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Abstract Generalization of Fibonomial coefficients, a confluence have accelerated interest of
mathematicians for a long time now. In this article, we introduce F-trinomial numbers, a three-
dimensional extension of Fibonomial coefficients. We show that these numbers always possess
integer values and obtain some of its interesting properties. Diophantine equations involving
these numbers are also discussed.

1 Introduction

In the theory of numbers, Fibonacci sequence has always fertile the ground for mathematicians.
This sequence follows the recurrence relation Fn = Fn−1 + Fn−2;F0 = 0 and F1 = 1. There
are numerous results available in the literature involving this sequence and its generalization.
For more details, one can see [1, 2, 3]. On the other hand, in mathematics, binomial coefficients
(nk) always been one of the most significant tools and there are different definitions available in
literature regarding them. Normally binomial coefficient is defined as (nk) = n!

k!(n−k)! ; where
n! = n×(n− 1)×· · ·×1. In this definition, n is partitioned into two parts k and (n−k). In one
of the generalizations of binomial coefficient, it is suggested to divide n into three parts, viz. r, s
and t. The numbers defined using this idea is called trinomial numbers and for n = r+ s+ t, it

is defined to be

[
n

r, s, t

]
= n!

r!s!t! .

In 1915, Fontené published a one-page note [4] suggesting a generalization of binomial
coefficients, replacing the natural numbers by the terms of an arbitrary sequence An of real or
complex numbers. In this paper, we generalize the concept of trinomial numbers by replacing
the natural numbers by means of the terms of the sequence of Fibonacci numbers Fn and we
name as F-trinomial numbers.

2 F-trinomial Numbers:

For any positive integer n, if we consider n = r + s+ t, then F-trinomial number is defined as[
n

r, s, t

]
F

= F∗
n

F∗
r F∗

s F∗
t

; where F ∗
n = Fn × Fn−1 × · · · × F1.

Following results follows right away from this definition.

Lemma 2.1.

[
n

0, s, t

]
F

= (ns)F , the regular Fibonomial coefficient.
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Lemma 2.2.

[
n

r, 0, 0

]
F

= 1.

Lemma 2.3.

[
n

1, s, t

]
F

= Fn(
n−1
s )

F
. In this case, F-trinomial number is a product of a Fi-

bonacci number and a Fibonomial coefficient.

The following result gives the recurrence relation connecting the F-trinomial numbers.

Lemma 2.4.

[
n

r, s, t

]
F

= Fs+t+1

[
n− 1

r − 1, s, t

]
F

+Fr−1Ft+1

[
n− 1

r, s− 1, t

]
F

+Fr−1Fs−1

[
n− 1

r, s, t− 1

]
F

.

Proof. For the Fibonacci numbers Fn, it is known that Fr+s = FrFs+1 + Fr−1Fs. Using this
result along with the definition of F-trinomial numbers, we get the required result easily.

Following result uses the above lemma to give recurrence relation of F-trinomial numbers in
the series form.

Corollary 2.5.

[
n

r, s, t

]
F

=
∑t

j=1

{
F j−1
r−1F

j−1
s−1 Fs+t−j+2

[
n− j

r − 1, s, t− j + 1

]
F

+ F j−1
r−1F

j−1
s−1 Fs+t−j+1

[
n− j

r, s− 1, t− j + 1

]
F

}
+

F t
r−1F

t
s−1

[
n− t

r, s, 0

]
F

.

Proof. Using lemma 2.4 iteratively, we can easily get the desired result.

It is not evident from the definition of F-trinomial numbers that they always possess integer
values or not. In the following theorem, we show that they indeed always have integer values.

Theorem 2.6. F-trinomial always holds integer values.

Proof. We have

[
n

r, s, t

]
F

= F∗
n

F∗
r F∗

s F∗
t
= Fn×Fn−1×···×Fs+t+1×Fs+t×···×Ft+1×Ft×···×F1

F∗
r F∗

s F∗
t

. This frac-

tion contains r, s and t consecutive Fibonacci numbers in the numerator as well as in denom-
inator. Since multiplication of any ′m′ consecutive Fibonacci numbers is always divisible by

the multiplication of first ′m′ consecutive Fibonacci numbers, it is now evident that

[
n

r, s, t

]
F

is

always integer.

In [5], Gould gave an interesting result known as Star of David theorem for binomial co-
efficients, which states that the greatest common divisors of the binomial coefficients forming
each of the two triangles in the Star of David shape in Pascal’s triangle are equal. This can
be restated as (n−a

r−a)(
n

r+a)(
n+a
r ) = (n−a

r )(n+a
r+a)(

n
r−a). In case of F-trinomial numbers too we can

discover similar result, which will be the 3-dimensional version of star of David theorem.

Theorem 2.7.

[
n− 1

r, s− 1, t

]
F

[
n

r − 1, s, t+ 1

]
F

[
n

r + 1, s, t− 1

]
F

[
n+ 1

r, s+ 1, t

]
F

=

[
n− 1

r − 1, s, t

]
F

[
n

r, s− 1, t+ 1

]
F

[
n

r, s+ 1, t− 1

]
F

[
n+ 1

r + 1, s, t

]
F

=

[
n− 1

r, s, t− 1

]
F

[
n

r − 1, s+ 1, t

]
F

[
n

r + 1, s− 1, t

]
F

[
n+ 1

r, s, t+ 1

]
F

The result follows easily from the definition of F-trinomial numbers.
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2.1 Bounds of

[
n

r, s, t

]
F

in terms of α

In this section, we discuss about the bounds of F-trinomial numbers in terms of α, where α =
1+

√
5

2 is the root of characteristic equation 1 − x− x2 = 0 of Fn.

Theorem 2.8. α
2n−1

2 (r+s)−(r2+s2+rs−3) ≤

[
n

r, s, t

]
F

≤ αn(r+s)−(r2+s2+rs)

Proof. It is well known that αn−2 ≤ Fn ≤ αn−1; for all n ≥ 1. Also, from the definition of F-

trinomial numbers, we have α(n−2)+(n−3)+···+(n−r−s−1)

(α(r−1)+(r−2)+···+1)(α(s−1)+(s−2)+···+1)
≤

[
n

r, s, t

]
F

≤ α(n−1)+(n−2)+···+(n−r−s)

(α(r−2)+(r−3)+···+(−1))(α(s−2)+(s−3)+···+(−1))

This gives α
2n−1

2 (r+s)−(r2+s2+rs−3) ≤

[
n

r, s, t

]
F

≤ αn(r+s)−(r2+s2+rs), as required.

Pascal-like triangle for Fibonomial numbers have many interesting properties analogous to
the Pascal’s triangle of binomial coefficients. In the following article, we obtain 3-dimensional
Pascal-like Pyramid for the F-trinomial numbers, which possess interesting properties, some of
which match with Pascal’s pyramid of trinomial coefficients.

3 Pascal-like pyramid:

Pascal’s pyramid is a three-dimensional arrangement of the trinomial numbers. Similarly, if
we place F-trinomial numbers in to three-dimensional structure, we get Pascal-like pyramid, as
seen in the figure 1. Due to the limitations of the three-dimensional structure on a paper, we
divide this pyramid into layers. The top layer is “Layer 0” and other layers can be assumed of
as overhead views with the previous layers removed. The first six layers are shown in the figure
2. While going through Figure 2, the following observations can be made.

• Every layer has three-way symmetry.

• Every number in any layer is a simple whole number ratio of the adjacent numbers in the
same layer. Since the pyramid has three-way symmetry, the ratio relation also holds for
diagonal pairs in both directions.

• The number along the three edges of the nth layer are the numbers of the nth line of Pascal-
like triangle of Fibonomial numbers.

• Multiplying the numbers of each line of Pascal-like triangle down to the nth line by the
number of the nth line generates the nth layer of this pyramid.
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Figure 1
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Figure 2

3.1 Fractal structure of Pascal-like pyramid:

To obtain another interesting property of this pyramid, if we apply modulo 2 to its values., we
get fractal structure as shown for first six layers below.
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Figure 3

It can be observed that the structures for layers 0,1 and 2 repeats themselves in the three angles
of the layers 3,4 and 5 respectively and all the remaining values of these layers becomes 0. Also,
this structural behavior repeats itself. In other words, the structure of layer 0 appears in the
angles of layers 3,6,9,. . . and all the remaining values becomes 0. Similarly, layer 1 appears in
the angles of layers 4,7,10,. . . and layer 2 appears in the angles of layers 5, 8,11,. . . .
To prove this, we know that for Fibonacci numbers Fn, [6]

Fn ≡2

{
0; if n ≡3 0

1; if n ≡3 1 or 2
(3.1)
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Now if we consider n ≡3 0, the right most angle will have values r = s = 0 and t = n.

Thus

[
n

r, s, t

]
F

= 1 and the symmetric structure will guarantee the values of other angles as 1

as well. But because of (1), the remaining values of these layers will vanish.
Also, for n ≡3 1, because of the symmetric structure, we need to check the angular values, when
r = s = 0, t = n and r = 1, s = 0, t = n − 1. In both the cases, (1) guarantees the value of[

n

r, s, t

]
F

= 1. And from (1), we can claim that all the non-angular values vanish.

The similar argument will justify the case when n ≡3 2.

4 F-trinomial numbers and Fibonacci numbers:

The Diophantine equation containing Fibonacci numbers has always been an interesting subject
for the enthusiastic. In [7, 8, 9], one finds the solution of Diophantine equations containing
Fibonacci numbers along with generalized Fibonomial numbers.

From the definition of F-trinomial numbers, it is clear that the Diophantine equation

[
n

r, s, t

]
F

=

Fm has the trivial solution (n, r, s, t,m) = (n, 0, 1, n− 1, n) , (n, 0, n− 1, 1, n) , (n, 1, 0, n− 1, n) , (n, 1, n− 1, 0, n) , (n, n− 1, 0, 1, n)
and (n, n− 1, 1, 0, n). Following result claims that there no other possible solution for the con-
sidered Diophantine equation.

Theorem 4.1. The Diophantine equation

[
n

r, s, t

]
F

= Fm has no non-trivial solution.

Proof. By [10], it is known that a primitive divisor of a Fibonacci number Fn is any prime integer
p such that p | Fn but p†Fm; where m < n. Also, primitive divisor theorem says that for n ≥ 13,
every Fn has a primitive divisor.

Using the definition of F-trinomial numbers, the Diophantine equation

[
n

r, s, t

]
F

= Fm implies

F ∗
n

F ∗
r F

∗
s F

∗
t

= Fm (4.1)

If we consider n ≥ 13 and n > m, then by the primitive divisor theorem, there exists a prime
p such that p | Fn but p † Fm. Thus (2) has no solution in this case. Similarly, for m ≥ 13 and
m > n, primitive divisor theorem again implies that (2) has no solution. Thus, we can narrow
down the range of m and n as max (m,n) < 13. A quick look in this interval reveals that the

Diophantine equation

[
n

r, s, t

]
F

= Fm has no non-trivial solution.

As F-trinomial numbers have 3-way symmetry, without loss of generality, we can assume that

r ≥ s ≥ t. From Lemma 2.2, we have

[
n

r, s, t

]
F

= 1 for s = t = 0. Also, from the Pascal-like

Pyramid for the F-trinomial numbers, it is clear that every F-trinomial number

[
n

r, s, t

]
F

for

n ≤ 4 satisfies the Diophantine equation

[
n

r, s, t

]
F

±1 = Fm. We call these two cases the trivial

solution of the given Diophantine equation. Following theorem proves that there no non-trivial
solution available.

Theorem 4.2. The Diophantine equation

[
n

r, s, t

]
F

± 1 = Fm has no non-trivial solution.
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Proof. For the non-trivial solutions of the Diophantine equation considered, we let n > 4. We
know that a primitive divisor p of Fn is a prime factor of Fn which does not divide

∏n−1
j=1 Fj

and Primitive Divisor Theorem states that a primitive divisor p of Fn exists whenever n ≥ 13.
The sequence of the Lucas numbers is defined by the recurrence relation Ln = Ln−1 + Ln−2,
with L0 = 2 and L1 = 1. We may note that both the Fibonacci and Lucas sequences can be
extrapolated backwards using Fn = Fn+2 − Fn+1 and Ln = Ln+2 − Ln+1. Thus, for example,
F−1 = 1, F−2 = −1 and so on. If α = 1+

√
5

2 and β = 1−
√

5
2 , then the following results are true:

a FaLb = Fa+b + (−1)b Fa−b; for any integers a and b

b Fn = αn−βn

α−β and Ln = αn + βn.

As a consequence of the above results, a straight forward calculation gives a different factoriza-
tion for Fn ∓ 1 depending on the class of n modulo 4.

F4l + 1 = F2l−1L2l+1
F4l+1 + 1 = F2l+1L2l
F4l+2 + 1 = F2l+2L2l
F4l+3 + 1 = F2l+1L2l+2

F4l − 1 = F2l+1L2l−1
F4l+1 − 1 = F2lL2l+1
F4l+2 − 1 = F2lL2l+2
F4l+3 − 1 = F2l+2L2l+1

The Diophantine equation

[
n

r, s, t

]
F

±1 = Fm can be rewritten as

[
n

r, s, t

]
F

= Fm∓1. From

the above relation, one gets eight possibilities for this Diophantine equation (again depending on
the class of n modulo 4). For the (+) case:[

n

r, s, t

]
F

= F2l+1L2l−1

[
n

r, s, t

]
F

= F2lL2l+1

[
n

r, s, t

]
F

= F2lL2l+2

[
n

r, s, t

]
F

= F2l+2L2l+1

For the (-) case:[
n

r, s, t

]
F

= F2l−1L2l+1

[
n

r, s, t

]
F

= F2l+1L2l

[
n

r, s, t

]
F

= F2l+2L2l

[
n

r, s, t

]
F

= F2l+1L2l+2

To begin with, let us consider

[
n

r, s, t

]
F

= F2l−1L2l+1. That is Fn×Fn−1×···×Fm−t+1
(Fr×Fr−1×···×F1)(Fs×Fs−1×···×F1)

=

F2l−1L2l+1. Let us assume that n ≥ max {14, r + 1}. Thus,

Fn × Fn−1 × · · · × Fm−t+1 = F2l−1L2l+1 × (Fr × Fr−1 × · · · × F1) (Fs × Fs−1 × · · · × F1).

Since L2l+1 =
F4l+2
F2l+1

, we can write

Fn × Fn−1 × · · · × Fm−t+1 × F2l+1 =
F2l−1F4l+2 × (Fr × Fr−1 × · · · × F1) (Fs × Fs−1 × · · · × F1) .

But since l = ⌊n/4⌋ > 2, we have 4l + 2 > 2l − 1. Thus, Primitive Divisor Theorem gives
n = 4l+ 2. That is

Fn−1 × · · · × Fm−t+1 × F2l+1 = F2l−1 × (Fr × Fr−1 × · · · × F1) (Fs × Fs−1 × · · · × F1) .

As r ≥ s and n − 1 ≥ 13, Primitive Divisor Theorem again gives n − 1 = max {2l − 1, r} .
However, n − 1 = 4l + 1 > 2l − 1. That is n − 1 = r, which is absurd. So, we only need to
consider the range 4 < n ≤ 14 and 0 ≤ k ≤ 13. A simple calculation shows that there is no
possible solution of the given Diophantine equation in this range.

5 Some more properties of F-trinomial numbers:

In this subsection, we first find the number of F-trinomial numbers in each layer.

Lemma 5.1. The number of different F-trinomial numbers in layer u is given by
⌊
u2+6u

12

⌋
;u > 1.
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Proof. By the definition of F-trinomial numbers

[
n

r, s, t

]
F

, we have n = r + s + t. Therefore,

number of different F-trinomial numbers in each layer is dependent on the number of partitions
of n into at most 3 parts.
If Pk (n) denotes the number of partitions of n into at most k parts then P3 (n) = 1 +

⌊
n2+6n

12

⌋
.

Thus, the number of different F-trinomial numbers in each layer u should be 1 +
⌊
u2+6u

12

⌋
. But,

if we take the partitions of u > 1 as (r, s, t) = (0, 2, n− 2) and (1, 1, n− 2) in the definition of
F-trinomial number, then respective Fibonorial values are same. Hence, the number of different
F-trinomial numbers in each layer u is given by

⌊
u2+6u

12

⌋
.

Lastly, we find the smallest and largest element in each layer.

Lemma 5.2. The smallest and largest F-trinomial number in layer u is given by

[
u

0, 1, u− 1

]
F

and



[
u

u
3 ,

u
3 ,

u
3

]
F

; u ≡ 0(mod3)[
u

u−1
3 , u−1

3 , u+2
3

]
F

; u ≡ 1(mod3)[
u

u−2
3 , u+1

3 , u+1
3

]
F

; u ≡ 2(mod3)

respectively.

Proof. From the definition of the F-trinomial numbers, we have

[
n

r, s, t

]
F

= F∗
n

F∗
r F∗

s F∗
t

. There-

fore, it is obvious that to find the smallest F-trinomial number in uth layer, we need to consider
the partition in such a way that we can cancel out maximum number of factors from the numer-

ator and denominator. Here, we neglect the trivial case

[
n

r, s, t

]
F

= 1. Therefore, to cancel out

maximum number of factors from the numerator, we must take one of the values of the partition

of u as u− 1. Thus, the smallest F-trinomial number in the uth layer is given by

[
u

0, 1, u− 1

]
F

.

Also, to find the largest F-trinomial number in each layer, we must find a partition such that the
minimum number of factors get canceled out from the numerator and denominator. For that, we
must take a partition of p such that the difference between each part is minimum. Therefore, we
have three cases.
Case 1: u ≡ 0(mod3). In this case, the partition of u occurs such that the difference between
each part is minimum when (r, s, t) =

(
u
3 ,

u
3 ,

u
3

)
. Thus, the largest F-trinomial number in this

layer is

[
u

u
3 ,

u
3 ,

u
3

]
.

Case 2: u ≡ 1(mod3). In this case, the partition of u occurs such that the difference between
each part is minimum when (r, s, t) =

(
u−1

3 , u−1
3 , u+2

3

)
. Thus, the largest F-trinomial number in

this layer is

[
u

u−1
3 , u−1

3 , u+2
3

]
.

Case 3: u ≡ 2(mod3). In this case, the partition of u occurs such that the difference between
each part is minimum when (r, s, t) =

(
u−2

3 , u+1
3 , u+1

3

)
. Thus, the largest F-trinomial number in

this layer is

[
u

u−2
3 , u+1

3 , u+1
3

]
.
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