
Palestine Journal of Mathematics

Vol 13(2)(2024) , 338–348 © Palestine Polytechnic University-PPU 2024

Anisotropic elliptic Problem involving the L1 -version of Minty’s
lemma

O. AZRAIBI, A. BOUZELMATE, B. EL HAJI and Y. ELKHANNOUSS

Communicated by P. Harikrishnan

MSC 2010 Classifications: Primary 35J15; Secondary 35J62.

Keywords and phrases: Entropy solutions, nonlinear elliptic equations, anisotropic Sobolev spaces, entropy solutions.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that

improved the quality of our paper.

Corresponding Author: B. EL HAJI

Abstract We prove optimal existence result for entropy solutions to some anisotropic bound-
ary value problems like{

−
∑N

i=1 D
iAi(x,w,∇w) = g(x) in Ω,

v = 0 on ∂Ω,
(0.1)

where g ∈ L1(Ω), Ω is a bounded, open subset of RN , N ≥ 2, and the function Ai(x, s, ξ) verify
the large monotonicity condition. The construction of the proof of our theorem is done by using
the Minty’s Lemma by its modified version.

1 Introduction

The study of anisotropic elliptic equations on bounded domain has been intensively studied by
large number of scientists and researchers, this study is motived by the fact that this type of
equations can intimate connections with some application in elasticity, in the process of image
restoration and Stochastic Processes with constraints (see for instance [24, 7], and references
therein).

In order to fix the ideas let us consider the strongly anisotropic elliptic problems as{
−
∑N

i=1 D
iAi(x,w,∇w) = g(x) in Ω,

v = 0 on ∂Ω,
(1.1)

where g ∈ L1(Ω), Ω is a bounded domain of RN , N ≥ 2.
In large recent researches, existence result with some qualitative properties and regularity

of nonlinear anisotropic elliptic equations where the data belonns to L1− have been proved see
the references [11] when Badr EL HAJI et al have been shown the existence result of entropy
solution in weighted-Orlicz spaces, other works found by Youssef AKDIM et al. in their paper
[2] devoted to study a degenerated problem (0.1) via Minty’s Lemma in weigthed Orlicz-Sobolev
space, in the similar direction faria et al (see [14]) have been treated the similar problem as
(0.1) where the solution u of the elliptic problem studied depend on the gradient.

On the other hand, by using as main tool an L1 version of Minty’s lemma EL HAJI et al (see
[3]) extending the main result under studies to the Musielak-orlicz spaces by giving an existence
result for an entropy solutions of elliptic problem as{

L(w) = g(x) in Ω

w = 0 on ∂Ω
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where g ∈ L1(Ω) and L(w) = − div l(x,w,∇w).
The mathematical researches dealing the existence of solutions to some problems parabolic

and elliptic under a different assumptions is massive; we refer the reader to [5, 10, 12, 9, 8, 19,
20, 21, 22] and the references therein.

Our goal in this paper is to solve the problem (0.1)(existence results) where the function
Ai(x, s, ξ) satisfy the large monotonicity condition and without adopting the almost everywhere
convergence of the gradients, and in order to overcome this difficulties, we exploit the technique
of Minty’s lemma for proving the existence of an entropy solutions, However the approach that
we used in the proof differs from that adopted by A. Benkirane et al used in [4]

The outline of this note is as follows. After giving the definition and some auxiliary results on
anisotropic Sobolev space, we recall in Section 3 some essential assumptions which are neces-
sary to have an existence solution, finally section 4 will be devoted to give our main results and
their proofs.

2 Preliminaries

Let Ω be a bounded open subset of IRN (N ≥ 2).
Let p1, . . . , pN be N real constants numbers, with ∞ > pi > 1 for i = 1, . . . , N.
We set

p⃗ = (1, p1, . . . , pN ), D0w = w and Diw =
∂w

∂xi
for i = 1, . . . , N,

and we set

p = min{p1, p2, . . . , pN} and p0 = max{p1, p2, . . . , pN}.

We define the anisotropic Sobolev space W 1,p⃗(Ω) like :

W 1,p⃗(Ω) =
{
w ∈ W 1,1(Ω) such that Diw ∈ Lpi(Ω) for i = 1, 2, . . . , N

}
,

endowed with the norm

∥w∥1,p⃗ = ∥w∥1,1 +
N∑
i=1

∥Diw∥Lpi (Ω). (2.1)

The space
(
W 1,p⃗(Ω), ∥w∥1,p⃗

)
is a reflexive Banach (separable) space (cf [17]).

We denote by W 1,p⃗
0 (Ω) the closure of C∞

0 (Ω) in W 1,p⃗(Ω) with respect to (2.1).

Proposition 2.1. (see. [13, 18])
Let w ∈ W 1,p⃗

0 (Ω), we have
(i) : there exists Cp > 0, such that

∥w∥Lpi (Ω) ≤ Cp

N∑
i=1

∥Diw∥Lpi (Ω) for any i = 1, . . . , N.

(ii) : there exists Cs > 0, such that

∥w∥Lq(Ω) ≤
Cs

N

N∑
i=1

∥∥∥ ∂w
∂xi

∥∥∥
Lpi (Ω)

,

where
1
p
=

1
N

N∑
i=1

1
pi

and

 q = p∗ =
Np

N − p
if p < N

q ∈ [1,+∞[ if p ≥ N

Lemma 2.2. Let Ω be a bounded open set in IRN (N ≥ 2), we set

s = max(q, max
1≤i≤N

pi),

therefore, the embedding listed below holds :
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• if p < N so W 1,p⃗
0 (Ω) ↪→↪→ Lr(Ω) is compact for any r ∈ [1, s[,

• if p = N therefore W 1,p⃗
0 (Ω) ↪→↪→ Lr(Ω) is compact for any r ∈ [1,+∞[,

• if p > N we have W 1,p⃗
0 (Ω) ↪→↪→ L∞(Ω) ∩ C0(Ω) is compact.

The proof of the above result (lemma 2.2) depends to the Proposition 2.1.

Definition 2.3. For k > 0, we give the following truncation Tk(·) : IR 7−→ IR, that will be used
latter

Tk(s) =

 s if |s| ≤ k,

k
s

|s|
if |s| > k,

and we define

T 1,p⃗
0 (Ω) := {w : Ω 7→ IR measurable /Tk(w) ∈ W 1,p⃗

0 (Ω) for any k > 0}.

Lemma 2.4. Let w ∈ T 1,p⃗
0 (Ω), there exists one function vi : Ω 7→ IR measurable with i ∈

{1, . . . , N}, such that

∀k > 0 DiTk(w) = vi.χ{|w|<k} a.e. x ∈ Ω,

with χA be a characteristic function of a measurable set A. vi define the weak partial derivatives
of w denoted by Diw. Therefore, if w ∈ W 1,1

0 (Ω), then (vi = Diw.)

Lemma 2.5. (see [16], Theorem 13.47) Let (wn)n be a sequence in L1(Ω) and w ∈ L1(Ω) such
that

(i) wn → w a.e. in Ω,

(ii) wn ≥ 0 and w ≥ 0 a.e. in Ω,

(iii)
∫

Ω

wn dx →
∫

Ω

w dx,

then wn → w in L1(Ω).

3 Essential assumptions

We consider a Leray-Lions operator A : W 1,p⃗
0 (Ω) 7−→ W−1,p⃗′

(Ω) modeled by

Aw = −
N∑
i=1

DiAi(x,w,∇w)

where Ai : Ω ×R ×RN 7→ R are Carathéodory functions, for i = 1, . . . , N , which satisfy the
hypothesis listed bellow as follows:

|Ai(x, s, ξ)| ≤ β
(
Ri(x) + |s|pi−1 + |ξ|pi−1

)
for i = 1, . . . , N, (3.1)

Ai(x, s, ξ)ξi ≥ α |ξi|pi for i = 1, . . . , N, (3.2)

(Ai(x, s, ξ)−Ai (x, s, ξ
′)) (ξi − ξ′i) ≥ 0 for ξi ̸= ξ′i, (3.3)

for a.e. x ∈ Ω and all (s, ξ) ∈ R × RN , where Ri(x) ∈ Lp′
i(Ω) and pi − 1 > qi > 0 for

i = 1, . . . , N , where Ri(x), α, β > 0.

g ∈ L1(Ω). (3.4)

The following section devoted to stating our Main results and their proofs
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4 Main results

The approach used by boccardo [6] of entropy solution is given by the following notion.

Definition 4.1. A function w ( mesurable ) is named an entropy solution of (0.1) if Tk(w) ∈
W 1,p⃗

0 (Ω) and satisfy

N∑
i=1

∫
Ω

Ai(x,w,∇w)DiTk(w − Φ)dx ≤
∫

Ω

gTk(w − Φ)dx

for any v ∈ W 1,p⃗
0 (Ω) ∩ L∞(Ω).

Theorem 4.2. Suppose taht (3.1)-(3.4) are holds, then the problem (0.1) admit one entropy solu-
tion w.

4.1 The key Lemma

Lemma 4.3. Let w ( mesurable function) such that Tk(w) ∈ W 1,p⃗
0 (Ω) for every k > 0. Then

N∑
i=1

∫
Ω

Ai(x,w,∇w)DiTk(w − Φ)dx dx ≤
∫

Ω

g Tk(w − Φ)dx (4.1)

is equivalent to

N∑
i=1

∫
Ω

Ai(x,w,∇w)DiTk(w − Φ) dx =

∫
Ω

g Tk(w − Φ)dx (4.2)

for every Φ ∈ W 1,p⃗
0 (Ω) ∩ L∞(Ω), and for every k > 0.

4.2 Proof of The key lemma

It’s clear that The equation (4.2) implies (4.1).
Now, by adding and subtracting

N∑
i=1

∫
Ω

Ai(x,w,∇w)DiTk(w − Φ) dx,

therefore by using assumption (3.2), we can prove that (4.1) implies (4.2). Let h, k > 0, let
λ ∈ ]−1, 1[ and Θ ∈ W 1,p⃗

0 (Ω) ∩ L∞(Ω).

We take, Φ = Th(w − λTk(w −Θ)) ∈ W 1,p⃗
0 (Ω) ∩ L∞(Ω) in (4.1), we get:

Ehk ≤ Fhk, (4.3)

with

Ehk =
N∑
i=1

∫
Ω

Ai(x,w,D
iTh(w − λTk(w − Θ)))DiTk(w − Th(w − λTk(w − Θ)))) dx,

and
Fhk =

∫
Ω

g Tk(w − Th(w − λTk(w −Θ)))) dx.

Put
Shk = {x ∈ Ω, |w − Th(w − λTk(w −Θ))| ≤ k},

and
Thk = {x ∈ Ω, |w − λTk(w −Θ)| ≤ h}.
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Then, we obtain

Ehk =
N∑
i=1

∫
Skh∩Thk

Ai(x,w,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ))) dx

+
N∑
i=1

∫
Skh∩TC

hk

Ai(x,w,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ)))) dx

+
N∑
i=1

∫
SC
kh

Ai(x,w,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ))) dx.

Since DiTk(w − Th(w − λTk(w −Θ))) ̸= 0 on Skh, we get

N∑
i=1

∫
SC
kh

Ai(x,w,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ))) dx = 0. (4.4)

Therefore, if x ∈ TC
hk, we can get DiTh(w − λTk(w −Θ)) = 0 and using (3.3), we conclude the

following equality,

N∑
i=1

∫
Skh∩TC

hk

Ai(x,w,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ)))) dx

=
N∑
i=1

∫
Skh∩TC

hk

Ai(x,w, 0)DiTk(w − Th(w − λTk(w −Θ)))) dx = 0. (4.5)

According to (4.4) and (4.5), we get

Ehk =
N∑
i=1

∫
Skh∩Thk

Ai(x,w,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ)))) dx.

Let h → +∞, |λ| ≤ 1, we obtain

Skh → {x, |λ||Tk(w −Θ)| ≤ h} = Ω, (4.6)

Thk → Ω implies that Skh ∩ Thk → Ω. (4.7)

By applying the Lebesgue theorem, we obtain

lim
h→+∞

N∑
i=1

∫
Skh∩Thk

Ai(x, u,D
iTh(w − λTk(w −Θ)))DiTk(w − Th(w − λTk(w −Θ)))) dx

= λ

N∑
i=1

∫
Ω

Ai(x,w,∇(w − λTk(w −Θ)))DiTk(w −Θ) dx. (4.8)

thus implies that,

lim
h→+∞

Ehk = λ

N∑
i=1

∫
Ω

Ai(x,w,∇(w − λTk(w −Θ)))DiTk(w −Θ) dx. (4.9)

Moreover, one has

Fhk =

∫
Ω

g Tk(w − Th(w − λTk(w −Θ))) dx.

Then

lim
h→+∞

∫
Ω

g Tk(w − Th(w − λTk(w −Θ))) dx = λ

∫
Ω

gTk(w −Θ)dx, (4.10)
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i.e.,

lim
h→+∞

Fhk = λ

∫
Ω

gTk(w −Θ)dx. (4.11)

Thanking to (4.9), (4.11) therefore by passing to the limit in (4.3), we can get,

λ

(
N∑
i=1

∫
Ω

Ai(x,w,∇(w − λTk(w −Θ)))DiTk(w −Θ) dx

)
≤ λ

(∫
Ω

gTk(w −Θ)dx

)

for every Θ ∈ W 1,p⃗
0 (Ω) ∩ L∞(Ω), and for every k > 0. Let us take λ > 0, dividing by λ, and

λ −→ 0, we have

N∑
i=1

∫
Ω

Ai(x,w,∇w)DiTk(w −Θ) dx ≤
∫

Ω

gTk(w −Θ)dx. (4.12)

for λ < 0, dividing by λ, and λ −→ 0 , we have

N∑
i=1

∫
Ω

Ai(x, u,∇u)DiTk(w −Θ) dx ≥
∫

Ω

gTk(w −Θ)dx. (4.13)

Thanking to (4.12) and (4.13), we deduce that :

N∑
i=1

∫
Ω

Ai(x,w,∇w)DiTk(w −Θ) dx =

∫
Ω

gTk(w −Θ)dx. (4.14)

This achieve the demonstration of Lemma 4.3.
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4.3 Proof of Main results

Approximate problem

For n ∈ N, define gn := Tn(g). Let wn ∈ W 1,p⃗
0 (Ω) be solution of the approximate equation of

the type {
Anwn = gn in Ω

wn = 0 on ∂Ω,
(4.15)

which exists according to ([15]).
we take Tk(wn) as test in (4.15), we get

N∑
i=1

∫
Ω

Ai (x, Tn (wn) ,∇wn)D
iTk (un) dx =

∫
Ω

gnTk(wn) dx,

Now thanks to (3.3), we obtain

N∑
i=1

∫
Ω

Ai (x,wn,∇wn)D
iTk (wn) dx ≥ α

∫
Ω

∣∣DiTk (wn)
∣∣pi

dx,

then ∫
Ω

∣∣DiTk (wn)
∣∣pi

dx ≤ k∥g∥L1(Ω). (4.16)

Then ∫
Ω

∣∣DiTk (wn)
∣∣pi

dx ≤ C1k, (4.17)

where C1 is a constant independently of n.

Locally convergence of wn in measure

Taking λ|Tk(wn)| in (4.15) and using (4.17), one has∫
Ω

λ1
|DiTk(wn)|pi

λ
dx ≤

∫
Ω

λ1|DiTk(wn)|pidx ≤ C1k. (4.18)

by using (4.18), we can have

meas{|wn| > k} ≤ 1
inf
k

k
λ

∫
{|wn|>k}

|wn(x)|pi

λ
dx

≤ 1
inf
k

k
λ

∫
Ω

1
λ
|Tk(wn)|pidx

≤ C1k

inf
k

k
λ

∀n, ∀k ≥ 0.

(4.19)

For any β > 0, we have

meas{|wn − wm| > β} ≤ meas{|wn| > k}+meas{|wm| > k}+meas{|Tk(wn)− Tk(wm)| > β},

and so that

meas{|wn − wm| > β} ≤ 2C1k

inf
x∈Ω

k
λ

+meas{|Tk(wn)− Tk(wm)| > β}. (4.20)

By Applying Poincaré inequality (proposition 2.1) and according to (4.17) we obtain the bound-
edness of (Tk(wn)) in W 1,p⃗

0 (Ω), therefore there exists ωk ∈ W 1,p⃗
0 (Ω) such that Tk(wn) ⇀ ωk
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weakly in W 1,p⃗
0 (Ω), strongly in Lp(Ω) and a.e. in Ω.

So, we suppose that (Tk(wn))n is a Cauchy sequence in measure in Ω.
Let ε > 0, then by (4.20) and in view of 2C1k

inf
x∈Ω

k
λ

→ 0 as k → +∞ there exists some k = k(ε) > 0

such that
meas{|wn − wm| > λ} < ε, for all n,m ≥ h0(k(ε), λ).

This proves that wn is a Cauchy sequence in measure, thus, wn converges almost everywhere
to w(measurable function).

Therefore, there exist a subsequence of {wn}n, still indexed by n, and a function w ∈
W 1,p⃗

0 (Ω) such that {
wn ⇀ w weakly in W 1,p⃗

0 (Ω)

wn −→ w strongly in Lp(Ω) and a.e. in Ω.
(4.21)

An intermediate Inequality

Here, we can show that, for Φ ∈ W 1,p⃗
0 (Ω) ∩ L∞(Ω), we get

N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(w − Φ) dx ≤
∫

Ω

gn Tk(wn − Φ) dx. (4.22)

Now, we take Tk(wn − Φ) as test in (4.15), with Φ in W 1,p⃗
0 (Ω) ∩ L∞(Ω), we can obtain

N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(w − Φ) dx =

∫
Ω

gnTk(wn − Φ) dx. (4.23)

The term
N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(w−Φ) dx can be added and subtracted to the equation

(4.23) we can obtain,

N∑
i=1

∫
Ω

Ai(x,wn,∇wn)D
iTk(w − Φ) dx+

N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(w − Φ) dx (4.24)

−
N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(w − Φ) dx =

∫
Ω

gnTk(wn − Φ)dx.

By (3.2) and truncation function, we can get

N∑
i=1

∫
Ω

(Ai(x,wn,∇wn)−Ai(x,wn,∇Φ))DiTk(w − Φ) dx ≥ 0. (4.25)

According to (4.24) and (4.25), we get (4.22).

Passing to the limit

We verify that for Φ ∈ W 1,p⃗
0 (Ω) ∩ L∞(Ω), one has

N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(wn − Φ) dx ≤
∫

Ω

gTk(w − Φ)dx.

Now, we show that

N∑
i=1

∫
Ω

Ai(x,wn,∇Φ)DiTk(wn − Φ) dx →
N∑
i=1

∫
Ω

Ai(x,w,∇Φ)DiTk(w − Φ) dx as n → +∞.
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as TM (wn) ⇁ TM (w) weakly in W 1,p⃗
0 (Ω), with M = k + ∥Φ∥∞, therefore

Tk(wn − Φ) ⇁ Tk(w − Φ) in W 1,p⃗
0 (Ω), (4.26)

then
∂Tk

∂xi
(wn − Φ) ⇁

∂Tk

∂xi
(w − Φ) weakly in Lp⃗(Ω) ∀i = 1, .., N. (4.27)

Let us prove that

Ai(x, TM (wn),∇Φ) → Ai(x, TM (w),∇Φ) strongly in (Lp(Ω))N .

By(3.1), we get

|Ai(x, TM (wn),∇Φ)| ≤ β
(
Ri(x) + |TM (wn)|pi−1 + |∇Φ|pi−1

)
,

with β be a positive constant. as TM (wn) ⇁ TM (w) weakly in W 1,p⃗
0 (Ω) and W 1,p⃗

0 (Ω) ↪→↪→
Lp(Ω), therefore TM (wn) ⇁ TM (w) strongly in Lp(Ω) and a.e. in Ω, hence

|Ai(x, TM (wn),∇Φ)| → |Ai(x, TM (w),∇Φ)| a.e. in Ω.

and
β
(
Ri(x) + |TM (wn)|pi−1 + |∇Φ|pi−1

)
→

β
(
Ri(x) + |TM (w)|pi−1 + |∇Φ|pi−1

)
,

a.e. in Ω. Therefore, Vitali’s theorem, implies

Ai(x, TM (wn),∇Φ) → Ai(x, TM (w),∇Φ) strongly in (Lp(Ω))N , as n → ∞. (4.28)

According to (4.27) and (4.28), we can get∫
Ω

Ai(x,wn,∇Φ)∇Tk(wn − Φ) dx →
∫

Ω

Ai(x,w,∇Φ)∇Tk(w − Φ) dx as n → +∞. (4.29)

Here, we prove that ∫
Ω

gnTk(wn − Φ)dx →
∫

Ω

gTk(w − Φ)dx. (4.30)

We get gnTk(wn − Φ) → fTk(w − Φ) a.e. in Ω therefore Vitali’s theorem, implies (4.30) .
According to (4.29)and (4.30) we pass to the limit in (4.22), so that ∀Φ ∈ W 1,p⃗

0 (Ω) ∩ L∞(Ω),
we conclude ∫

Ω

A(x,w,∇Φ)∇Tk(w − Φ) dx ≤
∫

Ω

gTk(w − Φ)dx.

According to the idea of key Lemma, we conclude that w is a solution of the problem (0.1) in
the sense of the definition 4.1.
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