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Abstract In the present study, we introduce a new method with a high-accurate to solve a
system of equations of boundary value problems. This method is a mixture of numerical methods
(Runge-Kutta and finite difference) and exact methods (Laplace transforms), each having a role
in studying. The novelty of the present method is converting boundary value problems to initial
value problems using accurate numerical methods and then using Laplace transforms method
to find an approximate to the exact solution. Approximate to exact method (AEM) is a new
algorithm, with a very strong accuracy that approaches the exact solution. (AEM) applied in
studying radiative steady MHD heat and mass transfer flow past a vertical porous plate. (AEM)
applied in a system of four non-dimensional equations using suitable dimensional quantities
on the governing equations. The new technique’s uniqueness, convergence, and stability are
verified and tested by comparisons with the previous exact solution. The present governing
equations which solved using (AEM) designed by using the Wolfram Mathematica algorithms
version 12.3.

1 Introduction

The most popular technique for solving differential equations numerically is the Runge-Kutta
method. Three new Runge–Kutta methods are presented for numerical integration of systems of
linear inhomogeneous ordinary differential equations (ODEs) with constant coefficients. New
approach of combination of Runge-Kutta, finite difference, and Laplace transforms for solution
linear boundary value problems ([1]−[2]). A numerical technique built on applying the shifted
Jacobi Galerkin method (SJGM) for obtaining approximate solutions of the one-dimensional lin-
ear second-order hyperbolic telegraph differential equations (HTDEs) [3]. Numerical solutions
are widely used to solve many linear and nonlinear differential equations in their various forms
([18]−[20]).

A novel second-order prediction differential model is designed, and numerical solutions of
this novel model are presented using the integrated strength of the Adams and explicit Runge–Kutta
schemes [4]. A new special two-derivative Runge-Kutta type (STDRKT) methods involving the
fourth derivative of the solution for solving third-order ordinary differential equations [5]. Nu-
merical Treatment of MHD Rotating Flow of Nano-Micropolar Fluid with Impact of Temperature-
Dependent Heat Generation and Variable Porous Matrix [6]. Radiative MHD Flow of Rivlin-
Ericsen nanofluid of grade three through porous medium with uniform heat source [7].
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Finite difference method proposed for the solution of two-point boundary value problems
has been widely applied [8-9]. They used the finite difference method (FDM) of second-order
accuracy to solve the nonlinear system of differential equations. they observed that the velocity
reached the steady-state faster than temperature and nanoparticles concentration. Attia et al. [10]
studied the effects of the-Drcian Forchheimer and Hall current resistances on the unsteady flow
and heat transfer between two porous plates. they solved the governing partial differential equa-
tions, numerically, by the finite difference method FDM. Joule and viscous dissipations are con-
sidered in the energy equation. Ewis [11] used a second-order accurate finite difference method
to solve the governing equations of natural convection of non-Newtonian (RivlinEricksen) fluid
flow and heat transfer under the influences of non-Darcy resistance force, constant pressure gra-
dient, dissipation, and radiation. MHD Natural Convection Nano-fluid Flow between two Ver-
tical Flat Plates through Porous Medium considering effects of viscous dissipation, non-Darcy,
and Heat Generation/Absorption [12]. New Investigation of Asymmetric Wall Temperature and
Fluid-Wall Interaction on Radiative Steady MHD Fully Developed Natural Convection in Verti-
cal Micro-Porous–Channel [13].

In this paper, (AEM) is new approach of combination of Runge-Kutta, finite difference, and
Laplace transforms applied successfully to find the solution of studying radiative steady MHD
heat and mass transfer flow past a vertical porous plate. Tables and graphs of the results are very
useful in showing the efficiency and accuracy of the (AEM) for the problem presented in this
paper. In order to ensure that the current results are accurate, we compared these results with the
previously published work ([14]-[17]).

2 Mathematical formulation of the problem

In Figure 1, a Newtonian, electrically conducting, and viscous incompressible fluid flow
over a porous, vertical infinite plate with an induced magnetic field and conduction radiation
has been taken into consideration. The x-axis is taken vertically up the plate, and the y-axis is
normal to it. The wall is kept at a constant temperature T̆w, and both this temperature and the
concentration near the plate C̆w are higher than the ambient temperature T̆∞ and concentration
C̆∞, respectively. The fluid is a grey gas that is optically thin. Except for density, which varies
with temperature and is only considered in the body force term, all gas properties are assumed
to be constant. The suction velocity on the plate is constant. The problem’s governing equations
correspond to [17]:

Figure 1. Geometry of the problem.

Conservation of Momentum:

v̆
∂ŭ

∂y̆
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∂2ŭ
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Conservation of Energy:
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∂ŭ

∂y̆
=

κ

ρcp

∂2T̆

∂y̆2 − 1
ρcp

∂qr
∂y̆

, (2.2)

Conservation of Magnetic Induction:
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, (2.3)
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Conservation of Mass Diffusion:

v̆
∂C̆

∂y̆
= D

∂2C̆

∂y̆2 , (2.4)

The boundary conditions are:{
y̆ = 0: ŭ = 0, v̆ = −v0 ,T̆ = T̆w, H̆x = 0 and C̆ = C̆w,

y̆ → ∞: ŭ → U0, T̆ → T̆∞, H̆x → 0, C̆ → C̆∞.
(2.5)

Where,
−∂qr
∂y̆

= 64aσ∗(T̆ 4
∞ − T̆ 4) and T̆ 4 ∼= 4T̆ 3∞T̆ − 3T̆ 4

∞. (2.6)

The non-dimensional quantities in Eqs. (2.1−2.4):
{(η = y̆v0

ν ) is the non-dimensional distance, (u = ŭ
U0
) is the dimensionless velocity of the fluid,

(θ = T̆−T̆∞
T̆w−T̆∞

is the dimensionless temperature of the fluid, (H = (µ0
ρ )

1
2 H̆x

U0
) is the magnetic field,

(φ = C̆−C̆∞
C̆w−C̆∞

) is the dimensionless species concentration, (M = (µ0
ρ )

1
2 H̆0
v0
) is the magnetic field

parameter, (Pm = vσ
µ0
) is the magnetic Prandtl number, (Gr = vgβ(T̆w−T̆∞)

U0v
2
0

) is the thermal

Grashof number, (Gm = vgβ(C̆w−C̆∞)
U0v

2
0

) is the mass Grashof number, (Pr = ρvcp
k ) is the Prandtl

number, (Rd = − 64aσ∗T 3
∞v

ρv2
0cp

) is the Radiation parameter, (Sc =
v
D ) is the Schmidt number}.

The non-dimensional form of Eqs. (2.1−2.4) through 2.5, 2.6 and non-dimensional quantities
are:

d2u

dη2 +
du

dη
+M

dH

dη
+Grθ +Gmφ = 0, (2.7)

d2θ

dη2 + Pr
dθ

dη
+

PrRd

4
θ = 0, (2.8)

d2H

dη2 +MPm
du

dη
+ Pm

dH

dη
= 0, (2.9)

d2φ

dη2 + Sc
dφ

dη
= 0, (2.10)

The non-dimensional boundary conditions 2.5 become:{
η = 0: u = 0, θ = 1, H = 0, φ = 1,
η → ∞: u = 1, θ = 0, H = 0, φ = 0.

(2.11)

The main objective of the present investigation is to study the effects of radiation and induced
magnetic field on a steady mixed convective heat and mass transfer past an infinite vertical
permeable plate with constant suction taking into account the induced magnetic field. The fluid
considered is an optically thin gray gas. The present study may have useful applications in
several transport processes as well as in processing magnetic materials.

3 Approximate to Exact Method (AEM)

Using the fourth-order Runge-Kutta method to find ui, θi, Hi, and φi, 1 ≤ i ≤ 4, then
applying the finite difference formulae from fourth-order Eq. (13) for the first derivate to find
u

′

0, θ
′

0,H
′

0, and φ
′

0 as the following ([21]−[22]):

f
′

i =
−25fi + 48fi+1 − 36fi+2 + 16fi+3 − 3fi+4

12h
+O(h4), then (3.1)
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u
′

0 =
−25u0 + 48u1 − 36u2 + 16u3 − 3u4

12h
= α. (3.2)

θ
′

0 =
−25θ0 + 48θ1 − 36u2 + 16θ3 − 3θ4

12h
= β. (3.3)

H
′

0 =
−25H0 + 48H1 − 36H2 + 16H3 − 3H4

12h
= γ. (3.4)

φ
′

0 =
−25φ0 + 48φ1 − 36φ2 + 16φ3 − 3φ4

12h
= δ. (3.5)

From Eq. 2.11 and Eqs. (3.2-3.5), then the problem converts from BVP to IVP, then take
Laplace transform of both sides of Eqs. (2.7-2.10):

−u0 − su0 + sℓ{u}+ s2ℓ{u}+M(−H0 + sℓ{H}) +Grℓ{θ}+Gmℓ{φ} − α = 0. (3.6)

1
4
PrRdℓ{θ}+ s2ℓ{θ}+ Pr(sℓ{θ} − θ0)− sθ0 − β = 0. (3.7)

−sH0 +MPm(−u0 + sℓ{u}) + s2ℓ{H}+ Pm(−H0 + sℓ{H})− γ = 0. (3.8)

s2ℓ{φ}+ Sc(sℓ{φ} − φ0)− sφ0 − δ = 0. (3.9)

At fixed values of different parameters,M = 0.25, Gm = 5, Gr = 5, Pr = 0.71, R =
1,Pm = 0.1 and Sc = 0.6 the computed values of α, β, γ and δ are;

• α = 13.985118262413925,
• β = −0.7095035741850294,
• γ = 0.08244753839826709,
• δ = −0.6314374079026279.

After substitution by computed values of (α, β, γ and δ), then Laplace form of Eqs. (3.6−3.9)
take the following form:

ℓ{u} =
0.000279 + 0.019601s+ 0.142218s2 + 0.61565s3 + 9.698404s4 + 13.985118s5

s2(0.6 + s)(0.01775 + 0.71s+ s2)(0.09375 + 1.1s+ s2)
.

(3.10)

ℓ{θ} =
0.000496425814970558 + s

0.01775 + 0.71s+ s2 . (3.11)

ℓ{φ} =
0.000069 + 0.003379s− 0.042199s2 + 0.06342s3 + 0.159174s4 − 0.082447s5

s2(0.6 + s)(−0.09375 − 1.1s− s2)(0.01775 + 0.71s+ s2)
.

(3.12)

ℓ{φ} =
−0.031437407902627945 + s

s(0.6 + s)
. (3.13)

Then the approximate to exact form of u(η), θ(η), H(η) and φ(φ) are:

⇒ u(η) = 4.709441352642907 − 41.95896970603135e−1.0068916720624268η+

23.242278779621458e−0.6840516676754579η + 21.26051878460026e−0.6η+

1.123316602468682e−0.09310832793757336η − 8.376585813301954e−0.02594833232454208η+

0.2794436258012079η.

(3.14)
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⇒ θ(η) = 1.038674635338233e−0.6840516676754579η − 0.03867463533823298

e−0.02594833232454208η.
(3.15)

⇒ H(η) = 0.34572411032437955 − 1.156669837165049e−1.0068916720624268η+

0.9948725457854857e−0.6840516676754579η + 1.0630259392300105e−0.6η−

4.074905887473569e−0.09310832793757336η + 2.8279531292987405e−0.02594833232454208η−
0.06986090645029289η.

(3.16)

⇒ φ(η) = −0.05239567983771325 + 1.0523956798377132e−0.6η. (3.17)

4 Results and discussion

In this paper, (AEM) is applied successfully to find the solution of studying radiative steady
MHD heat and mass transfer flow past a vertical porous plate. Tables and graphs of the results
are very useful in showing the efficiency and accuracy of the (AEM) for the problem presented
in this paper. In order to ensure that the current results are accurate, we compared these results
with the previously published work [14-17]. The graphs of u(η), θ(η), H(η), and φ(η) under the
effect of various parameters (M , Gr, Gm, Pr, Rd, Pm and Sc) are shown in Figures (2−14). and
through it, we made sure that:

Figures 2−6 show that:

• The fluid velocity u increases with an increase in any parameter of Gr, Gm and Rd.

• The fluid velocity u decreases with an increase Pr and Sc.

Figures 7−11 show that:

• Increasing in Gr, Gm, M and Pm parameters lead to a decrease in H(η).

• Increasing in Pr parameters leads to an increase in H(η).

Figures 12−13 display:
• The influence of Pr and Rd on θ(η), it is noticed that θ(η) increases with an increase in Rd

but It should be observed that the increase in Pr leads to drop in temperature on the fluid.

Figure 14 displays:
• The impact of φ(η), it is observed that a reduction in φ(η) on increasing Sc.
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Figure 2. Action of Gr on u.

Figure 3. Action of Gm on u.

Figure 4. Action of Rd on u.
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Figure 5. Action of Pr on u.

Figure 6. Action of Sc on u.

Figure 7. Action of Gr on H .
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Figure 8. Action of Gm on H .

Figure 9. Action of M on H .

Figure 10. Action of Pm on H .
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Figure 11. Action of Pr on H .

Figure 12. Action of Rd on θ.

Figure 13. Action of Pr on θ.
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Figure 14. Action of Sc on φ.

Tables 1−2, to verify and test the accuracy of a new method and proved that the new method
approaches the exact solution by comparing the results obtained with exact solution of θ(η) and
φ(η) in Eq. 2.8 and Eq. 2.10 using Laplace transform method which obtained as ([1]−[2]):

Exact solution of θ(η) and φ(η):

⇒ θ(η) = −0.038674641203895625e−0.3290516676754579(−10+η)−0.355η

(−1 + e0.6581033353509158(−5+η)),
(4.1)

⇒ φ(η) = −0.05239569649125595(1 − e−0.6(−5+η)). (4.2)

Table 1. Comparison (AEM) with the exact solution of θ(η).

η AEM Exact (4.1) A.E.
0 1 1 0
1 0.4863985001343503 0.4863985001343504 −5.5 × 10−17

2 0.22771677776404398 0.22771677776404403 −5.5 × 10−17

3 0.09764762404825836 0.09764762404825839 −2.7 × 10−17

4 0.03246070527161624 0.03246070527161626 −1.3 × 10−17

5 0 0 0
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Table 2. Comparison (AEM) with the exact solution of φ(η).

η AEM Exact (4.2) A.E.
0 1 1 0
1 0.5251713150323075 0.5251713075184227 7.5 × 10−9

2 0.26457980757081295 0.26457979593322084 1.1 × 10−8

3 0.12156415600866151 0.12156414210793086 1.3 × 10−8

4 0.04307550228778395 0.043075487145016536 1.5 × 10−8

5 1.582441163522 × 10−8 0 1.5 × 10−8

5 Conclusion

In the present paper, we have applied (AEM) to compute radiative steady MHD heat and
mass transfer flow past a vertical porous plate. This paper presented a new method with more
accuracy approach to exact solution. (AEM) is a mixture of numerical methods (Runge-Kutta
and finite difference) with a closed-form method (Laplace-transform) to solve system of linear
boundary value problems. The actions of different parameters (M , Gr, Gm, Pr, Rd, Pm and
Sc) on u(η), θ(η), H(η), and φ(η) has been studied graphically and numerically. In particular,
results for different parameters are summarized in the next paragraphs:

The fluid velocity u:

• Increases with an increase in Gr, Gm and Rd .

• Decreases with an increase Pr and Sc.

The induced magnetic field H:

• Increases with an increase in Pr .

• Decreases with an increase in Gr, Gm, M and Pm .

The fluid temperature θ:

• Increases with an increase in Rd and decreases with an increase in Pr .

The fluid mass diffusion φ:

• Decreases with an increase in Sc.

Furthermore, Comparisons with previously published works are performed and showed that
the present results have high accuracy and are found to be in excellent agreement. The findings
of ([14]−[17]) are backed up by this research.
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