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Abstract A ring R is called right monomorphism JP-injective (or MJP-injective for short), if,
for any a ∈ J(R), every right R-monomorphism from aR to R extends to an endomorphism of R.
A ring R is called right monomorphism JGP-injective (or MJGP-injective for short), if, for any
0 ̸= a ∈ J(R), there exists a positive integer n such that an ̸= 0 and any right R-monomorphism
from anR to R extends to an endomorphism of R. In this paper, several properties of the two
classes rings are given. Moreover, some new characterizations of quasi-Frobenius rings are
obtained.

1 Introduction

Throughout this paper, R is an associative ring with identity, and all modules are unitary. As
usual, J(R) (or J), Zr and Sr denote respectively the Jacobson radical, the right singular ideal
and the right socle of R. The left (respectively, right) annihilators of a subset X of R is denoted
by l(X) (respectively, r(X)).

Recall that R is called a right principally injective (briefly right P-injective) ring [7] if every
R-homomorphism from a principal right ideal of R into R extends to R; In [11], the concept of
right P-injective rings is generalized to right JP-injective rings. Following [11], a ring R is called
a right JP-injective ring if every R-homomorphism from a principal right ideal in J(R) into R
extends to R. We recall also that a ring R is called a right JGP-injective) ring [11] , if, for any
0 ̸= a ∈ J(R), there exists a positive integer n such that an ̸= 0 and any right R-homomorphism
from anR to R extends to an endomorphism of R. In this paper, we shall generalize the concepts
of right JP-injective rings and right JGP-injective rings to right MJP-injective rings and right
MJGP-injective rings respectively, and give some properties of these rings. Moreover, right
MJGP-injective left noethrian rings will be investigated, and quasi-Frobenius rings will be char-
acterized by right MJGP-injective rings. Concepts which have not been explained can be found
in [9].

2 MJP-injective rings

We start with the following definition.

Definition 2.1. Let R be a ring. A right R-module N is called JP-injective if for any a ∈ J(R),
every homomorphism from aR to N extends to a homomorphism of R to N . A right R-module
N is called MJP-injective if for any a ∈ J(R), every monomorphism from aR to N extends to a
homomorphism of R to N . R is called right MJP-injective if RR is MJP-injective.

Theorem 2.2. The following conditions are equivalent for a ring R.
(1) R is right MJP-injective.
(2) r(a) = r(b), a ∈ J(R), b ∈ R, implies that Ra = Rb.

Proof. (1) ⇒ (2). If r(a) = r(b), a ∈ J(R), then the mapping f : aR → bR, ar 7→ br is a
monomorphism. Since R is right MJP-injective, f = c· for some c ∈ R, and so b = ca. This
implies that Rb ⊆ Ra. Observing that b ∈ J(R), we have that Ra ⊆ Rb by a similar way as the
above proof.
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(2) ⇒ (1). Let f : aR → R be monic, where a ∈ J(R). Then r(a) = r(f(a)). By (2),
Ra = Rf(a), so f(a) = ca for some c ∈ R. Hence f is left multiplication by c, as required. 2

Theorem 2.3. Let R be a right MJP-injective ring, and T be a right ideal of R contained in J(R).
If T is isomorphic to a direct summand of RR, then T = 0.

Proof. If T ∼= eR, where e2 = e ∈ R, then T = aR for some a ∈ J(R) and T is projective.
Hence r(a) ⊆⊕ RR. Write r(a) = fR, where f2 = f ∈ R. Then r(a) = r(1 − f). By Theorem
2.2, Ra = R(1 − f) ⊆⊕

RR, and so a = 0. Thus, T = aR = 0. 2

Corollary 2.4. If R is a right MJP-injective ring, then the following are equivalent for an element
a ∈ J(R):
(1) aR is projective.
(2) a = 0.
(3) aR is an MJP-injective module.

Theorem 2.5. Let R be right MJP-injective, and assume that the sum
∑n

i=1 Rbi is direct, bi ∈
J(R). Then any monomorphism α :

∑n
i=1 biR → R can be extended to R.

Proof. For each i, α(bi) = aibi for some ai ∈ R by hypothesis, and similarly α(b1 + · · ·+ bn) =
a(b1 + · · ·+ bn) for some a ∈ R. Thus a1b1 + a2b2 + · · ·+ anbn = ab1 + ab2 + · · ·+ abn. Since∑n

i=1 Rbi is direct , so aibi = abi for each i. Hence α = a·. 2

Proposition 2.6. If R is right MJP-injective and e2 = e ∈ R with ReR = R, then eRe is right
MJP-injective.

Proof. Write S = eRe, then J(S) = eJ(R)e. Let rS(a) = rS(b), where a ∈ J(S), b ∈ S. Then
a ∈ J(R). Let bx = 0, x ∈ R, and write 1 =

∑n
i=1 pieqi, where pi, qi ∈ R. Then b(expie) =

bxpie = 0 for each i and so a(expie) = 0 by hypothesis. Hence ax =
∑n

i=1 axpieqi = 0.
So rR(b) ⊆ rR(a). Similarly, rR(a) ⊆ rR(b). Hence, rR(a) = rR(b). Since R is right MJP-
injective , Ra = Rb, so a = ea ∈ eRb = Sb, and b = eb ∈ eRa = Sa, as required. 2

Lemma 2.7. Let M be a right R-module such that R⊕M is MJP-injective. Then M is JP-injective.

Proof. Let a ∈ J(R) and f : aR → M be a right R-homomorphism. Define g : aR → R⊕M by
g(x) = (x, f(x)), then g is a monomorphism. Since R⊕M is MJP-injective, g can be extended
to a homomorphism h of R to R ⊕ M . Write h(1) = (b,m), then for any x ∈ aR, we have
(x, f(x)) = g(x) = h(x) = h(1)x = (b,m)x = (bx,mx), and so f(x) = mx. Thus f can be
extended to a homomorphism from R to M , and hence M is JP-injective. 2

It is easy to see that every direct sum of JP-injective modules is JP-injective. So, by Lemma
2.7, we have immediately the following corollaries.

Corollary 2.8. Let R be a right MJP-injective ring. Then the following statements are equivalent:
(1) Every direct sum of MJP-injective right R-modules is MJP-injective;
(2) Every MJP-injective right R-module is JP-injective.

Corollary 2.9. A ring R is right JP-injective if and only if the right R-module R2 is MJP-injective.

Lemma 2.10. If the full matrix ring Mn(R) is right MJP-injective, then the right R-module Rn

is MJP-injective.

Proof. Let a ∈ J(R) and f : aR → Rn be a right R-monomorphism. Write f(a) =
(a1, a2, · · · , an), and define g : (

∑n
i=1 Ei1a)Mn(R) → Mn(R); (

∑n
i=1 Ei1a)X 7→ (

∑n
i=1 Ei1ai)X ,

where X ∈ Mn(R), then g is a right Mn(R)-monomorphism. Since Mn(R) is MJP-injective
and

∑n
i=1 Ei1a ∈ J(Mn(R)), there exists B = (bij)nn ∈ Mn(R) such that g = B·. Thus∑n

i=1 Ei1ai = B(
∑n

i=1 Ei1a), and so ai = bia, where bi =
∑n

j=1 bij , i = 1, 2, · · · , n. Hence, for
every r ∈ R, we have f(ar) = f(a)r = (a1, a2, · · · , an)r = (b1, b2, · · · , bn)ar, so that f extends
to a homomorphism of R to Rn. Therefore, as a right R-module, Rn is MJP-injective. 2

Theorem 2.11. If there exists a positive integer n ≥ 2 such that the full matrix ring Mn(R) is
right MJP-injective, then R is right JP-injective.
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Proof. Since the full matrix ring Mn(R) is right MJP-injective, by Lemma 2.10, as a right R-
module, Rn is MJP-injective. So, by Lemma 2.7, the right R-module Rn−1 is JP-injective, and
hence R is right JP-injective. 2

Recall that a ring R is called right MP-injective [13] if, for any a ∈ R,any right R-monomorphism
from aR to R extends to an endomorphism of R; a ring R is called J-regular [10] if R/J(R) is
regular; a submodule N of M has a weak supplement L in M if N + L = M and N ∩M << L
[5].

Theorem 2.12. If R is J-regular, then R is right MP-injective if and only if R is right MJP-
injective.

Proof. The necessity is obvious. For the sufficient part, assume f is a monomorphism from aR
to R. Since R is J-regular, by [5, Proposition 3.18], aR has a weak supplement in RR. That
is, there exists a right ideal K of R such that aR + K = R and aR ∩ K ⊆ J . Thus, there
are r ∈ R and b ∈ K such that ar + b = 1 and aR ∩ bR ⊆ aR ∩ K ⊆ J . By [5, Lemma
3.4], aR ∩ bR = baR. Let f1 = f |baR, then f1 is a monomorphism from baR to R. Since R
is right MJP-injective, there exists an endomorphism g of R such that g |baR= f1. Note that
aR + bR = R, for each x ∈ R, there exist x1 ∈ aR and x2 ∈ bR such that x = x1 + x2. Now
we define φ : RR → RR;x 7→ f(x1) + g(x2), then it is easy to see that φ is a well-defined
endomorphism of RR which extends f . 2

3 MJGP-injective rings

Recall that a ring R is called right GP-injective [1, 3, 6] if, for any 0 ̸= a ∈ R, there exists a
positive integer n such that an ̸= 0 and any right R-homomorphism from anR to R extends to
an endomorphism of R. The concept of GP-injective rings has been generalized in several ways.
For example, a ring R is called right JGP-injective [11] if, for any 0 ̸= a ∈ J(R), there exists a
positive integer n such that an ̸= 0 and any right R-homomorphism from anR to R extends to
an endomorphism of R; a ring R is called right MGP-injective [13] if, for any 0 ̸= a ∈ R, there
exists a positive integer n such that an ̸= 0 and any right R-monomomorphism from anR to R
extends to an endomorphism of R.

Definition 3.1. Let R be a ring. A right R-module N is called right MJGP-injective if for any
0 ̸= a ∈ J(R), there exists a positive integer n such that an ̸= 0 and any R-monomorphism from
anR to N extends to a homomorphism of R to N . The ring R is called right MJGP-injective if
RR is MJGP-injective.

Theorem 3.2. The following conditions are equivalent for a ring R:
(1) R is right MJGP-injective.
(2) For any 0 ̸= a ∈ J(R), there exists n > 0 such that an ̸= 0 and b ∈ Ran for every b ∈ R
with r(an) = r(b).

Proof. (1)⇒ (2). Let 0 ̸= a ∈ J(R). Since R is right MJGP-injective, there exists a positive
integer n, such that an ̸= 0 and every monomorphism from anR to R extends to R. Suppose
that r(an) = r(b). Then f : anR → R, anr 7→ br, is a monomorphism, which extends to an
endomorphism g of R. So b = f(an) = g(an) = g(1)an ∈ Ran.

(2)⇒ (1). Let 0 ̸= a ∈ J(R). By (2), there exists n > 0 such that an ̸= 0 and b ∈ Ran for
any b ∈ R with r(an) = r(b). Let f : anR → R be monic. Then r(an) = r(f(an)), and so
f(an) = can for some c ∈ R. It follows that f = c·, as requied. 2

Example 3.3. Let M = ⊕∞
i=1Zpi

, where pi is the ith prime number, and let

R =

{[
n x

0 n

]∣∣∣∣∣n ∈ Z, x ∈ M

}
.

Then R is right MJGP-injective , but R is not right MGP -injective.
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Proof. By [11, Example 3.1], R is right JP-injective, so it is right MJGP-injective . But R is not
right MGP -injective by [13, Example 3.3]. 2

Theorem 3.4. Let R be right MJGP-injective. Then
(1) If 0 ̸= a ∈ J(R), then r(a) ̸= 0.
(2) J(R) ⊆ Zr.

Proof. (1) If r(a) = 0. Then since R is right MJGP-injective, there exists a positive integer n
such that an ̸= 0 and every monomorphism from anR to R extends to R. Define f : anR →
R, anx 7→ x. Then f is a monomorphism, and hence it extends to an endomorphism g of R.
Thus 1 = f(an) = g(an) = g(1)an ∈ J(R), a contradiction.

(2) Let a ∈ J(R), then we will show that a ∈ Zr. If not, then there exists 0 ̸= b ∈ R such that
r(a)∩ bR = 0. Clearly ab ̸= 0. Since R is right MJGP-injective, there exists a positive integer n
such that (ab)n ̸= 0 and c ∈ R(ab)n for any c ∈ R with r((ab)n) = r(c). Now let c = b(ab)n−1.
Then r((ab)n) = r(c), and so c = d(ab)n for some d ∈ R. Thus (1− da)c = 0. Since a ∈ J(R),
1 − da is invertible, and so c = 0. Hence (ab)n = ac = 0, a contradiction. 2

Recall that a ring R is called right C2 [11, 12] if every right ideal that is isomorphic to a direct
summand of R is itself a direct summand of R; a ring R is called right GC2 [11, 12] if every
right ideal that is isomorphic to R is itself a direct summand of R: a ring R is called left (resp.,
right) Kasch if every simple left (resp., right) R-module can be embedded in RR (resp., RR).

Corollary 3.5. If R is a right MJGP-injective and right GC2 ring, then J(R) = Zr. In particular,
if R is a right MJGP-injective left Kasch ring, then J(R) = Zr.

Proof. Since R is right GC2, by [11, Proposition 2.6], J(R) ⊇ Zr. Since R is right MJGP-
injective, by Theorem 3.4, J(R) ⊆ Zr. So J(R) = Zr. If R is a left Kasch ring, then by [9,
Proposition 1.46], R is right C2, and hence right GC2, so the last assertion follows. 2

Recall that a ring R is called right mininjective [8] if every R-homomorphism from a minimal
right ideal of R into R extends to R.

Theorem 3.6. Let R be a right MJGP-injective ring. Then R is right mininjective.

Proof. Let aR be simple. If (aR)2 ̸= 0, then aR = eR for an idempotent e ∈ R. Thus, ev-
ery R-homomorphism from aR to R extends to R. If (aR)2 = 0, then a ∈ J(R). Since R
is right MJGP-injective, there exists a positive integer n, such that an ̸= 0 and every right R-
monomomorphism from anR to R extends to an endomorphism of R. Noting that anR = aR
because aR is simple, so every right R-homomorphism from aR to R extends to R. 2

A ring R is called right CF [9] if every cyclic right R-module embeds in a free module; a
ring R is called semiregular if R/J(R) is regular and idempotents can lifted modulo J(R) [9].
Our next result improves [2, Corollary 2.10].

Corollary 3.7. Let R be a right CF, semiregular, right MJGP-injective ring. Then it is QF.

Proof. Since R is right MJGP-injective, by Theorem 3.4 and Theorem 3.6, R is right mininjec-
tive and J(R) ⊆ Zr. By [2, Corollary 2.9], every right CF, semiregular ring with J(R) ⊆ Zr is
right artinian, so R is right artinian. Note that right CF ring is left P-injective by [9, Lemma 7.2
(1)], so R is left and right mininjective right artinian ring, and hence R is QF by [8, Corollary
4.8]. 2

Lemma 3.8. Let M be a right R-module with a left noetherian endomorphism ring S = End(MR).
If SM is finitely generated , I is a right ideal of S and rM (I) ⊆ess MR, then I is nilpotent.

Proof. Since I is a right ideal of S, rM (Ii) is a submodule of SM for each positive integer
i. Since S is left noetherian and SM is finitely generated , SM is a noetherian module, and so
there exists k ≥ 1 such that rM (Ik) = rM (Ik+1) = · · · . If I is not nilpotent, choose lS(x)
maximal in {lS(y) | Iky ̸= 0}. Then I2kx ̸= 0 because rM (I2k) = rM (Ik), so there exists
a ∈ Ik such that Ikax ̸= 0. Observing that rM (I) ⊆ rM (Ik) and rM (I) ⊆ess MR, we have
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that rM (Ik) ⊆ess MR. Thus axR ∩ rM (Ik) ̸= 0, say 0 ̸= axb ∈ rM (Ik) for some b ∈ R,
then, Ikxb ̸= 0 as 0 ̸= axb ∈ Ikxb, and Ika ⊆ lS(xb) but Ika ⊈ lS(x), which contradicts the
maximality of lS(x). Therefore I is nilpotent. 2

Theorem 3.9. Let R be a left noetherian right MJGP-injective ring. Then:
(1) r(J) ⊆ess RR.
(2) J is nilpotent .
(3) r(J) ⊆ess

RR.

Proof. (1). Let 0 ̸= x ∈ R. Since R is left noetherian, the non-empty set F = {l(xa) | a ∈ R
such that xa ̸= 0} has a maximal element, say l(xy).

We claim that Jxy = 0. If not, then there exists t ∈ J such that txy ̸= 0. Since R is right
MJGP-injective, there exists a positive integer n such that (txy)n ̸= 0 and b ∈ R(txy)n for every
b ∈ R with r((txy)n) = r(b). Write s = (txy)n−1t, then s ∈ J and (txy)n = sxy . We proceed
with the following two cases.

Case 1. r(xy) = r(sxy). Then xy = csxy for some c ∈ R, i.e., (1 − cs)xy = 0. Since s ∈ J ,
1 − cs is invertible. So we have xy = 0. This is a contradiction.

Case 2. r(xy) ̸= r(sxy). Then there exists u ∈ r(sxy) but u /∈ r(xy). Thus, sxyu = 0 and
xyu ̸= 0. This shows that s ∈ l(xyu) and l(xyu) ∈ F . Noting that s /∈ l(xy), the inclusion
l(xy) ⊂ l(xyu) is strict. This contracts the maximality of l(xy) in F .

Thus, Jxy = 0, and so 0 ̸= xy ∈ xR ∩ r(J), proving (1).
(2). By Lemma 3.8.
(3). If 0 ̸= c ∈ R, we must show that Rc∩r(J) ̸= 0. In fact, if Jc = 0, then 0 ̸= c ∈ Rc∩r(J).

If Jc ̸= 0. Then since J is nilpotent, there exists m ≥ 1 such that Jmc ̸= 0 but Jm+1c = 0, and
so 0 ̸= Jmc ⊆ Rc ∩ r(J), as required. 2

Recall that a ring R is right minfull [8] if it is semiperfect, right mininjective and Soc(eR) ̸= 0
for each local idempotent e ∈ R ; a ring R is called left Johns [4] if it is left noetherian and every
left ideal is a left annihilator.

Theorem 3.10. Let R be a left noetherian right MJGP-injective ring. Then the following state-
ments are equivalent:
(1) R is right Kasch.
(2) R is left C2.
(3) R is left GC2.
(4) R is semilocal.
(5) R is left artinian.

Proof. (1)⇒ (2). By [9, Proposition 1.46].
(2)⇒ (3) is obvious.
(3)⇒ (4). Since left noetherian ring is left finite dimensional, and left finite dimensional left

GC2 ring is semilocal [12, Lemma 1.1], so (4) follows from (3).
(4)⇒ (5). Since R is left noetherian right MJGP-injective, By Theorem 3.9(2), J is nilpotent.

Thus R is a left noetherian semiprimary by ring, i.e., it is left artinian.
(5)⇒ (1). Assume (5). Then R is semiperfect right mininjective ring and Sr ⊆ess RR. So

that R is a right minfull ring. By [8, Theorem 3.7(1)], R is right Kasch. 2.

Theorem 3.11. Let R be a left noetherian left mininjective right MJGP-injective ring. Then the
following statements are equivalent:
(1) R is a quasi-Frobenius ring.
(2) R is right Kasch.
(3) R is left C2.
(4) R is left GC2.
(5) R is semilocal.
(6) R is left artinian.

Proof. The equivalence of (2), (3), (4), (5), (6) follows from Theorem 3.10.
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(1) ⇒ (6) is obvious.
(6)⇒ (1). Since R is right MJGP-injective, by Theorem 3.6, R is right mininjective. Thus R

is a two-sided mininjective left artinian ring, and so it is a quasi-Frobenius ring by [8, Corollary
4.8]. 2

Lemma 3.12. Let R be a left perfect right mininjective ring. Then R is right Kasch.

Proof. By hypothesis, R is a semiperfect right mininjective ring with essential right socle, so it
is a right minfull ring. Hence, by [8, Theorem 3.7], R is right Kasch. 2

Theorem 3.13. The following statements are equivalent for a ring R:
(1) R is a quasi-Frobenius ring.
(2) R is left Johns and left MGP-injective.
(3) M2(R) is left Johns and R is left GC2.
(4) R is left artinian and right 2-injective.
(5) R is left noetherian right finite dimensional and right 2-injective.
(6) R is left noetherian left mininjective and right MGP-injective.

Proof. (1) ⇒ (2), (3), (5), (6) are obvious.
(2) ⇒ (1). Since R is left Johns, it is left noetherian and right P-injective, and so it is

left noetherian and right MJGP-injective. Since R is left MGP-injective, by Theorem 3.6, R is
left mininjective, and by [13, Theorem 3.4], R is left GC2. And so, by Theorem 3.11, R is a
quasi-Frobenius ring.

(3) ⇒ (4). Since M2(R) is left Johns, R is left noetherian and right 2-injective. Note that R
is left GC2, by Theorem 3.10, R is left artinian.

(4) ⇒ (1). By Lemma 3.12, R is right Kasch. It follows from [7, Lemma 2.2] that R is left P-
injective. Note R has ACC on left annihilators, by [9, Proposition 5.15], R is also right artinian.
Thus, R is two-sided mininjective and two-sided artinian, and therefore it is a quasi-Frobenius
ring by Ikeda’s Theorem (see [9, Theorem 2.30]).

(5) ⇒ (4). Since right 2-injective ring is right P-injective, and by [7, Theorem 3.3(2)], right
P-injective right finite dimensional ring is semilocal, so R is semilocal. Thus, by Theorem 3.10,
R is left artinian.

(6) ⇒ (1). Since R is right MGP-injective, it is right MJGP-injective. Moreover, it is also
GC2 by [13, Theorem 3.4(1)]. Thus, by Theorem 3.11, R is a quasi-Frobenius ring. 2
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