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Abstract In this paper several tensorial norm inequalities for continuous functions of self-
adjoint operators in Hilbert spaces have been obtained. Multiple inequalities are obtained with
variations due to the convexity properties of the mapping f

∥∥∥∥∥1
6

[
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

]
−
∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk

∥∥∥∥∥
⩽

5
36

∥1 ⊗B−A⊗ 1∥ ∥f′∥I,+∞ .

1 Introduction and preliminaries

When Gibbs in 19th century originally came up with the concept of a tensor, he used the term
"dyadic" instead of the now formal name "tensor." It is known by its modern name, the math-
ematical explanation of the tensor definition’s genesis. Because of the widespread usage of
mathematical inequalities, tensors have also been found as a tool which can also benefit from
their use. Inequalities have a significant impact on mathematics and other scientific disciplines.
There are many different kinds of inequalities, but those involving Jensen, Ostrowski, Hermite-
Hadamard, and Minkowski are of particular importance. Interested readers can learn more
about inequalities and their history in these books [18, 24, 25]. Regarding the generalizations
of the aforementioned inequalities, numerous studies have been published; for additional infor-
mation, check the following and the references therein [34, 11, 12, 13, 14, 15, 27, 7, 28, 29, 30,
31, 32, 33, 1, 2, 3, 4, 5, 8, 9, 10].
Since our paper is about tensorial Simpson type inequalities, we give the brief introduction to
the topic. The following inequality is well known in the literature as the Simpson inequality:

Theorem 1.1. Let f : [a1, a2] → R be a four times continuously differentiable function on (a1, a2)
and ∥f4∥∞ = supx∈(a,b) |f4(x)| < +∞, then∣∣∣∣13

[
f(a1) + f(a2)

2
+ 2f

(
a1 + a2

2

)]
− 1
a2 − a1

∫ a2

a1

f(x)dx

∣∣∣∣ (1.1)

≤ 1
2880

∥∥f4∥∥∞ (a2 − a1)
4.
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Recent advances concerning the theory of inequalities in Hilbert spaces will be shown to
supplement the presentation of this work. Dragomir [19] gave the following Mond-Pecarić type
inequality.

Theorem 1.2. Let A be a selfadjoint operator on the Hilbert space H and assume that Sp(A) ⊂
[m,M ] for some scalars m,M with m < M . If f is a convex function on [m,M ], then

f(m) + f(M)

2
≥ ⟨ f(A) + f((m+M)1H −A)

2
x, x⟩

≥ f(⟨Ax, x⟩) + f(m+M − ⟨Ax, x⟩)
2

≥ f

(
m+M

2

)
,

for each x ∈ H with ||x|| = 1.
In addition, if x ∈ H with ||x|| = 1 and ⟨Ax, x⟩ ≠ m+M

2 , then also

f(⟨Ax, x⟩) + f(m+M − ⟨Ax, x⟩)
2

≥ 1
m+M − 2⟨Ax, x⟩

∫ m+M−⟨Ax,x⟩

⟨Ax,x⟩
f(u)du ≥ f

(
m+M

2

)
.

Another interesting result is the Hermite-Hadamard inequality in the selfadjoint operator
sense given by Dragomir [20].

Theorem 1.3. Let f : I → R be an operator convex function on the interval I . Then for any
selfadjoint operators A and B with spectra in I we have the inequality

f

(
A+B

2

)
≤
[
f

(
3A+B

4

)
+ f

(
A+ 3B

4

)]

≤
∫ 1

0
f((1 − t)A+ tB)dt

≤ 1
2

[
f

(
A+B

2

)
+

f(A) + f(B)

2

]
≤ f(A) + f(B)

2
.

The first paper related to tensorial inequalities in Hilbert space was written by Dragomir
[17]. In the paper, he proved the tensorial version of the Ostrowski type inequality given by the
following.
Assume that f is continuously differentiable on I with ∥f′∥I,+∞ := supt∈I |f′(t)| < +∞ and A,B
are selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∥∥∥∥∥f((1 − λ)A⊗ 1 + λ1 ⊗B)−

∫ 1

0
f((1 − u)A⊗ 1 + u1 ⊗B)du

∥∥∥∥∥
≤ ∥f′∥I,+∞

[
1
4
+

(
λ− 1

2

)2 ]
∥1 ⊗B−A⊗ 1∥

for λ ∈ [0, 1].
Recently, various inequalities in the same tensorial surrounding have been obtained. The fol-
lowing result of Simpson type was obtained by Stojiljković [33].
Assume that f is continuously differentiable on I and |f′′| is convex and A,B are selfadjoint
operators with Sp(A), Sp(B) ⊂ I , then∣∣∣∣∣∣∣∣16

(
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

)

−1
2
α

(∫ 1

0
f

((
1 − k

2

)
A⊗ 1 +

(
1 + k

2

)
1 ⊗B

)
kα−1dk
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+

∫ 1

0
f

((
1 − k

2

)
A⊗ 1 +

k

2
1 ⊗B

)
(1 − k)α−1dk

)∣∣∣∣∣∣∣∣
≤ ∥1 ⊗B−A⊗ 1∥2 (∥f′′(A)∥+ ∥f′′(B)∥)

(
3α2 + 8α+ 7

)
(α+ 2)(24α+ 24)

for α ≥ 0. The following inequality has been recently obtained by the same author [32].
Assume that f is continuously differentiable on I with ∥f′∥I,+∞ := supt∈I |f′′(t)| < +∞ and
A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∥∥∥∥∥

∫ 1

0
f((1 − λ)A⊗ 1 + λ1 ⊗B)dλ− f

(
A⊗ 1 + 1 ⊗B

2

)∥∥∥∥∥
⩽ ∥1 ⊗B−A⊗ 1∥2 ∥f′∥I,+∞

24
.

In order to derive similar inequalities of the tensorial type, we need the following introduction
and preliminaries.
Let I1, ..., Ik be intervals from R and let f : I1 × ... × Ik → R be an essentially bounded real
function defined on the product of the intervals. Let A = (A1, ...,Ak) be a k-tuple of bounded
selfadjoint operators on Hilbert spaces H1, ...,Hk such that the spectrum of Ai is contained in
Ii for i = 1, ..., k. We say that such a k-tuple is in the domain of f. If

Ai =

∫
Ii

λidEi(λi) (1.2)

is the spectral resolution of Ai for i = 1, ..., k by following , we define

f(A1, ...,Ak) :=
∫
I1

...

∫
Ik

f(λ1, ..., λk)dE1(λ1)⊗ ...⊗ dEk(λk) (1.3)

as bounded selfadjoint operator on the tensorial product H1 ⊗ ...Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we
may consider the functional calculus for arbitrary real functions. This construction [6] extends
the definition of Koranyi [23] for functions of two variables and have the property that

f(A1, ...Ak) = f1(A1)⊗ ...⊗ fk(Ak),

whenever f can be separated as a product f(t1, ..., tk) = f1(t1)...fk(tk) of k functions each de-
pending on only one variable.

Recall the following property of the tensorial product [22],

(AC)⊗ (B⊗D) = (A⊗B)(C⊗D)

that holds for any A,B,C,D ∈ B(H).
From the property we can deduce easily the following consequences

An ⊗Bn = (A⊗B)n, n ⩾ 0,

(A⊗ 1)(1 ⊗B) = (1 ⊗B)(A⊗ 1) = A⊗B,

which can be extended, for two natural numbers m,n we have

(A⊗ 1)n(1 ⊗B)m = (1 ⊗B)n(A⊗ 1)m = An ⊗Bm.

The properties given above can be found in the book [22].
The following Lemma which we require can be found in a paper of Dragomir [16].

Lemma 1.4. Assume A and B are selfadjoint operators with Sp(A) ⊂ I, Sp(B) ⊂ J and hav-
ing the spectral resolutions . Let f ;h be continuous on I, g, k continuous on J and ϕ and ψ
continuous on an interval K that contains the sum of the intervals f(I)+g(J);h(I)+k(J),then

ϕ(f(A)⊗ 1 + 1 ⊗ g(B))ψ(h(A)⊗ 1 + 1 ⊗ k(B)) (1.4)

=

∫
I

∫
J

ϕ(f(t) + g(s))ψ(h(t) + k(s))dEt ⊗ dFs.
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The previously given results showcase how tensorial inequalities can arise according to the
inequalities given in the standard analysis.

In [26], Sarikaya et al. obtained inequalities for differentiable convex mappings which are
connected with Simpson’s inequality, and they used the following lemma to prove this.

Lemma 1.5. Let f : I ⊂ R → R be an absolutely continuous mapping on I0 such that f′ ∈
L1[a, b], where a, b ∈ I with a < b, then the following equality holds:

1
6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1
b− a

∫ b

a

f(x)dx (1.5)

=
b− a

2

∫ 1

0

[[
t

2
− 1

3

]
f′
(

1 + t

2
b+

1 − t

2
a

)
+

(
1
3
− t

2

)
f′
(

1 + t

2
a+

1 − t

2
b

)]
dt.

Novel aspects in this work can be seen in the development of the inequalities of the Simpson
type for the differentiable functions in the Hilbert space of tensorial type. This field is relatively
new, therefore obtaining new bounds for various convex combinations of the functions is instru-
mental to the development of it. The rest of the paper is structured as follows, main results is the
section in which results concerning the novelty of the work will be given. The following section
, some examples and consequences will feature examples of the obtained results by using the
known fact about the exponential operator and its integral, therefore by utilizing it and choosing
f to be a specific convex function, we obtain numerous examples and bounds of the Simpson type
in the tensorial sense. In the conclusion section we conclude what has been done in the paper.
In the following Theorem, we give a fundamental result which we will use in our paper to produce
inequalities

2 Main results

Lemma 2.1. Assume that f is continuously differentiable on I,A and B are selfadjoint operators
with Sp(A), Sp(B) ⊂ I , then

1
6

[
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

]
−
∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk (2.1)

=
1 ⊗B−A⊗ 1

2

∫ 1

0

[(
λ

2
− 1

3

)
f′
(

1 + λ

2
1 ⊗B+

1 − λ

2
A⊗ 1

)
+

(
1
3
− λ

2

)
f′
(

1 + λ

2
A⊗ 1 +

1 − λ

2
1 ⊗B

)]
dλ.

Proof. We will start the proof with Lemma (1.5). Introducing a substitution on the left hand
side, namely x = λb+ (1 − λ)a, then assuming that A and B have the spectral resolutions (1.2)

A =

∫
I

tdE(t) andB =

∫
I

sdF (s).

If we take the integral
∫
I

∫
I

over dEt ⊗ dFs, we get∫
I

∫
I

(
1
6

[
f(t) + 4f

(
t+ s

2

)
+ f(s)

]
−
∫ 1

0
f(λs+ (1 − λ)t)dλ

)
dEt ⊗ dFs

=

∫
I

∫
I

(
s− t

2

∫ 1

0

[[
λ

2
− 1

3

]
f′
(

1 + λ

2
s+

1 − λ

2
t

)
+

(
1
3
− λ

2

)
f′
(

1 + λ

2
t+

1 − λ

2
s

)]
dλ

)
dEt ⊗ dFs.
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Considering the left hand side∫
I

∫
I

(
1
6

[
f(t) + 4f

(
t+ s

2

)
+ f(s)

]
−
∫ 1

0
f(λs+ (1 − λ)t)dλ

)
dEt ⊗ dFs,

we provide the proof for the part which involves a function alone and the part which consists of
three integrals, the remaining factors are obtained in an analogous way.

By utilizing the Fubinis Theorem on the integrals and (1.4) for appropriate choices of the
functions involved, we have successively∫

I

∫
I

f(t)dEt ⊗ dFs = f(A)⊗ 1,

∫
I

∫
I

∫ 1

0
f((1 − k)t+ ks)dkdEt ⊗ dFs =

∫ 1

0

∫
I

∫
I

f((1 − k)t+ ks)dEt ⊗ dFsdk

=

∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk.

Considering the right hand side, we provide a proof for the product of the integral and the factor,
we obtain ∫

I

∫
I

∫ 1

0

[
λ

2
− 1

3

]
(s− t)

2
f′
(

1 + λ

2
s+

1 − λ

2
t

)
dλdEt ⊗ dFs

=

∫ 1

0

[
λ

2
− 1

3

] ∫
I

∫
I

(s− t)

2
f′
(

1 + λ

2
s+

1 − λ

2
t

)
dEt ⊗ dFsdλ

=

∫ 1

0

(1 ⊗B−A⊗ 1)
2

f′
(

1 + λ

2
1 ⊗B+

1 − λ

2
A⊗ 1

)[
λ

2
− 1

3

]
dλ.

Theorem 2.2. Assume that f is continuously differentiable on I with ∥f′∥I,+∞ := supt∈I |f′(t)| <
+∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∥∥∥∥∥1

6

[
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

]
−
∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk

∥∥∥∥∥
(2.2)

⩽
5
36

∥1 ⊗B−A⊗ 1∥ ∥f′∥I,+∞ .

Proof. If we take the operator norm of the previously obtained Lemma (2.1) and use the triangle
inequality, we get

∥∥∥∥∥1
6

[
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

]
−
∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk

∥∥∥∥∥
≤ ∥1 ⊗B−A⊗ 1∥

2

∣∣∣∣∣∣∣∣ ∫ 1

0

[(
λ

2
− 1

3

)
f′
(

1 + λ

2
1 ⊗B+

1 − λ

2
A⊗ 1

)
+

(
1
3
− λ

2

)
f′
(

1 + λ

2
A⊗ 1 +

1 − λ

2
1 ⊗B

)]
dλ

∣∣∣∣∣∣∣∣.
Realize here that by (1.4),∣∣∣∣f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣dEt ⊗ dFs.

Since ∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣ ⩽ ∥f′∥I,+∞ ,
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for all t, s ∈ I. If we take the integral
∫
I

∫
I

over dEt ⊗ dFs, then we get by (1.4)∣∣∣∣f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣dEt ⊗ dFs

⩽ ∥f′∥I,+∞

∫
I

∫
I

dEt ⊗ dFs = ∥f′∥I,+∞ .

From which we get the following,∫ 1

0

∥∥∥∥λ2 − 1
3

∥∥∥∥∥∥∥∥f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

)∥∥∥∥ dλ ⩽ ∥f′∥I,+∞

∫ 1

0

∥∥∥∥λ2 − 1
3

∥∥∥∥ dλ =
5
36

∥f′∥I,+∞ .

The calculation has been shown for the multiple of
∥∥λ

2 − 1
3

∥∥, other multiple with
∥∥ 1

3 − λ
2

∥∥ uses
the same technique. Summing everything, we obtain the desired result.

Theorem 2.3. Assume that f is continuously differentiable on I and |f′| is convex and A,B are
selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∥∥∥∥∥1

6

[
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

]
−
∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk

∥∥∥∥∥
(2.3)

⩽
5

72
∥1 ⊗B−A⊗ 1∥ (∥f′(A)∥+ ∥f′(B)∥).

Proof. Since |f′| is convex on I , then we get∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣ ⩽ 1 − λ

2
|f′(t)|+ 1 + λ

2
|f′(s)|

for all λ ∈ [0, 1] and t, s ∈ I .
If we take the integral

∫
I

∫
I

over dEt ⊗ dFs, then we get by (1.4)∣∣∣∣f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣dEt ⊗ dFs

⩽
∫
I

∫
I

[
1 − λ

2
|f′(t)|+ 1 + λ

2
|f′(s)|

]
dEt ⊗ dFs

=
1 − λ

2
|f′(A)| ⊗ 1 +

1 + λ

2
1 ⊗ |f′(B)|

for all λ ∈ [0, 1].
If we take the norm in the inequality, we get the following∥∥∥∥f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

)∥∥∥∥ ⩽ ∥∥∥∥1 − λ

2
|f′(A)| ⊗ 1 +

1 + λ

2
1 ⊗ |f′(B)|

∥∥∥∥
⩽

1 − λ

2
∥|f′(A)| ⊗ 1∥+ 1 + λ

2
∥1 ⊗ |f′(B)|∥

=
1 − λ

2
∥f′(A)∥+ 1 + λ

2
∥f′(B)∥ .

Therefore, we obtain ∫ 1

0

∥∥∥∥λ2 − 1
3

∥∥∥∥∥∥∥∥f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

)∥∥∥∥ dλ
⩽
∫ 1

0

∥∥∥∥λ2 − 1
3

∥∥∥∥(1 − λ

2
∥f′(A)∥+ 1 + λ

2
∥f′(B)∥

)
dλ.

=
29 ∥f′(A)∥+ 61 ∥f′(B)∥

648
.

The procedure is analogous for the other part, namely for f ′
( 1+λ

2 t+ 1−λ
2 s
)
. Adding everything

up yields the desired result.
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We recall that the function f : I → R is quasi-convex [21], if

f((1 − λ)t+ λs) ⩽ max(f(t), f(s)) =
1
2
(f(t) + f(s) + |f(s)− f(t)|)

holds for all t, s ∈ I and λ ∈ [0, 1].

Theorem 2.4. Assume that f is continuously differentiable on I with |f′| is quasi-convex on I , A
and B are selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∥∥∥∥∥1

6

[
f(A)⊗ 1 + 4f

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ f(B)

]
−
∫ 1

0
f((1 − k)A⊗ 1 + k1 ⊗B)dk

∥∥∥∥∥
(2.4)

⩽
∥1 ⊗B−A⊗ 1∥

72
(∥|f′(A)| ⊗ 1 + 1 ⊗ |f′(B)|∥+ ∥|f′(A)| ⊗ 1 − 1 ⊗ |f′(B)|∥).

Proof. Since |f′| is quasi-convex on I , then we get∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣ ⩽ 1
2
(|f′(t)|+ |f′(s)|+ ||f′(t)| − |f′(s)||)

for all λ ∈ [0, 1] and t, s ∈ I. If we take the integral
∫
I

∫
I

over dEt ⊗ dFs, then we get by (1.4)∣∣∣∣f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

) ∣∣∣∣
=

∫
I

∫
I

∣∣∣∣f′(1 − λ

2
t+

1 + λ

2
s

) ∣∣∣∣dEt ⊗ dFs

⩽
1
2

∫
I

∫
I

(|f′(t)|+ |f′(s)|+ ||f′(t)| − |f′(s)||)dEt ⊗ dFs

=
1
2
(|f′(A)| ⊗ 1 + 1 ⊗ |f′(B)|+ ||f′(A)| ⊗ 1 − 1 ⊗ |f′(B)||)

for all λ ∈ [0, 1].
If we take the norm, then we get∥∥∥∥f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

)∥∥∥∥
⩽

∥∥∥∥1
2
(|f′(A)| ⊗ 1 + 1 ⊗ |f′(B)|+ ||f′(A)| ⊗ 1 − 1 ⊗ |f′(B)||)

∥∥∥∥
⩽

1
2
(∥|f′(A)| ⊗ 1 + 1 ⊗ |f′(B)|∥+ ∥|f′(A)| ⊗ 1 − 1 ⊗ |f′(B)|∥)

Which when applied in our case, we get∫ 1

0

∥∥∥∥λ2 − 1
3

∥∥∥∥∥∥∥∥f′(1 − λ

2
A⊗ 1 +

1 + λ

2
1 ⊗B

)∥∥∥∥ dλ
⩽
∫ 1

0

∥∥∥∥λ2 − 1
3

∥∥∥∥(1
2
(∥|f′(A)| ⊗ 1 + 1 ⊗ |f′(B)|∥+ ∥|f′(A)| ⊗ 1 − 1 ⊗ |f′(B)|∥)

)
dλ.

The procedure is analogous for the other part, namely for f ′
( 1+λ

2 t+ 1−λ
2 s
)
. Adding everything

up yields the desired result.
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3 Some examples and consequences

It is known that if U and V are commuting, that is UV = V U , then the exponential function
satisfies the property

exp(U) exp(V ) = exp(V ) exp(U) = exp(U + V ).

Also, if U is invertible and a, b ∈ R and a < b then∫ b

a

exp(tU)dt = U−1[exp(bU)− exp(aU)].

Moreover, if U and V are commuting and V − U is invertible, then∫ 1

0
exp((1 − k)U + kV )dk =

∫ 1

0
exp(k(V − U)) exp(U)dk

=

(∫ 1

0
exp(k(V − U))dk

)
exp(U)

= (V − U)−1[exp(V − U)− I] exp(U) = (V − U)−1[exp(V )− exp(U)].

Since the operators U = A ⊗ 1 and V = 1 ⊗ B are commutative and if 1 ⊗ B − A ⊗ 1 is
invertible, then ∫ 1

0
exp((1 − k)A⊗ 1 + k1 ⊗B)dk

= (1 ⊗B−A⊗ 1)−1[exp(1 ⊗B)− exp(A⊗ 1)].

Corollary 3.1. IfA,B are selfadjoint operators with Sp(A), Sp(B) ⊂ [m,M ] and 1⊗B−A⊗1
is invertible, then by Theorem 2.1 (2.2), we get∣∣∣∣∣∣∣∣16

[
exp(A)⊗ 1 + 4 exp

(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ exp(B)

]
(3.1)

−(1 ⊗B−A⊗ 1)−1[ exp(1 ⊗B)− exp(A⊗ 1)
]∣∣∣∣∣∣∣∣

⩽
5
36

∥1 ⊗B−A⊗ 1∥ exp(M).

Corollary 3.2. Since for f(t) = exp(t), t ∈ R, |f′| is convex, then by Theorem 2.2 (2.3)∣∣∣∣∣∣∣∣16
[

exp(A)⊗ 1 + 4 exp
(
A⊗ 1 + 1 ⊗B

2

)
+ 1 ⊗ exp(B)

]
(3.2)

−(1 ⊗B−A⊗ 1)−1[ exp(1 ⊗B)− exp(A⊗ 1)
]∣∣∣∣∣∣∣∣

⩽
5
72

∥1 ⊗B−A⊗ 1∥ (∥exp(A)∥+ ∥exp(B)∥).

4 Conclusion

Tensors have become important in various fields such as physics as they provide a concise math-
ematical framework for the formulation and solution of physical problems in fields such as me-
chanics, electromagnetism and quantum theory and many others. As such inequalities are useful
in numerical aspects. This work reflects the tensorial version of Sarikaya’s lemma, allowing us to
obtain Simpson type inequalities in Hilbert spaces. New inequalities of Simpson type are given,
along with examples of specific convex functions and their inequalities based on our results are
presented in the “Some examples and consequences” section.



Simpson type Tensorial Inequalities 49

Plans for future research can be reflected in the fact that the obtained inequalities in this work
can be sharpened or generalized by using other methods. An interesting perspective can be seen
in incorporating other techniques for Hilbert space inequalities with the techniques shown in
this paper. One direction is the technique of the Mond-Pecaric inequality, on which we will
work on. Motivation in further research can be seen in obtaining sharper inequalities of the
Trapezoid,Ostrowski,Midpoint type, as inequalities arise in various applications as tensors are
a useful tool in physics.
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clusions for Convex Functions Using Interval Valued Setting. Mathematics 2022, 10, 3491.
https://doi.org/10.3390/math10193491
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