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Abstract The cross-connection theory proposed by K. S. S. Nambooripad provides the construction of a regular semigroup from
its principal left (right) ideals using a certain category called a normal category. In the present work, we study the structure of the
semigroup OXn, of singular order-preserving transformations on a finite chain Xn = {1 < 2 < · · · < n}, using the normal category.
Here, we characterize all of Green’s equivalences on the semigroup OXn and hence prove that OXn is a fundamental regular
semigroup. Further, we construct a normal category called the powerset category Po(Xn) and prove that Po(Xn) is isomorphic to
the principal left ideal category of OXn, which is denoted as L(OXn). Also, we construct the cone semigroup TL(OXn) and prove
that TL(OXn) is isomorphic to OXn.

1 Introduction
In describing the structure of regular semigroups, Grillet proposed the idea of cross-connections of regular partially ordered sets
[5]. However, Grillet’s theory was only intended to describe the structure of fundamental regular semigroups, a subclass of regular
semigroups. In the early 1990s, K. S. S. Nambooripad generalized Grillet’s cross-connection theory to the general class of regular
semigroups, and in this context, he proposed the notion of "normal categories" [9]. These normal categories are further characterized
as the principal left ideal category L(S) of some regular semigroup S. A normal category C is a small category with subobjects in
which an idempotent normal cone is associated with each object of C, and each morphism has a normal factorization. All the normal
cones in a normal category form a regular semigroup TC known as the semigroup of normal cones. In this article, we consider the
semigroup OXn of singular order-preserving transformations on a finite chain Xn and characterize the category L(OXn) with the
power set category Po(Xn). The power set category Po(Xn) is a normal category constructed from the chain Xn.

This article is organized as follows. In section 2, we discuss the important concepts and results regarding the general theory of
cross-connections proposed by K. S. S. Nambooripad. In section 3, Green’s equivalences in the semigroup OXn have been provided.
In section 4, we prove that the power set category Po(Xn) is normal and isomorphic to L(OXn). Further, we obtained the semigroup
of normal cones in Po(Xn). We illustrate our results on OX3, the semigroup of singular order-preserving transformations that
preserve order on a chain X3 with length 3.

2 Preliminaries
In the sequel, we assume familiarity with the basic concepts in category theory [11] and semigroup theory [5, 6, 7, 10]. Also, the
definitions and results on cross-connections are as in [4, 9]. Throughout this paper, we write transformations to the right of their
argument and take the composition from left to right. For category C, vC denote the set of objects of C and C(a, b) the morphisms
from a to b. We assume that the categories under consideration are small unless otherwise stated.

A category P is said to be a preorder category if every hom-set of P has at most one morphism. This property of a preorder
category induces certain quasi-order relation “ ⊆ ” on vP and is given by p ⊆ p′ if P(p, p′) ̸= ∅. Moreover, P is said to be a strict
preorder if “ ⊆ ” is a partial order.

Definition 2.1. A small category C is said to be a category with subobjects if there is a strict preorder subcategory P of C with
vP = vC having the following properties:

(1) every morphisms of P is a monomorphism in C.

(2) if h = h′k for h, k ∈ P, then h′ ∈ P.

The pair (C,P) is called the category with subobjects. If c′ ⊆ c, the unique morphism from c′ to c is called the inclusion
morphism and is denoted by jc

c′ . An inclusion jc
c′ splits if there exists e : c → c′ ∈ C such that jc

c′q = 1c′ and the morphism q is
called a retraction. A factorization of a morphism f ∈ C of the form f = ewj where e is a retraction, w is an isomorphism and j is
an inclusion is called the normal factorization of f. The morphism ew is known as the epimorphic component of f and is denoted by
f◦.
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Definition 2.2. Let C be a category with subobjects and d ∈ vC. A map γ : vC → C is called a cone with vertex d if

(1) γ(c) ∈ C(c, d) for all c ∈ vC.

(2) If c1 ⊆ c2, then j
c2
c1 γ(c2) = γ(c1)

γ(c1)

⊆

γ(c2)

c1 c2

d

For a cone γ, let cγ denote the vertex of γ. For c ∈ vC, the morphism γ(c) : c → cγ is called the component of γ at c. A cone γ
is said to be normal if there exists c ∈ vC such that γ(c) : c → cγ is an isomorphism. We denote by T C, the set of all normal cones
in C and by Mγ , the set

Mγ = {c ∈ vC : γ(c) is an isomorphism }.

Definition 2.3. A category C with subobjects is called a normal category if the following holds

(1) Any morphism in C has a normal factorization.

(2) Every inclusion in C splits.

(3) For each c ∈ vC there is a normal cone γ with vertex c and γ(c) = 1cγ .

Observe that given a normal cone γ and an epimorphism f : cγ → d, the map γ ∗ f : a → γ(a)f from vC to C is a normal cone
with vertex d. Consider two normal cones γ and σ, then

γ · σ = γ ∗ (σ(cγ))
◦

where (σ(cγ))◦ is the epimorphic part of σ(cγ), defines a binary composition on T C.

Theorem 2.4. (Theorem III.2 [9]) Let C be a normal category. Then T C, the set of all normal cones in C is a regular semigroup with
the binary operation

γ · σ = γ ∗ (σ(cγ))
◦ (2.1)

and γ ∈ TC is idempotent if and only if γ(cγ) = 1cγ .

Normal categories of a regular semigroup: There are two normal categories associated with a regular semigroup S, namely
the principal left ideal category L(S) and the principal right ideal category R(S). The objects of L(S) are principal left ideals Se

generated by idempotents e ∈ E(S). The morphisms are partial right translations ρ(e, u, f) : Se → Sf : u ∈ eSf such that for
every x ∈ Se, ρ(e, u, f) : x 7→ xu. Dually, the objects of the category R(S) of principal right ideals are eS, generated by e ∈ E(S)

and the morphisms are partial left translations λ(e, v, f) : eS → fS : v ∈ fSe, which maps x 7→ vx for any x ∈ eS.

Proposition 2.5. Let S be a regular semigroup. Then L(S) is a normal category. ρ(e, u, f) = ρ(e′, v, f ′) if and only if eLe′, fLf ′, u ∈
eSf, v ∈ e′Sf ′ and v = e′u. Let ρ = ρ(e, u, f) be a morphism in L(S). For any g ∈ Ru ∩ ω(e) and h ∈ E(Lu), ρ =

ρ(e, g, g)ρ(g, u, h)ρ(h, h, f) is a normal factorization of ρ.

Proposition 2.6. Let S be a regular semigroup, a ∈ S and f ∈ E(La). Then for each e ∈ E(S), let ρa(Se) = ρ(e, ea, f). Then
ρa is a normal cone in L(S) with vertex Sf called the principal cone generated by a.

Mρa = {Se : e ∈ E(Ra)}.

ρa is an idempotent in T L(S) iff a ∈ E(S). The mapping a 7→ ρa is a homomorphism from S to T L(S).

3 Semigroup of order-preserving transformations on a finite chain
Let Xn = {1 < 2 < · · · < n : n ∈ N} be a finite chain of length n. A transformation f : Xn → Xn is called order-preserving
if (i)f ≤ (j)f whenever i ≤ j. A transformation is said to be singular if it is not invertibele(not one-one and onto). The semigroup
of all singular order-preserving mappings from Xn to itself under function composition is denoted by OXn. To consider nontrivial
cases only, we assume n ≥ 3. The Green’s relations in the semigroup OXn are characterized entirely by their images and kernels.
It is known that OXn is a regular subsemigroup of T Xn, the full transformation semigroup of Xn. The following proposition
characterizes all the Green’s equivalences in OXn.

Lemma 3.1. The semigroup OXn, of singular order-preserving transformations on a finite chain Xn = {1 < 2 < · · · < n : n ∈ N}
is a regular semigroup. Let f, g ∈ OXn, then the following holds.

(1) f ≤R g if and only if ker g ⊆ ker f.

(2) f ≤L g if and only if Im f ⊆ Im g.
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Proof. Let f be an order-preserving function on a finite chain Xn and let Im f = {x1 < x2 < · · · < xk : xi ∈ Xn, i =

1, 2, · · · k}. Then there exists n1 < n2 < · · · < nk = n ∈ N, such that

(x)f =

{
x1, if x = 1, 2, · · · , n1,

xi+1, if ni < x ≤ ni+1, i = 1, 2, · · · k − 1.
(3.1)

Now define g : Xn → Xn by

(x)g =


ni, if x = xi, i = 1, 2, · · · , k,
n1, if x < x1,

ni, if xi < x < xi+1, i ∈ {1, 2, · · · k − 1},
nk, if x > xk.

(3.2)

Then clearly, g is an order-preserving singular transformation on Xn and thus g ∈ OXn. Now consider,

(x)fgf = (x1)gf = (n1)f = x1 = (x)f, if 1 ≤ x ≤ n1

and
(x)fgf = (xi)gf = (ni+1)f = xi+1 = (x)f, if ni < x ≤ ni+1, where i = 1, 2, · · · k − 1.

Hence fgf = f and g is a generalized inverse of f. Hence OXn is a regular semigroup.
To prove the first assertion, suppose f ≤R g, then there exists some h ∈ OXn such that f = gh. Let (x, y) ∈ ker g then

(x)g = (y)g. Then (x)f = (y)f and (x, y) ∈ ker f. Conversely, suppose that ker g ⊆ ker f and let Im g = {x1 < x2 <

· · · < xk : xi ∈ Xn, i = 1, 2, · · · , k}. Since g is an order-preserving function (xi)g
−1 is an interval for each i = 1, 2, · · · , k.

Therefore let Ai = (xi)g
−1 for i = 1, 2, · · · , k. Then A1 ∪ A2 ∪ · · · ∪ Ak = Xn, and Ai ∩ Aj = ϕ for i ̸= j. Choose exactly

one representative ai from each interval. Since ker g ⊆ ker f, f is a constant on each Ai. Now define h : Xn → Xn by

(x)h =


(ai)f, if x = xi, i = 1, 2, · · · , k,
(a1)f, if x < x1,

(ai)f, if xi < x < xi+1, i ∈ {1, 2, · · · k − 1},
(ak)f, if x > xk.

(3.3)

Since both f and g are order-preserving h is also order- preserving and h ∈ OXn. Let x ∈ Xn then x is an element of exactly
one Ai where i = 1, 2, · · · , k. Let x ∈ Aj then (x)g = xj and

(x)gh = (xj)h = (aj)f = (x)f

thus f = gh. To prove the second assertion, assume f ≤L g, then it is obvious that Im f ⊆ Im g. Conversely, assume that Im f ⊆
Im g and let Im f = {y1 < y2 < · · · < ym : yi ∈ Xn, i = 1, 2, · · · ,m}. Now let Bi = (yi)g

−1 for i = 1, 2, · · · ,m then each
Bi is an interval. Fix exactly one element from each Bi, say bi and define h : Xn → Xn by (x)h = bi with (f(x))g−1 ∈ Bi. Now
it can be seen that h ∈ OXn and f = hg. Hence f ≤L g.

Proposition 3.2. Let f and g be elements of the semigroup OXn of singular order-preserving transformations on a finite chain Xn.

Then,

(1) f R g if and only if ker g = ker f,

(2) f L g if and only if Im f = Im g,

(3) f H g if and only if f = g,

(4) f D g if and only if |Im f | = |Im g|.

Proof. The proof of the first and second assertions follows immediately from Lemma 3.1. Now suppose that f H g then f L g and
f R g. Using (1) and (2) we have ker f = ker g and Im f = Im g. Since f and g are order-preserving, f and g must be identical.
Now suppose f D g then by definition, there exists h ∈ OXn such that f L h R g. Then it follows from (1) and (2) of above
that Im f = Im h and ker g = ker h. Since ker g = ker h we have |Im g| = |Im h| thus |Im g| = |Im f |. Conversely,
assume that |Im g| = |Im f | = m ≤ n. Let Im f = {x1 < x2 < · · · < xm} and Im g = {y1 < y2 < · · · < ym}. For
n1 < n2 < · · · < nk = n, m1 < m2 < · · · < mk = n ∈ N, let

(x)f =

{
x1, if x = 1, 2, · · · , n1,

xi+1, if ni < x ≤ ni+1, i = 1, 2, · · · , k − 1,
(3.4)

and

(x)g =

{
y1, if x = 1, 2, · · · ,m1,

yi+1, if mi < y ≤ mi+1, i = 1, 2, · · · , k.
(3.5)

Now define,

(x)h =

{
x1, if x = 1, 2, · · · ,m1,

xi+1, if mi−1 < y ≤ mi, i = 2, 3, · · · k.
(3.6)

and it is easy to observe that Im f = Im h and ker g = ker h and thus fDg.

Remark 3.3. Since the Green’s H relation in OXnis identity, the semigroup OXn is a fundamental regular semigroup which is a
subsemigroup of full transformation semigroup of Xn.
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Example 3.4. Let X3 = 1 < 2 < 3 be the finite chain of length three. Then the semigroup OX3 is given by

OX3 =

{(
1 2 3
1 2 2

)
,
(

1 2 3
1 3 3

)
,
(

1 2 3
2 3 3

)
,
(

1 2 3
1 1 2

)
,
(

1 2 3
1 1 3

)
,
(

1 2 3
2 2 3

)
,
(

1 2 3
1 1 1

)
,
(

1 2 3
2 2 2

)
,
(

1 2 3
3 3 3

)}
.

We denote the elements in OX3 as follows.
f =

(
1 2 3
1 2 2

)
, g =

(
1 2 3
1 3 3

)
, h =

(
1 2 3
2 3 3

)
, u =

(
1 2 3
1 1 2

)
, v =

(
1 2 3
1 1 3

)
, w =

(
1 2 3
2 2 3

)
, k1 =

(
1 2 3
1 1 1

)
, k2 =

(
1 2 3
2 2 2

)
,

k3 =
(

1 2 3
3 3 3

)
.

Then we have E(OX3) = {k1, k2, k3, f, g, v, w}. Now we identify the Green’s relations of OX3.

Im k1 = {1} Im f = Im u = {1, 2}
Im k2 = {2} Im g = Im v = {1, 3}
Im k3 = {3} Im h = Im w = {2, 3}

L(OX3) = {(k1, k1), (k2, k2), (k3, k3), (f, u), (g, v), (h,w)}

ker k1 = ker k2 = ker k3 = X3 ×X3

ker f = ker g = ker h = {(1, 1)(2, 2), (3, 3), (2, 3)}
ker u = ker v = ker w = {(1, 1)(2, 2), (3, 3), (1, 2)}

In OX3 we get k1 R k2 R k3, f R g R h and u R v R w and the egg box diagram becomes

f g h

u v w
D2

k1 k2 k3 D1.

4 The category of Principal left ideals of OXn

In this section, we characterize the normal category L(OXn) associated with the principal left ideals of OXn. Here, we use S and
OXn mutually to denote the semigroup of order-preserving singular transformations on Xn. For any proper nontrivial subchainA of
Xn, let eA denote the idempotent transformation with image A. Note that eA is not uniquely determined by A.

Lemma 4.1. Let A,B ⊊ Xn and ρ(eA, u, eB) be a morphism from SeA to SeB . Then for any x ∈ A, xu ∈ B. Also
ρ(eA, u, eB) = ρ(e′A, v, e′B) if and only if xu = xv for all x ∈ A, where eA, e′A are idempotents with image A and eB , e′B are
idempotents with image B.

Proof. By the definition of a morphism in L(S), u ∈ eASeB and Xu ⊆ XeB = B. In particular xu ∈ B for all x ∈ A. To
prove the second assertion, let ρ(eA, u, eB) = ρ(e′A, v, e′B) then by Proposition 2.5 u = eAv. Also since eA is an idempotent
map with image A it can be seen that eA|A = 1A. Hence xu = xv for all x ∈ A. Conversely, if xu = xv for all x ∈ A,

then since u ∈ eASeB , eAu = u and by our assumption eAu = eAv. Hence u = eAv and using Proposition 2.5 we have
ρ(eA, u, eB) = ρ(e′A, v, e′B).

Proposition 4.2. All normal cones in the category L(OXn) are principal cones.

Proof. Let γ be a normal cone in L(OXn), with cγ = SeA for some eA ∈ E(OXn). For any x ∈ Xn, ex denotes the constant
map whose image is x and Sex = {ex}. Consider γ(Sex) for x ∈ Xn. Let γ(Sex) = ρ(ex, ux, eA) then by Lemma 4.1 xux ∈ A.

Since γ(Sex) is uniquely determined by x, ux is uniquely determined by x. Define α on Xn as follows.

xα = xux for all x ∈ Xn and ux as above .

Since ux is uniquely determined by x, α is well defined. Since xux ∈ A for all x ∈ Xn, α is a function from Xn with image
contained in A. Now we prove that α is an order-preserving transformation. If possible, assume that α is not an order-preserving
function. Then there exists x, y ∈ Xn such that xα < yα for x > y. Now consider the set Y = {x, y} such that Sx, Sy ⊆ SeY
and γ(SeY ) = ρ(eY , u, eA). Since Sx, Sy ⊆ SeY we have

γ(Sex) = j
SeY
Sex

γ(SeY ) and γ(Sy) = j
SeY
Sy γ(SeY ).

That is
ρ(ex, ux, eA) = ρ(ex, ex, eY )ρ(eY , u, eA) = ρ(ex, exu, eA).

Similarly we get ρ(ey , uy , eA) = ρ(ey , eyu, eA). From these two equations, we get xα = xux = xexu = xu and yα = yu.

Hence xu < yu for x > y, which contradicts that u is order-preserving. Therefore, α ∈ S is an order-preserving transformation with
image α contained in A. Since γ is a normal cone, there is a component γ(SeC) is an isomorphism and let γ(SeC) = ρ(eC , β, eA).
Then by Lemma 4.1 xβ ∈ A for all x ∈ C. Since γ(SeC) is an isomorphism β L eA, and Im β = A. Now, we show that
Im α = A. Let y ∈ A, then there exists x ∈ C such that xβ = y.

ρ(ex, ux, eA) = γ(Sx) = j
SeC
Sx γ(SeC) = ρ(ex, exβ, eA).

Thus ux = exβ( using Proposition 2.5), so that xα = xux = xexβ = xβ = y. Hence α is onto. Now we prove that γ = ρα.

Since Im α = SeA the vertex of ρα is SeA = cγ . For B ⊆ X, we prove that if γ(SeB) = ρ(eB , v, eA) , then ρ(eB , v, eA) =

ρ(eB , eBα, eA). For that, it is sufficient to prove that xv = xeBα for all x ∈ B. If x ∈ B, then Sx ⊆ SeB and by the definition
of cones

γ(Sx) = j
SeB
Sx γ(SeB) = ρ(ex, ex, eB)ρ(eB , v, eA) = ρ(ex, exv, eA).

But γ(Sx) = ρ(ex, ux, eA), equating these we get xux = xexv = xv. That is for all x ∈ B we have xα = xv. Therefore
ρ(eB , v, eA) = ρ(eB , eBα, eA). Hence γ = ρα and all normal cones are of the form ρα for some α ∈ S.
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Theorem 4.3. The semigroup of normal cones in L(OXn) is isomorphic to O(Xn).

Proof. It is known that, the map ϕ : TL(OXn) → L(OXn) defined by (α)ϕ = ρα is a semigroup homomorphism by Proposition
2.6. Using Proposition 4.2, the map ϕ is onto. Now we need to show that ϕ is injective. For, let α, β ∈ S such that ρα = ρβ . For any
x ∈ Xn, ρα(Sx) = ρ(ex, exα, eA) where eA L α and ρβ(Sx) = ρ(ex, exβ, eB), eB L β. Since ρα = ρβ , we have

ρ(ex, exα, eB) = ρ(ex, exα, eB).

By Lemma 4.1, exα = exβ. It follows that xα = xβ for all x ∈ Xn and α = β.

4.1 Power set category
Let Xn = {1 < 2 < · · · < n} be a non empty finite chain and to avoid trivialities, assume that n ≥ 3. Given any finite chain, one
can construct a category Po(Xn) from Xn whose objects are all proper subchains of Xn and morphisms are the order-preserving
transformations between the subchains. P0(Xn) is called the power set category and it is a category with subobjects in which
inclusions are set inclusions. That is we have the inclusion function j = jBA : A → B if A ⊆ B. In the following proposition we
prove that Po(Xn) is a normal category.

Proposition 4.4. The power set category Po(Xn) is a normal category.

Proof. It is easy to see that Po(Xn) is a category with subobjects and the subobject relation is induced by the usual subchain relation.
Given an inclusion jA

A′ where A′ ⊆ A, define a retraction e : A → A′ as follows:
Let A′ = {x1 < x2 < · · · < xk} and xi ∈ Xn, i = 1, 2, · · · , k. Define

(x)e =


x, if x ∈ A′,

xi, if xi < x < xi+1, i ∈ {1, 2, · · · k − 1},
x1, if x < x1,

xk, if x > xk.

(4.1)

Clearly, e ∈ S and je = 1A′ . Given any morphism( order-preserving transformation) f : A → B; let B′ = Im f and A′ is the
cross-section of the partition of A determined by ker f. Then f has a normal factorization and f = euj, where u = f |A′ is a
bijection and j = jB

B′ . Given any A ⊆ Xn, let γ be a cone in Po(Xn) with vertex A is defined as follows. Let u : Xn → A be
an order-preserving transformation such that u(a) = a for all a ∈ A. For any B ⊆ Xn, define γ(B) = u|B : B → A. Then γ is a
normal cone with γ(A) = 1A. Thus Po(Xn) is a normal category.

In the following theorem it is shown that the categories Po(Xn) and L(OXn) are isomorphic. For that, we show that there exists
an inclusion preserving functor from L(OXn) to Po(Xn) which is an order isomorphism, v-injective, v-surjective and fully-faithful.

Theorem 4.5. The categories Po(Xn) and L(OXn) are isomorphic.

Proof. Define a functor F : L(OXn) → Po(Xn) as follows: For SeA ∈ vL(OXn) and a morphism ρ(eA, u, eB) ∈ L(OXn)

we have
vF (SeA) = A and F (ρ(eA, u, eB)) = u|A.

Clearly, F is well defined by Proposition 3.2 and Lemma 4.1. Now let ρ(eA, u, eB), ρ(eB , v, eC) be two composable morphisms in
L(OXn). Then

ρ(eA, u, eB)ρ(eB , v, eC) = ρ(eA, uv, eC).

Now F (ρ(eA, uv, eC)) = uv|A = u|Av|B = F (ρ(eA, u, eB))F (ρ(eB , v, eC)). Hence F is a functor. Using Proposition 3.2 it is
easy to prove that F is inclusion preserving and vF is an order isomorphism.

Now we prove that vF is a bijection. For, Let A ⊆ Xn such that A = {x1 < x2 < · · · < xk}. Then define

(x)e =


x, if x ∈ A,

x1, if x < x1,

xi, if xi−1 < x < xi, i ∈ {2, 3, · · · k},
xk, if x > xk.

(4.2)

Clearly, e is an idempotent order-preserving transformation with Im e = A. Now F (Se) = Im e = A. Hence vF is v-surjective.
By Proposition 3.2 it follows that vF is injective. To complete the proof only need to prove F is fully-faithful. Now let f be an
order-preserving transformation from A to B. Then eAf is an order-preserving transformation with the image contained in B and
eAf |A = f. So eAf ∈ eASeB and ρ(eA, eAf, eB) : SeA → SeB such that F (ρ(eA, eAf, eB)) = f. Hence F is full. The proof
of F is faithfull follows from Lemma 4.1. Hence the Theorem.

Since the category Po(Xn) is isomorphic to L(OXn), the corresponding semigroups of normal cones TL(OXn) and TPo(Xn)

are isomorphic. But using Theorem 4.3 we get TPo(Xn) is isomorphic to OXn. Summarising, we have the following theorem.

Theorem 4.6. TPo(Xn) is isomorphic to the semigroup S of singular order-preserving transformation on a finite chain Xn.
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Remark 4.7. All normal cones in Po(Xn) can be described as follows. Let γ be a normal cone in Po(Xn) with vertex A ⊆ Xn.

Then let α : Xn → Xn be defined as follows.

(x)α = (x)γ({x}), for all x ∈ Xn.

Then using a similar argument to the one in the proof of Proposition 4.2, we may observe that α ∈ S and γ = ρα. Notice that the
semigroup OXn is represented by T Po(Xn).

Example 4.8. The semigroup OX3 consists of singular transformations on a finite chain X3 = {1 < 2 < 3} of length three. In this ex-
ample, we construct the categories L(OX3) and Po(X3). From Example 3.4, we have the semigroup OX3 = {k1, k2, k3, f, g, h, u, v, w}
and the egg box diagram of OX3 is given below.

f g h

u v w
D2

k1 k2 k3 D1.

E(OX3) = {k1, k2, k3, f, g, v, w}.

L(OX3) is the category whose objects are the principal left ideals of OX3. Since OX3 has 6 distinct L classes, L(OX3) has 6 objects
and is given by vL(OX3) = {Sf, Sv, Sw, Sk1, Sk2, Sk3}. To obtain the hom-sets in L(OX3) we compute the following sets.

fSf = {k1, k2, f}, fSv = {k1, k3, u}, fSw = {k2, k3, u},

fSk1 = {k1}, fSk2 = {k2}, fSk3 = {k3},

vSf = {k1, k2, u}, vSv = {k1, k3, v}, vSw = {k2, k3, w},

vSk1 = {k1}, vSk2 = {k2}, vSk3 = {k3},

wSf = {k1, k2, u}, wSv = {k1, k3, v}, wSw = {k2, k3, w},

wSk1 = {k1}, wSk2 = {k2}, wSk3 = {k3},

k1Sf = {k1, k2}, k1Sv = {k1, k3}, k1Sw = {k2, k3},

k1Sk1 = {k1}, k1Sk2 = {k2}, k1Sk3 = {k3},

k2Sf = {k1, k2}, k2Sv = {k1, k3}, k2Sw = {k1, k2, k3},

k2Sk1 = {k1}, k2Sk2 = {k2}, k2Sk3 = {k3},

k3Sf = {k1, k2}, k3Sv = {k1, k3}, k3Sw = {k2, k3},

k3Sk1 = {k1}, k3Sk2 = {k2}, k3Sk3 = {k3}.

The hom-sets in the category L(OX3) can be obtained as follows. By the definition of a morphism in L(OX3) we get

L(OX3)(Sf, Sf) = {ρ(f, u, f) : u ∈ fSf}

and we have the set fSf = {k1, k2, f} thus
L(OX3)(Sf, Sf) = {ρ(f, k1, f), ρ(f, k2, f), ρ(f, f, f)}.

In the similar manner we get all the morphisms in L(OX3.)

L(OX3)(Sf, Sv) = {ρ(f, k1, v), ρ(k, k3, v), ρ(f, u, v)}
L(OX3)(Sf, Sw) = {ρ(f, k2, w), ρ(f, k3, w), ρ(f, u, w)}
L(OX3)(Sf, Sk1) = {ρ(f, k1, k1)}
L(OX3)(Sf, Sk2) = {ρ(f, k2, k2)}
L(OX3)(Sf, Sk3) = {ρ(f, k3, k3)}

L(OX3)(Sv, Sf) = {ρ(v, k1, f), ρ(v, k2, f), ρ(v, u, f)}
L(OX3)(Sv, Sv) = {ρ(v, k1, v), ρ(v, k3, v), ρ(v, v, v)}
L(OX3)(Sv, Sw) = {ρ(v, k2, w), ρ(v, k3, w), ρ(v, w,w)}
L(OX3)(Sv, Sk1) = {ρ(v, k1, k1)}
L(OX3)(Sv, Sk2) = {ρ(v, k2, k2)}
L(OX3)(Sv, Sk3) = {ρ(v, k3, k3)}

L(OX3)(Sw, Sf) = {ρ(w, k1, f), ρ(w, k2, f), ρ(w, u, f)}
L(OX3)(Sw, Sv) = {ρ(w, k1, v), ρ(w, k3, v), ρ(w, v, v)}
L(OX3)(Sw, Sw) = {ρ(w, k2, w), ρ(w, k3, w), ρ(w,w,w)}
L(OX3)(Sw, Sk1) = {ρ(w, k1, k1)}
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L(OX3)(Sw, Sk2) = {ρ(w, k2, k2)}
L(OX3)(Sw, Sk3) = {ρ(w, k3, k3)}

L(OX3)(Sk1, Sf) = {ρ(k1, k1, f), ρ(k, k2, f)}
L(OX3)(Sk1, Sv) = {ρ(k1, k1, v), ρ(k1, k3, v)}
L(OX3)(Sk1, Sw) = {ρ(k1, k2, w), ρ(k1, k3, w)}
L(OX3)(Sk1, Sk1) = {ρ(k1, k1, k1)}
L(OX3)(Sk1, Sk2) = {ρ(k1, k2, k2)}
L(OX3)(Sk1, Sk3) = {ρ(k1, k3, k3)}

L(OX3)(Sk2, Sf) = {ρ(k2, k1, f), ρ(k2, k2, f)}
L(OX3)(Sk2, Sv) = {ρ(k2, k, v), ρ(k, k3, v)}
L(OX3)(Sk2, Sw) = {ρ(k2, k2, w), ρ(k2, k3, w)}
L(OX3)(Sk2, Sk1) = {ρ(k2, k1, k1)}
L(OX3)(Sk2, Sk2) = {ρ(k2, k2, k2)}
L(OX3)(Sk2, Sk3) = {ρ(k2, k3, k3)}

L(OX3)(Sk3, Sf) = {ρ(k3, k1, f), ρ(k3, k2, f)}
L(OX3)(Sk3, Sv) = {ρ(k3, k1, v), ρ(k3, k3, v)}
L(OX3)(Sk3, Sw) = {ρ(k3, k2, w), ρ(k3, k3, w)}
L(OX3)(Sk3, Sk1) = {ρ(k3, k1, k1)}
L(OX3)(Sk3, Sk2) = {ρ(k3, k2, k2)}
L(OX3)(Sk3, Sk3) = {ρ(k3, k3, k3)}
The powerset category Po(X3) : The objects in Po(X3) are proper subchains of X3.

vPo(X3) =

{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
and morphisms are the order-preserving mappings between the subchains

of X3. The morphisms in Po(X3) are described below.

Po(X3)({1}, {1}) =
{(

1
1

)}
Po(X3)({1}, {2}) =

{(
1
2

)}
Po(X3)({1}, {3}) =

{(
1
3

)}
Po(X3)({1}, {1, 2}) =

{(
1
1

)
,
(

1
2

)}
Po(X3)({1}, {1, 3}) =

{(
1
1

)
,
(

1
3

)}
Po(X3)({1}, {2, 3}) =

{(
1
3

)
,
(

1
2

)}
Po(X3)({2}, {1}) =

{(
2
1

)}
Po(X3)({2}, {2}) =

{(
2
2

)}
Po(X3)({2}, {3}) =

{(
2
3

)}
Po(X3)({2}, {1, 2}) =

{(
2
1

)
,
(

2
2

)}
Po(X3)({2}, {1, 3}) =

{(
2
1

)
,
(

2
3

)}
Po(X3)({2}, {2, 3}) =

{(
2
2

)
,
(

2
3

)}
Po(X3)({3}, {1}) =

{(
3
1

)}
Po(X3)({3}, {2}) =

{(
3
2

)}
Po(X3)({3}, {3}) =

{(
3
3

)}
Po(X3)({3}, {1, 2}) =

{(
3
1

)
,
(

3
2

)}
Po(X3)({3}, {1, 3}) =

{(
3
1

)
,
(

3
3

)}
Po(X3)({3}, {2, 3}) =

{(
3
3

)
,
(

3
2

)}
Po(X3)({1, 2}, {1}) =

{(
1 2
1 1

)}
Po(X3)({1, 2}, {2}) =

{(
1 2
2 2

)}
Po(X3)({1, 2}, {3}) =

{(
1 2
3 3

)}
Po(X3)({1, 2}, {1, 2}) =

{(
1 2
1 1

)
,
(

1 2
2 2

)
,
(

1 2
1 2

)}
Po(X3)({1, 2}, {1, 3}) =

{(
1 2
1 1

)
,
(

1 2
3 3

)
,
(

1 2
1 3

)}
Po(X3)({1, 2}, {2, 3}) =

{(
1 2
2 2

)
,
(

1 2
3 3

)
,
(

1 2
2 3

)}
Po(X3)({1, 3}, {1}) =

{(
1 3
1 1

)}
Po(X3)({1, 3}, {2}) =

{(
1 3
2 2

)}
Po(X3)({1, 3}, {3}) =

{(
1 3
3 3

)}
Po(X3)({1, 3}, {1, 2}) =

{(
1 3
1 1

)
,
(

1 3
2 2

)}
Po(X3)({1, 3}, {1, 3}) =

{(
1 3
1 1

)
,
(

1 3
3 3

)}
Po(X3)({1, 3}, {2, 3}) =

{(
1 3
3 3

)
,
(

1 3
2 2

)}
Po(X3)({2, 3}, {1}) =

{(
2 3
1 1

)}
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Po(X3)({2, 3}, {2}) =
{(

2 3
2 2

)}
Po(X3)({2, 3}, {3}) =

{(
2 3
3 3

)}
Po(X3)({2, 3}, {1, 2}) =

{(
2 3
1 1

)
,
(

2 3
2 2

)
,
(

2 3
1 2

)}
Po(X3)({2, 3}, {1, 3}) =

{(
2 3
1 1

)
,
(

2 3
3 3

)
,
(

2 3
1 3

)}
Po(X3)({2, 3}, {2, 3}) =

{(
2 3
2 2

)
,
(

2 3
3 3

)
,
(

2 3
2 3

)}
.

It can be seen that the categories Po(X3) and L(OX3) are isomorphic, and the following is the equivalent vertex mapping,.

k1 7→ {1}, k2 7→ {2}, k3 7→ {3}, f 7→ {1, 2}, v 7→ {1, 3}, w 7→ {2, 3}.
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