
Palestine Journal of Mathematics

Vol 13(2)(2024) , 308–314 © Palestine Polytechnic University-PPU 2024

A NEW SORT OF CONDENSING MULTIVALUED
MAPPINGS AND RELATED FIXED POINT RESULTS

Youssef Touail, Amine Jaid and Driss El Moutawakil

Communicated by Ayman Badawi

MSC 2020 Classifications: Primary 47H10; Secondary 54H25.

Keywords and phrases: fixed point, multivalued mapping, measure of noncompactness, regularity.

Abstract In this development, we present some fixed point theorems for condensing multi-
valued mappings in the setting of Banach spaces via measure of noncompactness, without adding
regularity. Our results upgrade and extend many theorems in the literature. Moreover, an appli-
cation to differential inclusions is given here to illustrate the usability of the obtained results.

1 Introduction and Preliminary results

Throughout this paper, let (X, ||.||) be a Banach space and let P(X) denote the class of all subsets
of X . Denote

Pp(X) := {C ∈ P(X) : C is nonempty and has property p}. (1.1)

In particular, Pcl,bd(X), Pcl,cv(X) and Pcp,cv(X) denote the classes of closed-bounded, closed-
convex and compact-convex subsets of X , respectively.
The function dH : Pcl,bd(X)× Pcl,bd(X) → R+ defined by

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}, (1.2)

satisfies all the conditions of a metric on Pcl,bd(X) and is called the Hausdorff-Pompeiu metric
on X , where d(a,B) = inf{||a−b|| : b ∈ B}. A point-to-set mapping T : X → Pp(X) is simply
referred to as a multivalued mapping T : X → X . A point x ∈ X is called a fixed point of T if
x ∈ Tx. If T : C1 → C2 is a multivalued mapping, then the graph Gr(T ) of the mapping T is
defined by

Gr(T ) = {(x, y) ∈ C1 × C2 : y ∈ Tx}. (1.3)

A multivalued mapping T : C1 → C2 is said to be closed if its graph is closed in the product
topology on C1 ×C2. For more information on this subject, we recommend interested readers to
consult [6, 12, 13].
In what follows, we restrict ourselves only to the fixed point theory related to closed multivalued
mappings. A particular case of Himmelberg fixed point theorem [7] is the following:

Theorem 1.1. (O’Regan,[11]) Let C be a closed convex and bounded subset of a Banach algebra
X and let T : C → Pcl,cv(C) be a compact and closed multivalued mapping. Then T has a fixed
point.

The compactness of T in Theorem 1.1 is further weakened by condensing mappings with
the help of measure of noncompactness in the Banach space X . The first try is given by Darbo
[4] in 1955, by modeling the classical Banach contraction principle [2] with the well-known
Kuratowskii measure of noncompactness α : Pbd(X) → R+ of a bounded set in the Banach
space X [9], which is the functions defined by

α(Ω) = inf
{
ε > 0 : Ω ⊂

n⋃
k=1

Bk, Bk ⊂ X, Diam (Bk) ≤ ε : k = 1, 2, · · · , n ∈ N
}
, (1.4)
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where Diam (B) denotes the diameter of a bounded set B.
In the same direction, let MX and NX stand for the collection of all nonempty and bounded
subsets of X , and the collection of all relatively compact subsets of X , respectively. We write B
and Cov (B) to denote the closure and closed convex hull of B ⊂ X , respectively. Banas̀ et al
[3] gave a new axiomatic for the measure of noncompactness as follows:

Definition 1.2. ([3]) A map µ : MX → [0,+∞[ is called measure of non-compactness defined
on X if it satisfies the following properties:
1) The family kerµ = {B ∈ MX : µ(B) = 0} is nonempty and kerµ ⊂ NX ,
2) A ⊂ B ⇒ µ(A) ≤ µ(B),
3) µ(B) = µ(B) = µ(Cov (B)),
4) µ(λA+ (1 − λ)B) ≤ λµ(A) + (1 − λ)µ(B) for all λ ∈ [0, 1] and A, B ∈ MX ,
5) if {Bn} is a decreasing sequence of nonempty, closed and bounded subsets of X with limµ(Bn) =
0, then B∞ = ∩nBn ̸= ∅.

Definition 1.3. ([3]) Let µ be a measure of noncompactness in a Banach space X . The measure
µ is homogeneous if µ(λA) = |λ|µ(A) for λ ∈ R. If the measure µ satisfied the condition
µ(A+B) ≤ µ(A) + µ(B) it is called subadditive.
The measure µ being both homogeneous and subadditive is said to be sublinear.

Definition 1.4. ([3]) We say that a measure of non-compactness µ has the maximum property if
µ(A ∪B) = max{µ(A), µ(B)}.

Definition 1.5. ([3]) A sublinear measure of non-compactness µ that has the maximum property
and is such that kerµ = NX is called a regular measure.

Note that the functions α defined by (1.4) enjoys the conditions (1) through (5) in Definition
1.2, then α is measure of noncompactness in the sense of Banas̀ and Goebel [3]. In addition, α
is regular measure of noncompactness on X .
Now, we state a key result which is a version of Darbo’s fixed point result [4] in the setting of
multivalued mappings:

Theorem 1.6. ( Dhage [5]) Let C be a nonempty, bounded, closed and convex subset of a Banach
space X and let T : C → Pcl,cv(C) be a closed mapping. Assume that there exists a constant
k ∈ (0, 1) such that

µ(T (Ω)) ≤ kµ(Ω), (1.5)

for any subset Ω of C. Then T has a fixed point in C.
Where µ is measure of noncompactness in the sense of Definition 1.2.

The following fixed point theorem for condensing multivalued mappings is a natural exten-
sion of the previous Theorem 1.6. See Hu and Papageorgiou [8]:

Theorem 1.7. Suppose that C is a nonempty, bounded, closed, and convex subset of a Banach
space X and T : C → Pcl,cv(C) a closed mapping. If for any nonempty subset Ω of C with
µ(Ω) > 0 we have

µ(T (Ω)) < µ(Ω), (1.6)

where µ is regular measure of noncompactness in X , then T has a fixed point in C.

However, Theorem 1.7 does not ensure the existence of fixed points unless the measure is
assumed regular (in the sense of Definition 1.5). Furthermore, it is rather difficult to find the
mappings satisfying the conditions on given Banach spaces.
In this paper, using a measure of noncompactness, we prove a new fixed point theorem for a new
class of condensing multivalued mappings in Banach spaces satisfying:

inf
Ω∈P(C)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
> 0. (1.7)

Moreover, we show a result for a new class of condensing multivalued mappings, we call it µE-
condensing multivalued mappings, with the aid of an auxiliary function ϕ satisfying ϕ(1) = 0
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and inft>1 ϕ(t) > 0. Compared to Theorem 1.7, we mention that our results are proved without
using regularity of the measure.
Finally, to show the importance of lack of regularity, we apply our results to obtain an existence
theorem for Cauchy-Lipschitz-type differential inclusions in Banach spaces.

2 Main results

Before stating the main fixed point result of this section, we need the following Lemma which
appears in [17]:

Lemma 2.1. If µ is a measure of noncompactness, then also ν = eµ−1 is a measure of noncom-
pactness.

Theorem 2.2. Let C be a nonempty bounded, closed and convex subset of a Banach space X
and T : C → Pcl,cv(C) be a closed multivalued mapping such that

inf
Ω∈P(C)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
> 0,

where µ is an arbitrary measure of noncompactness.
Then T has a fixed point in C.

Proof. Letting
A = inf

Ω∈P(C)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
. (2.1)

Then
µ(T (Ω))) ≤ µ(Ω)−A, (2.2)

for all Ω ∈ P(C), with µ(Ω) > 0.
Thus

eµ(T (Ω)) ≤ keµ(Ω), (2.3)

where k = e−A ∈ (0, 1).
Therefore, we have

ν(T (Ω)) ≤ kν(Ω), (2.4)

for all Ω ⊂ C, where ν = eµ − 1.
By using Lemma 2.1, ν is a measure of noncompactness in the sense of Definition 1.2. Then
according to Theorem 1.6, we deduce that T has a fixed point in C.

Example 2.3. Consider the Hilbert space X = l2 over R with basis {en : n ∈ N} and let
C = {x ∈ X : ||x|| ≤ 1}. Then C is nonempty bounded, convex and closed in X .
Define the mapping

T : C → Pcl,cv(C)

x 7→

{ {∑∞
i=1

αi

2 ei
}

for x ∈ {x ∈ X : ||x|| < 1},{∑∞
i=1

αi

3 ei
}

for x ∈ {x ∈ X : ||x|| = 1}.
(2.5)

Define the measure of noncompactness µ by

µ(Ω) =

{
0 if Ω is a precompact,
1 else.

(2.6)

It is easy to see that µ has the maximum property, invariant under passage to the convex hull and
it is not homogeneous. Then µ is not regular.
Now, let Ω ⊂ C with µ(Ω) > 0, we have

µ(Ω)− µ(TΩ) = 1 > 0. (2.7)
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In other words, we have
inf

Ω∈P(C)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
> 0. (2.8)

Therefore, all conditions of Theorem 2.2 are satisfied and (0, 0, 0, ...) is the only fixed point of
T in C.

Note that Theorem 2.2 extends the proven Theorem 3.2 in [17] for singlevalued mappings.
Also, Theorem 2.2 yields a version of Theorem 3 in [14] for the case of the diameter measure of
noncompactness in Banach spaces: µ(Ω) := Diam (Ω) = supx,y∈Ω

||x− y|| . Namely, we assert
the following:

Corollary 2.4. ([17]) Let C be a nonempty bounded, closed and convex subset of a Banach space
X and T : C → C be a continuous mapping such that

inf
Ω∈P(C)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
> 0, (2.9)

where µ is an arbitrary measure of noncompactness.
Then T has a fixed point in C.

Theorem 2.5. Let C be a nonempty bounded, closed and convex subset of a Banach space X
and T : C → C be continuous a mapping such that infx ̸=y∈Ω⊂C{||x − y|| − ||Tx − Ty||} > 0.
Then T has a fixed point.

Proof. Let Ω ⊂ C and x ̸= y ∈ Ω, putting

α = inf
x ̸=y∈Ω⊂C

{||x− y|| − ||Tx− Ty||}. (2.10)

Then
||Tx− Ty|| ≤ ||x− y|| − α, (2.11)

for all x ̸= y ∈ Ω.
We apply supremum on the left-hand side and the right-hand side of (2.11), we obtain

Diam (Ω) ≤ Diam (Ω)− α, (2.12)

for all Ω ∈ P(C), with Diam (Ω) > 0.
Thus

inf
Ω∈P(C)

Diam (Ω)>0

{
Diam (Ω)− Diam (T (Ω))

}
> 0. (2.13)

This finishes the proof.

Remark 2.6. The above theorem illustrates the situation where a measure of noncompactness
explicitly derives from a norm.

Definition 2.7. Let C be a nonempty bounded, closed and convex subset of a Banach space X
and T : C → Pcl,cv(C) be a multivalued mapping. T will be said a µE-weakly condensing if it
is closed and

µ(T (Ω)) ≤ µ(Ω)− ϕ(1 + µ(Ω)),

for all Ω ∈ P(C), with µ(Ω) > 0 and ϕ : [1,+∞[→ [0,+∞[ is a function satisfying ϕ(1) = 0
and inft>1 ϕ(t) > 0.

Theorem 2.8. Let C be a nonempty bounded, closed and convex subset of a Banach space X
and T : C → Pcl,cv(C) be a µE-weakly condensing multivalued mapping. Then T has a fixed
point in C.
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Proof. Let Ω ⊂ C, from Definition 2.7, we have

0 < inf
t>1

ϕ(t) ≤ ϕ(1 + µ(Ω)) ≤ µ(Ω)− µ(T (Ω)). (2.14)

Hence, we get
inf

Ω∈P(C)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
> 0. (2.15)

According to Theorem 2.2, the mapping T has a fixed point.

Corollary 2.9. ([17]) Let C be a nonempty bounded, closed and convex subset of a Banach space
X and T : C → C be a µE-weakly condensing mapping. Then T has a fixed point in C.

3 Application

In this section, inspired by the works of the authors [1, 15, 16, 18], we investigate the existence
for differential inclusions under new and weak conditions. For this aim, let X = C([0, 1],R)
be the space of all continuous functions from [0, 1] into R, equipped with the norm ||x|| =
maxt∈[0,1] |x(t)| such that for all x ∈ X, ||x|| ≤ ξ for some ξ. Consider the differential inclusion:{

x′(t) ∈ K(t, x(t)), t ∈ [0, 1]
x(0) = 0,

(3.1)

where x ∈ X and K : [0, 1]×R → Pcp,cv is a lower semicontinuous multivalued mapping.
Note that (3.1) is equivalent to the Volterra-type integral inclusion:

x(t) ∈
∫ t

0
K(s, x(s))ds, (3.2)

for all t ∈ [0, 1].
Define the multivalued operator T from X into P(X) by:

Tx(t) = {y ∈ X : y(t) ∈
∫ t

0
K(s, x(s))ds, t ∈ [0, 1]}, (3.3)

for all x ∈ X .
Let x ∈ X , so according to Michael’s selection Theorem [10], there exits a continuous operator
kx : [0, 1] → R such that kx(s) ∈ K(s, x(s)) for any s ∈ [0, 1], which implies that

∫ t

0 kx(s)ds ∈
Tx(t) , then Tx ̸= ∅. On the other hand, it is clear to see that Tx is a closed set.
On the other side, let µ the measure of noncompactness of the norm defined as follows (see [3])

µ(Ω) = sup
x∈Ω

||x||, (3.4)

for all Ω ∈ MX .
Define the function θ by

θ : [0, 1] → R
t 7→ 0

Note that µ is a sublinear measure of noncompactness with maximum property and kerµ =
{θ} ≠ NX , so µ is not regular.
Under the above assumptions, we can state the following theorem.

Theorem 3.1. If there exists A > 0 such that

|kx(t)| ≤ |x(t)| −A, (3.5)

for all t ∈ [0, 1] and x ∈ X . Then the differential inclusion (3.1) has a solution.
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Proof. Let Ω ⊂ X \ {0} and x ∈ Ω such that a ∈ Tx, hence there exists kx(s) ∈ K(s, x(s)) for
s ∈ [0, 1] with a(t) =

∫ t

0 kx(s)ds, we have

|a(t)| ≤
∫ t

0
|kx(s)|ds

≤
∫ t

0
(|x(s)| −A)ds

≤
∫ 1

0
(||x|| −A)ds

≤ ||x|| −A.

Therefore
||a|| ≤ ||x|| −A. (3.6)

Then
µ(TΩ) ≤ µ(Ω)−A. (3.7)

Thus
inf

Ω∈P(X)

µ(Ω)>0

{
µ(Ω)− µ(T (Ω))

}
> 0. (3.8)

By applying Theorem 2.2, we deduce that T has a fixed point.

4 Data Availability

No data were used to support this study.
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