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Abstract In this article, rational expressions are used to prove some fixed-point theorems of
Meir-Keeler type contraction in the context of M -metric spaces. The article’s findings enhance
and expand on several recent results in fixed-point theory. Concluding remarks and the primary
theorem ensure the extension. At the end, the primary theorem’s applicability in establishing
theorems for certain integral equations and integral-type contractive conditions is established.

1 Introduction

One of the most intriguing study areas that exists at the nexus of three different branches of math-
ematics: topology, applied mathematics, and nonlinear functional analysis, is metric fixed point
theory. It was widely considered that Banach [1] established the first metric fixed-point theorem
in 1922. However, it was recognized that the concept of the fixed-point theorem was employed
before Banach’s publication. Furthermore, in certain research publications by Liouville, Picard,
Poincare, and others, fixed point results were utilized to demonstrate the existence and unique-
ness of solutions to initial value problems. Regardless, the main objective of Banach’s theorem
is to demonstrate the existence and uniqueness of the fixed point. Plenty of novel discoveries in
the context of metric fixed point theory have been established during the three decades preceding
this one.

A fascinating result that extends the well-known Banach contraction principle was made in
1969 by Meir and Keeler [2]. Based on results established by Meir-Keeler; numerous authors
have expanded on this contraction, see [3]-[8]. In order to achieve many impressive results, a
huge amount of mathematical work was carried out to demonstrate the applicability of fixed
point theory [9]-[14].

Dass and Gupta [15] were the first to use contractive conditions with rational expressions
to prove fixed point theorems. Jaggi [16] prove fixed point theorems with the help of rational
expression. Further, Gupta [17] and Samet [18] generalized the results due to [15]. Main fixed
point result of Najeh et al. [19] generalized the finding of Gupta and Saxena [17]. Koti et
al. [20] findings significantly enhance those of Najeh et al. [19] and Samet [18]. Recently,
a number of authors have generalized Das-Gupta and Jaggi’s findings by taking into different
types of mathematical metric space concepts. See, e.g. [21]-[27] and references therein

In 2014, Asadi et al. [28] broadened the definition of partial metric space and offered some
instances to demonstrate that their concepts are a valid generalization of partial metric space.
This new concept was termed as M -metric space and fixed point theorems for the Banach con-
traction principle and Meir-Keeler contraction have been established. Later, in 2016 Monfared
[29]-[30] applied covered Ciric-contraction to established Matkowski’s fixed point theorem and
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Boyd-Wong fixed point theorem for M -metrics. In 2018, Ozgur [31] introduced the rectangular
M -metric space and various fixed point theorem proven therein, which extending both rectan-
gular and M -metric space. Recently Asim et al. [32] proved some fixed point theorem for
Meir-Keeler type contraction in rectangular M -metric spaces. In the literature of fixed point
theory numerous novel developments in M -metric space have been observed, see [33]-[37].

2 Preliminaries

Definition 2.1. [38] Consider a non-empty set E and a mapping σ : E × E → R+ satisfies the
following axioms:

(i) σ(r, r) = σ(s, s) = σ(r, s) iff r = s;

(ii) σ(r, r) ≤ σ(r, s),∀r, s ∈ E;

(iii) σ(r, s) = σ(s, r),∀r, s ∈ E;

(iv) σ(r, s) ≤ ρ(r, κ) + σ(κ, s)− σ(κ, κ),∀r, s, κ ∈ E.

Then, (E, σ) is referred as partial metric space on E.

Note: The following notation will be useful for the discussion that follows:

(i) ∆rs = min{∆(r, r),∆(s, s)},

(ii) ∆′rs = max{∆(r, r),∆(s, s)}.

Definition 2.2. [28] Consider a non-empty set E and a mapping ∆ : E × E → R+ satisfies the
following axioms:

(i) ∆(r, r) = ∆(s, s) = ∆(r, s) iff r = s;

(ii) ∆rs ≤ ∆(r, s), ∀r, s ∈ E;

(iii) ∆(r, s) = ∆(s, r), ∀r, s ∈ E;

(iv) (∆(r, s)− ∆rs) ≤ (∆(r, κ)− ∆rκ) + (∆(κ, s)− ∆κs), ∀r, s, κ ∈ E.

Thus, pair (E,∆) is called an M -metric space.

Remark 2.3. [28] For every r, s, κ ∈ E,

(i) 0 ≤ ∆′rs + ∆rs = ∆(r, r) + ∆(r, s);

(ii) 0 ≤ ∆′rs − ∆rs = |∆(r, r)− ∆(s, s)|;

(iii) ∆′rs − ∆rs ≤ (∆′rκ − ∆rκ) + (∆′κs − ∆κs).

The relationship between the M -metric and the conventional metric is shown below.

Example 2.4. [28] Let ∆ be an M -metric. Put

(i) ∆w(r, s) = ∆(r, s)− 2∆rs + ∆′rs,

(ii) ∆s(r, s) = ∆(r, s)− ∆rs when r 6= s and ∆s(r, s) = 0 if r = s.

Thus, the pair ∆w and ∆s follows conventional metric axioms.

Remark 2.5. [28] For every r, s ∈ E,

(i) ∆(r, s)− ∆′rς ≤ ∆w(r, s) ≤ ∆(r, s) + ∆′rs,

(ii) ∆(r, s)− ∆′rs ≤ ∆s(r, s) ≤ ∆(r, s).

Example 2.6. [28] Let (E, d) be a metric space. Then ∆(r, s) = ad(r, s) + b where a, b > 0, is
an M -metric, because we can put π(t) = at+ b.

Lemma 2.7. [28] Every partial metric is an M -metric.
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Proof. Consider a partial metric ∆ : E → E. We are only obligated to consider the subsequent
conditions:

(i) ∆(r, r) = ∆(s, s) = ∆(κ, κ),

(ii) ∆(r, r) < ∆(s, s) < ∆(κ, κ),

(iii) ∆(r, r) = ∆(s, s) < ∆(κ, κ),

(iv) ∆(r, r) = ∆(s, s) > ∆(κ, κ),

(v) ∆(r, r) < ∆(s, s) = ∆(κ, κ),

(vi) ∆(r, r) > ∆(s, s) = ∆(κ, κ).

For example, to prove (iv), we have
∆(r, s) ≤ Γ(r, κ) + ∆(κ, s)− ∆(κ, κ),
∆(r, s) ≤ Γ(r, κ) + ∆(κ, s)− ∆(s, s),
∆(r, s)− ∆(r, r) ≤ ∆(r, κ)− ∆(r, r) + ∆(κ, s)− ∆(s, s),
∆(r, s)− ∆rs ≤ ∆(r, κ)− ∆rκ + ∆(κ, s)− ∆κs.

Example 2.8. Let E = {1, 2}, then

∆(1, 1) = 1,∆(2, 2) = 8,∆(1, 2) = ∆(2, 1) = 7.

So, this implies that ∆ is not partial metric but M -metric.

Example 2.9. Suppose that E = R+ and ∆ : E × E → R+ defined as

∆(r, s) =
r + s

2

∀ r, s ∈ E. This implies that ∆ is not partial metric but M -metric.

Example 2.10. Let E = [0,∞) and function ∆ : E × E → R+ given by

∆(r, s) =
r2 + s2

2

∀ r, s ∈ E. This implies that ∆ is not partial metric but M -metric.

Above examples show that converse of Lemma 2.7 is not true.

3 Topology concerning M -metric space

The set
{B∆(r, ε) : r ∈ E, ε > 0},

where
B∆(r, ε) = {s ∈ E : ∆(r, s) < ∆pq + ε},

∀r ∈ E, ε > 0, is a base for τ∆.

Definition 3.1. [28] Consider a sequence {rn} in a M -metric space (E,∆), then

(a)

{rn} → r ⇔ lim
n→∞

(∆(rn, r)− ∆rnr) = 0; (3.1)

(b) sequence {rn} is said to be M -Cauchy sequence if

lim
n,∆→∞

(∆(rn, r∆)− ∆rnr∆
) and lim

n,∆→∞
(∆′rnr∆

− ∆rnr∆
) (3.2)

both exists finitely;
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(c) if for every M -Cauchy sequence {rn} → r such that

lim
n→∞

∆(rn, r)− ∆rnr = 0 and lim
n→∞

∆
′
rnr − ∆rnr = 0,

then, pair (E,∆) is called complete M -metric space.

Lemma 3.2. [28] Consider two sequences {rn} and {sn} in aM -metric space (E,∆). If limn→∞ rn =
r and limn→∞ sn = s, then

lim
n→∞

(∆(rn, sn)− ∆rnsn) = ∆(r, s)− ∆rs.

Following lemma is observed from Lemma 3.2.

Lemma 3.3. [28] Consider a sequence {rn} in a M -metric space (E,∆). If limn→∞ rn = r,
then

lim
n→∞

(∆(rn, s)− ∆rns) = ∆(r, s)− ∆rs.

Lemma 3.4. [28] Consider a sequence {rn} in a M -metric space (E,∆). If rn → r and rn → s,
then ∆(r, s) = ∆pq. Again if, ∆(r, r) = ∆(s, s) then r = s.

Lemma 3.5. [28] Let {rn} be a sequence in an M -metric space (E,∆) if there exists r ∈ [0, 1)
and ∀n ∈ N such that

∆(rn+1, rn) ≤ r∆(rn, rn−1), . (3.3)

Then,

(a) ∆(rn, rn−1) = 0 as n→∞,

(b) ∆(rn, rn) = 0 as n→∞,

(c) ∆rnrn = 0 as n→∞,

(d) {rn} is an M -Cauchy sequence.

Let Φ be the collection of all continuous monotone increasing functions π : R+ → R+ such
that π(t) < kt, ∀t > 0, k ∈ (0, 1) and π(0) = 0.

4 Main Results

We will start this part of the article by establishing the fixed point theorem below.

Theorem 4.1. Let (E,∆) be a complete M -metric space. If a continuous self-map T on the set
E, fulfills with following axiom for all ε > 0, there exists δ > 0 as well as

ε ≤ π
(

max
{(1 + ∆(r, T r))∆(s, Ts)

1 + ∆(r, s)
,

∆(r, T r)∆(s, Ts)

∆(r, s)
,∆(r, s)

})
< ε+ δ(ε)⇒ ∆(Tr, Ts) < ε,

(4.1)

for all r, s ∈ E, r 6= s or s 6= Ts, where π ∈ Φ then, ∃ a unique point s∗ ∈ E such that
s∗ = Ts∗. Also, for all r ∈ E, the sequence {Tn(r)} → s∗ ∈ E.

Proof. From (4.1), we observe that

∆(Tr, Ts) < J(r, s), (4.2)

where

J(r, s) = π
(

max
{(1 + ∆(r, T r))∆(s, Ts)

1 + ∆(r, s)
,

∆(r, T r)∆(s, Ts)

∆(r, s)
,∆(r, s)

})
.
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Let r0 ∈ E and define rn = Trn−1, we have

J(rn−1, rn) = π
(

max
{(1 + ∆(rn−1, T rn−1))∆(rn, T rn)

1 + ∆(rn−1, rn)
,

∆(rn−1, T rn−1)∆(rn, T rn)

∆(rn−1, rn)
,∆(rn−1, rn)

})
= π

(
max

{(1 + ∆(rn−1, rn))∆(rn, rn+1)

1 + ∆(rn−1, rn)
,

∆(rn−1, rn)∆(rn, rn+1)

∆(rn−1, rn)
,∆(rn−1, rn)

})
= π

(
max

{
∆(rn, rn+1),∆(rn, rn+1),∆(rn−1, rn)

})
= π

(
max

{
∆(rn, rn+1),∆(rn−1, rn)

})
.

If
max

{
∆(rn, rn+1),∆(rn−1, rn)

}
= ∆(rn, rn+1),

then,
J(rn−1, rn) = π(∆(rn, rn+1)).

Hence, (4.2) implies that

∆(rn, rn+1) = ∆(Trn−1, T rn)

< J(rn−1, rn)

= π(∆(rn, rn+1))

< k∆(rn, rn+1),

this leads to a contradiction. Thus,

J(rn−1, rn) = π(∆(rn−1, rn)),

implies that

∆(rn, rn+1) < km(rn−1, rn). (4.3)

Now, by Lemma 3.5, we can say that {rn} is a Cauchy sequence. Since E is complete, we have

Trn−1 = rn → s∗ ∈ E.

Since T is continuous mapping, then Trn → Ts∗ in E.
From Lemma 3.2, we have

∆(s∗, T s∗) = ∆s∗Ts∗ ,

and

0 = lim
n→∞

(∆(rn, T rn)− ∆rnTrn)

= ∆(s∗, s∗)− ∆s∗Ts∗

= ∆(Ts∗, s∗)− ∆s∗Ts∗ .

By Lemma 3.4 and

∆(s∗, T s∗) = ∆s∗Ts∗ = ∆(Ts∗, T s∗) = ∆(s∗, s∗),
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so that s∗ = Ts∗. Now, if s∗ = Ts∗, then

∆(s∗, s∗) = ∆(Ts∗, T s∗)

< J(s∗, s∗)

= π
(

max
{(1 + ∆(s∗, T s∗))(∆(s∗, T s∗))

(1 + ∆(s∗, s∗))
+

(∆(s∗, T s∗))(∆(s∗, T s∗))

(∆(s∗, s∗))
,∆(s∗, s∗)

})
= π

(
max

{(1 + ∆(s∗, s∗))(∆(s∗, s∗))

(1 + ∆(s∗, s∗))
+

(∆(s∗, s∗))(∆(s∗, s∗))

(∆(s∗, s∗))
,∆(s∗, s∗)

})
= k∆(s∗, s∗),

this implies that

∆(s∗, s∗) = 0. (4.4)

For uniqueness, let s(6= s∗) ∈ E such that Ts = s, then

∆(s∗, s) = ∆(Ts∗, T s)

< J(s∗, s)

= π
(

max
{(1 + ∆(s∗, T s∗))(∆(s, Ts))

(1 + ∆(s∗, s))
+

(∆(s∗, T s∗))(∆(s, Ts))

(∆(s∗, s))
,∆(s∗, s)

})
= π

(
max

{(1 + ∆(s∗, s∗))(∆(s, s))

(1 + ∆(s∗, s))
+

(∆(s∗, s∗))(∆(s, s))

(∆(s∗, s))
,∆(s∗, s)

})
< k∆(s∗, s)

which is contradiction, hence s∗ = s.

Example 4.2. Consider E = [0, 1] and a mapping T : E → E such that Tr = r
2 , where r ∈ E,

and mapping π : R+ → R+ defined as π(t) = t√
2

for all t ∈ R+. Now, we verify the condition
(4.2). Assume that if r < s, then

r + s

4
=

1
2
(Tr + Ts) = ∆(Tr, Ts) < π(J(r, s)) = 1√

2
(
r + s

2
)

It results in the conclusion that condition (4.2) is true and r = 0 is a unique fixed point of T with
k ∈ ( 1√

2
, 1).

Remark 4.3. The above main theorem is M -metric generalization of primary results of Koti
et al. [20], Samet et al. [18] and Najeh et al. [19].

Remark 4.4. Samet et al. [18] generalized main theorem of Das and Gupta [15], Najeh et al.
[19] and also generalized Gupta and Saxena [17]. The main theorem stated above generalize
results in [17] and [15] in the settings of M -metric space.

Remark 4.5. The above main theorem is a generalized version of Banach contraction principle
and Asadi et al. [28] in the setting of M -metric spaces.

Corollary 4.6. Let T : E → E be a continuous mapping and suppose, the following axiom
satisfies that for all ε > 0, there exists δ > 0 such that

ε ≤ π
((1 + ∆(r, Ts))∆(s, Ts)

1 + ∆(r, s)
+

∆(r, T r)∆(s, Ts)

∆(r, s)
+ ∆(r, s)

)
< ε+ δ(ε)⇒ ∆(Tr, Ts) < ε,

for all r, s ∈ E, r 6= s or s 6= Ts, where π ∈ Φ, then there exists unique s∗ ∈ E such that
s∗ = Ts∗. Also, for all r ∈ E, the sequence {Tn(r)} → r∗ ∈ E.
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Corollary 4.7. Let T : E → E be a continuous mapping and suppose that for all r, s ∈ E, r 6=
s or s 6= Ts, T satisfies that for all ε > 0, there exists δ > 0 such that

ε ≤ α
((1 + ∆(r, T r))∆(s, Ts)

1 + ∆(r, s)
+

∆(r, T r)∆(s, Ts)

∆(r, s)
+ ∆(r, s)

)
< ε+ δ(ε)⇒ ∆(Tr, Ts) < ε,

where α ∈ (0, 1
3), then there exists unique s∗ ∈ E such that s∗ = Ts∗. Also, for all r ∈ E, the

sequence {Tn(r)} → s∗ ∈ E.

Corollary 4.8. Let T : E → E be a continuous mapping and suppose, the following axiom
satisfies that for all ε > 0, there exists δ > 0 such that

ε ≤ π
(

max
{(1 + ∆(r, Ts))∆(s, Ts)

1 + ∆(r, s)
,∆(r, s)

})
< ε+ δ(ε)⇒ ∆(Tr, Ts) < ε,

for all r, s ∈ E, r 6= s or s 6= Ts, where π ∈ Φ, then there exists unique s∗ ∈ E such that
s∗ = Ts∗. Also, for all r ∈ E, the sequence {Tn(r)} → s∗ ∈ E.

Corollary 4.9. Let T : E → E be a continuous mapping and suppose, the following axiom
satisfies that for all ε > 0, there exists δ > 0 such that

ε ≤ π
((1 + ∆(r, Ts))∆(s, Ts)

1 + ∆(r, s)
+ ∆(r, s)

)
< ε+ δ(ε)⇒ ∆(Tr, Ts) < ε,

for all r, s ∈ E, r 6= s or s 6= Ts, where π ∈ Φ, then there exists unique s∗ ∈ E such that
s∗ = Ts∗. Also, for all r ∈ E, the sequence {Tn(r)} → s∗ ∈ E.

Corollary 4.10. Let T : E → E be a continuous mapping and suppose that for all r, s ∈ E, r 6=
s or s 6= Ts, T satisfies for all ε > 0, there exists δ > 0 as well as

ε ≤ α
((1 + ∆(r, Ts))∆(s, Ts)

1 + ∆(r, s)
+ ∆(r, s)

)
< ε+ δ(ε)⇒ ∆(Tr, Ts) < ε,

where α ∈ (0, 1
2), then there exists unique s∗ ∈ E such that s∗ = Ts∗. Also, for all r ∈ E, the

sequence {Tn(r)} → s∗ ∈ E.

Theorem 4.11. Let (E,∆) be a complete M -metric space and Ω : R+ → R+ be a function meets
the following axioms:

(i) for t > 0⇒ Ω(t) > 0 and Ω(0) = 0

(ii) for all α ≤ β,Ω(α) ≤ Ω(β) and right continuous,

(iii) for ε > 0, there exists δ > 0 as well as

ε ≤ Ω(J(r, s)) ≤ ε+ δ ⇒ Ω(∆(Tr, Ts)) < ε (4.5)

for all r, s ∈ E, r 6= s, where

J(r, s) = max
{(1 + ∆(r, T r))∆(s, Ts)

1 + ∆(r, s)
,

∆(r, T r)∆(s, Ts)

∆(r, s)
,∆(r, s)

}
and π ∈ Φ. Then equation (4.1) is meet.

Proof. Fix ε > 0, so Ω(ε) > 0. Hence by (4.5), there exists δ > 0 such that for all r, s, r 6= s,

Ω(ε) ≤ Ω(J(r, s)) < Ω(ε) + δ ⇒ Ω(∆(Tr, Ts)) < Ω(ε).

According to right continuity of Ω, there exists δ1 > 0 such that

Ω(ε+ δ1) < Ω(ε) + δ,
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fix r, s ∈ E with r 6= s such that
ε ≤ J(r, s) < ε+ δ.

Since, Ω is a non-decreasing mapping, we have

Ω(ε) ≤ Ω(J(r, s)) < Ω(ε+ δ1) < Ω(ε) + δ,

and so
Ω(∆(Tr, Ts)) < Ω(ε)

which implies that
∆(Tr, Ts) < ε.

Example 4.12. Consider a set E = [0, 1] and mapping T : E → E such that Tr = r
2 , where

r ∈ E, and a mapping π : R+ → R+ is defined as π(t) = t√
2

and Ω(t) = t
2 for all t ∈ R+.

Assume that if r < s, then
r + s

8
=

1
4
(Tr + Ts) = Ω(∆(Tr, Ts)) < Ω(J(r, s)) = 1

2
√

2
(
r + s

2
)

It results in the conclusion that condition (4.2) is true and r = 0 is a unique fixed point of T with
k ∈ ( 1√

2
, 1).

Corollary 4.13. Consider a M -metric space (E,∆) and ℵ : R+ → R+ be a locally integrable
function such that

(i) t > 0⇒
∫ t

0
ℵ(s)ds > 0

(ii) for every ε > 0, there exists δ > 0 such that

ε ≤
∫ J(r,s)

0
ℵ(s)ds < ε+ δ ⇒

∫ ∆(Tr,Ts)

0
ℵ(s)ds < ε

for all r, s ∈ E with r 6= s. Then equation (4.1) is satisfied.

Corollary 4.14. Let D be the collection of functions O : [0,∞)→ [0,∞) satisfying

(i) O is non-decreasing and continuous,

(ii) for t > 0, O(t) > 0 and O(0) = 0.

Consider a M -metric space (E,∆) and for each ε > 0, there exists δ(ε) such that

ε ≤ O(J(r, s)) < ε+ δ(δ)⇒ O(∆(Tr, Ts)) < ε

for all r, s ∈ E with r 6= s, where O ∈ D. Then equation (4.1) is satisfied.

Corollary 4.15. Consider a M -metric space (E,∆) and Ξ : R+ → R+be a locally integrable
function such that ∫ t

0
Ξ(s)ds > 0, for all t > 0.

Suppose that T meets all of the following criteria for all r, s ∈ E and r 6= s∫ ∆(Tr,Ts)

0
Ξ(t)dt ≤ µ

∫ J(r,s)

0
r(t)dt,

where µ ∈ (0, 1), implies that there exists a fixed point s∗ ∈ E of T , which is unique. Further-
more, for any r ∈ E, the sequence {Tn} converges to s∗.

Proof. Let ε > 0, it is straightforward to identify that (4.1) meets the requirements for δ(ε) =
ε( 1
µ − 1). Then (4.1) is true and this concludes the proof.

Remark 4.16. Theorem 4.1 of Asadi [9] is a corollary of Theorem 4.11.

Remark 4.17. Corollary 4.15 is generalization of Corollary 4.1 of Asadi [9] and Corollary 3.3
of Najeh et al. [19] in the setting of M -metric space.

Remark 4.18. Corollary 4.14 is generalization of Corollary 3.4 of Najeh et al. [19].
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5 Application

Consider

0(t) =

∫ b

a

K(t, s,0(s))ds+ g(t), for all t ∈ [a, b] (5.1)

where t ∈ [a, b], K : [a, b]× [a, b]×R→ R and b > a ≥ 0.

This section of article, establishes an existence theorem for a solution of the integral equa-
tion of form given above, where solution belongs to the set E = (C[a, b],R) which contains
continuous functions defined on I = [a, b] using the obtained main result in Theorem 4.1.

Consider

(T0)(t) =

∫ b

a

Θ(t, s,0(s))ds+ g(t), u ∈ X, t ∈ [a, b].

The occurrence of solution of (5.1) is identical to the occurrence of a fixed point of T . Since E
equipped with M -metric given by

∆(0,Ω) = sup
t∈I
|0(t)−Ω(t)|, for all 0,Ω ∈ E

forms a complete metric space as every complete metric is complete M-metric space.

Assume that the aforementioned condition are true:

(i) Θ : [a, b]× [a, b]×R→ R is continuous and g : [a, b]→ R;

(ii)

∫ b

a

Θ(t, s, .) : R→ R is increasing for all t, s ∈ I;

(iii) for all 0,Ω ∈ E, s, t ∈ I and α ∈ (0, 1), we have∣∣∣Θ(t, s,0(s))−Θ(t, s,Ω(s))
∣∣∣2 ≤ α2

4(b− a)

(∣∣∣0(s)−Ω(s)
∣∣∣)2

.

Theorem 5.1. Assume that conditions (i)-(iii) are satisfied. Then integral equation (5.1) has a
unique solution.

Proof. For 0,Ω ∈ E, we have∣∣∣(T0)(t)− (TΩ)(t)
∣∣∣2 ≤ ∣∣∣ ∫ b

a

(
Θ(t, s,0(s))−Θ(t, s,Ω(s))

)
ds
∣∣∣2

≤
∫ b

a

∫ b

a

∣∣∣(Θ(t, s,0(s))−Θ(t, s,Ω(s))
)∣∣∣2ds2

≤ (b− a)
∫ b

a

∣∣∣(Θ(t, s,0(s))−Θ(t, s,Ω(s))
)∣∣∣2ds

≤ (b− a) α2

4(b− a)

∫ b

a

∣∣∣0(s)−Ω(s)
∣∣∣2ds

≤
[α

2
∆(0,Ω)

]2

≤
[α

2
max

{(1 + ∆(0, T0))∆(Ω, TΩ)

1 + ∆(0,Ω)
,

∆(0, T0)∆(Ω, TΩ)

∆(0,Ω)
,∆(0,Ω)

}]2
,

and so

∆(T0, TΩ) ≤ α

2
max

{(1 + ∆(0, T0))∆(Ω, TΩ)

1 + ∆(0,Ω)
,

∆(0, T0)∆(Ω, TΩ)

∆(0,Ω)
,∆(0,Ω)

}
.

Hence by equation (4.1) in Theorem 4.1, the integral equation (5.1) has a unique solution in
E.
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6 Conclusion

Taking into account for fixed point theorems inM -metric spaces involving contractive conditions
have received considerable attention through the last few years. In this connection, the main aim
of this paper is to present the concept of Meir-Keeler type contractions via rational expression
in M -metric spaces. Moreover, we proved fixed point theorems, which ensure the existence and
uniqueness of the fixed point for this new type of contractive mapping. For instance, using the
ideas orthogonality, it is possible to extend our result in orthogonal metric spaces.
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