k}{3}{})
\mathcal{L}(OX S )
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{1}{},Sv)={\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{1}{},v),\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{3}{},v)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{1}{},Sw)={\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{2}{},w),\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{3}{},w)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{1}{},S\mp@subsup{k}{1}{})={\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{1}{},\mp@subsup{k}{1}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{1}{},S\mp@subsup{k}{2}{})={\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{2}{},\mp@subsup{k}{2}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{1}{},S\mp@subsup{k}{3}{})={\rho(\mp@subsup{k}{1}{},\mp@subsup{k}{3}{},\mp@subsup{k}{3}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{2}{},Sf)={\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{1}{},f),\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{2}{},f)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{2}{},Sv)={\rho(\mp@subsup{k}{2}{},k,v),\rho(k,\mp@subsup{k}{3}{},v)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{2}{},Sw)={\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{2}{},w),\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{3}{},w)
\mathcal{L}(OX S )}(S\mp@subsup{k}{2}{},S\mp@subsup{k}{1}{})={\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{1}{},\mp@subsup{k}{1}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{2}{},S\mp@subsup{k}{2}{})={\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{2}{},\mp@subsup{k}{2}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{2}{},S\mp@subsup{k}{3}{})={\rho(\mp@subsup{k}{2}{},\mp@subsup{k}{3}{},\mp@subsup{k}{3}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{3}{},Sf)={\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{1}{},f),\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{2}{},f)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{3}{},Sv)={\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{1}{},v),\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{3}{},v)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{3}{},Sw)={\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{2}{},w),\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{3}{},w)
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{3}{},S\mp@subsup{k}{1}{})={\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{1}{},\mp@subsup{k}{1}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{3}{},S\mp@subsup{k}{2}{})={\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{2}{},\mp@subsup{k}{2}{})
L}(O\mp@subsup{X}{3}{})(S\mp@subsup{k}{3}{},S\mp@subsup{k}{3}{})={\rho(\mp@subsup{k}{3}{},\mp@subsup{k}{3}{},\mp@subsup{k}{3}{})
```

The powerset category $P_{o}\left(X_{3}\right)$: The objects in $P_{o}\left(X_{3}\right)$ are proper subchains of X_{3}.
$v P_{o}\left(X_{3}\right)=\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}$ and morphisms are the order-preserving mappings between the subchains of X_{3}. The morphisms in $P_{o}\left(X_{3}\right)$ are described below.

$$
\begin{aligned}
& P_{o}\left(X_{3}\right)(\{1\},\{1\})=\{(1)\} \\
& P_{o}\left(X_{3}\right)(\{1\},\{2\})=\left\{\binom{1}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{1\},\{3\})=\left\{\binom{1}{3}\right\} \\
& \left.P_{o}\left(X_{3}\right)\{1\},\{1,2\}\right)=\left\{\binom{1}{1},\left(\frac{1}{2}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1\},\{1,3\})=\left\{\binom{1}{1},\binom{1}{3}\right\} \\
& P_{o}\left(X_{3}\right)(\{1\},\{2,3\})=\left\{\binom{1}{3},\binom{1}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{2\},\{1\})=\left\{\binom{2}{1}\right\} \\
& P_{o}\left(X_{3}\right)(\{2\},\{2\})=\left\{\binom{2}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{2\},\{3\})=\left\{\left(\frac{2}{3}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{2\},\{1,2\})=\left\{\binom{2}{1},\binom{2}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{2\},\{1,3\})=\left\{\binom{2}{1},\binom{2}{3}\right\} \\
& P_{o}\left(X_{3}\right)(\{2\},\{2,3\})=\left\{\binom{2}{2},\binom{2}{3}\right\} \\
& P_{o}\left(X_{3}\right)(\{3\},\{1\})=\left\{\binom{3}{1}\right\} \\
& P_{o}\left(X_{3}\right)(\{3\},\{2\})=\left\{\binom{3}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{3\},\{3\})=\left\{\binom{3}{3}\right\} \\
& \left.P_{o}\left(X_{3}\right)(\{3\},\{1,2\})=\left\{\begin{array}{l}
3 \\
1
\end{array}\right),\binom{3}{2}\right\} \\
& \left.P_{o}\left(X_{3}\right)(\{3\},\{1,3\})=\left\{\begin{array}{l}
3 \\
1
\end{array}\right),\binom{3}{3}\right\} \\
& \left.P_{o}\left(X_{3}\right)(\{3\},\{2,3\})=\left\{\begin{array}{l}
3 \\
3
\end{array}\right),\binom{3}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{1,2\},\{1\})=\left\{\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,2\},\{2\})=\left\{\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,2\},\{3\})=\left\{\left(\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,2\},\{1,2\})=\left\{\left(\begin{array}{l}
12 \\
1 \\
1
\end{array}\right),\binom{12}{2},\binom{12}{12}\right\} \\
& P_{o}\left(X_{3}\right)(\{1,2\},\{1,3\})=\left\{\binom{12}{12},\binom{12}{3},\binom{12}{13}\right\} \\
& P_{o}\left(X_{3}\right)(\{1,2\},\{2,3\})=\left\{\left(\begin{array}{l}
12
\end{array}\right),\binom{122}{3},\binom{12}{2}\right\} \\
& P_{o}\left(X_{3}\right)(\{1,3\},\{1\})=\left\{\left(\begin{array}{l}
13 \\
1 \\
1
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,3\},\{2\})=\left\{\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,3\},\{3\})=\left\{\left(\begin{array}{ll}
1 & 3 \\
3 & 3
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,3\},\{1,2\})=\left\{\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,3\},\{1,3\})=\left\{\left(\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
3 & 3
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{1,3\},\{2,3\})=\left\{\left(\begin{array}{ll}
1 & 3 \\
3 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{2,3\},\{1\})=\left\{\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& P_{o}\left(X_{3}\right)(\{2,3\},\{2\})=\left\{\left(\begin{array}{cc}
2 & 3 \\
2 & 2
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{2,3\},\{3\})=\left\{\left(\begin{array}{c}
2 \\
3 \\
3
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{2,3\},\{1,2\})=\left\{\left(\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
(23 \\
2 & 3
\end{array}\right),\left(\begin{array}{cc}
2 & 3 \\
1 & 2
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{2,3\},\{1,3\})=\left\{\left(\begin{array}{c}
2 \\
2 \\
1
\end{array}\right),\binom{2}{3},\left(\begin{array}{ll}
2 & 3 \\
1 & 3
\end{array}\right)\right\} \\
& P_{o}\left(X_{3}\right)(\{2,3\},\{2,3\})=\left\{\left(\begin{array}{ll}
2 & 3 \\
2 & 2
\end{array}\right),\left(\begin{array}{cc}
2 & 3 \\
3 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3 \\
2 & 3
\end{array}\right)\right\} \text {. }
\end{aligned}
$$

It can be seen that the categories $P_{o}\left(X_{3}\right)$ and $\mathcal{L}\left(O X_{3}\right)$ are isomorphic, and the following is the equivalent vertex mapping,

$$
k_{1} \mapsto\{1\}, k_{2} \mapsto\{2\}, k_{3} \mapsto\{3\}, f \mapsto\{1,2\}, v \mapsto\{1,3\}, w \mapsto\{2,3\} .
$$

References

[1] P.A. Azeef Muhammed and A.R. Rajan, "Cross-connections of completely simple semigroups", Asian European J. Math. 09(03) (2016), 1650053.
[2] P.A. Azeef Muhammed and A.R. Rajan, "Cross-connections of the singular transformation semigroup", J. Algebra Appl. 17(3) (2018), 1850047.
[3] P.A. Azeef Muhammed, P.G. Romeo, and K.S.S. Nambooripad, "Cross-connection structure of concordant semigroups", International Journal of Algebra and Computation 30(1) (2020), 181-216.
[4] P.A. Azeef Muhammed and M.V. Volkov, "Inductive groupoids and cross-connections of regular semi groups", Acta Math. Hungar. 157(1) (2019), 80-120.
[5] P. A. Grillet, Semigroups. An introduction to the structure theory, Monographs and Textbooks in Pure and Applied Mathematics, 193, Marcel Dekker, Inc., New York, 1995.
[6] T.E. Hall, "On regular semigroups", J. Algebra 24(1) (1973), 1-24.
[7] J. M. Howie, "Fundamentals of semigroup theory", London Mathematical Sociaty Monographs, Oxford University Press (1996).
[8] K.S.S. Nambooripad. "Structure of Regular Semigroups. II. Cross-connections", Centre for Mathematical Sciences, Publication No. 15 (1989).
[9] K.S.S. Nambooripad, "Theory of Cross-connections", Centre for Mathematical Sciences, Publication No. 28 (1994).
[10] K. S. S. Nambooripad : Theory of Regular Semigroups, Sayahna Foundation Trivandrum, 2018.
[11] S. MacLane. "Categories for the Working Mathematician", Volume 5 of Graduate Texts in Mathematics, SpringerVerlag, New York (1971)

Author information

K. K. Sneha, Department of Mathematics, Cochin University of Science And Technology, India. E-mail: snehamuraleedharan007@gmail.com
P. G. Romeo, Department of Mathematics, Cochin University of Science And Technology, India.

E-mail: romeo_ parackal@yahoo.com,

Received: 2023-03-31
Accepted: 2023-11-23

