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Abstract We define and study the notion of the golden ratio of order k ≥ 0, denoted ϕk,
as a generalized form of the golden ratio ϕ for any real number k ≥ 0. We show that similar
to the special case of ϕ and its conjugate ψ, ϕk and ψk are the two distinct roots of a quadratic
polynomial for any fixed real k ≥ 0. We express some numerical and algebraic properties of ϕk
and ψk and write their relations to ϕ and ψ, respectively, with some examples for some special
values of k. In particular, it is shown that ϕk = ϕ and ψk = ψ if and only if k = 0. We show
that Z[(k + 1)ϕk] is a subring of the ring Z[ϕ] for any nonnegative integer k. We will define
the golden rectangle of order k (or k-golden rectangle for short) with a class of examples for all
k ≥ 0. We also discuss some cases of two Fibonacci numbers in connection to the golden ratio.
We will show that the ratio of height to width of the pages of the Gutenberg Bible is the golden
ratio of order k ̸= 0. Actually, some erroneous ideas and examples of disputed observations
related to the golden ratio are good reasons to apply ϕk to improve the measurements regarding
ϕ for some k ̸= 0. Finally, we end the paper by posing a question related to the Penrose tiling
and quasicrystals in connection to the golden ratio of order k > 0.

1 Introduction

The main goal of this paper is to generalize the notion of the (classic) golden ratio ϕ to the
golden ratio of order k, denoted ϕk, for any fixed real number k ≥ 0 (Definition 3.1).

In this section and the last part of Section 2, we recall some definitions and results related to
the Fibonacci numbers. In the next section, we mainly focus on the golden ratio ϕ and compare
those results with our results for our generalized ϕk and ψk. We will discuss the main results in
the third section.

• In Section 3, we study some numerical and algebraic properties of ϕk and ψk and their re-
lations to ϕ and ψ, respectively, (Theorems 3.4, 3.6, Remarks 3.2, and 3.9) with some examples
for some special values of k (Example 3.3). In particular, it is shown that ϕk = ϕ and ψk = ψ
if and only if k = 0. We show that Z[(k + 1)ϕk] is a subring of the ring Z[ϕ0 = ϕ] for any
nonnegative integer k (Remark 3.9). Similar to the case of ϕn and ψn, it is also shown that ϕnk
[resp. ψnk ] can be decomposed into a linear combination of ϕk [resp. ψk] and a constant for any
integer n ≥ 2 (Remark 3.8). It is shown that ϕk and ψk are bijective maps from nonnegative reals
to (1, ϕ] and [ψ, 1), respectively, (Propositions 3.5 and 3.7). We also define the golden rectangle
of order k (or k-golden rectangle for short), as a general form of the classic golden rectangle,
with a class of examples for any real k ≥ 0. We will show that the ratio of height to width of the
pages of the Gutenberg Bible is the golden ratio of order k ̸= 0 (Example 3.11 and Remark 3.10).
Finally, we end the paper by posing a question related to the Penrose tiling and quasicrystals in
connection to the golden ratio of order k > 0.

The Fibonacci numbers, commonly denoted by Fn, form a sequence, the Fibonacci sequence,
in which each term is the sum of the two preceding ones. For the sake of convenience, fn will
denote the nth Fibonacci number in the sequel. The sequence commonly starts from 0 and 1,
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although some authors omit the initial terms and start the sequence from 1 and 1 or from 1 and
2. Starting from 0 and 1, the next few values in the sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

The Fibonacci numbers are also an example of a complete sequence. This means that every
positive integer can be written as a sum of Fibonacci numbers, where any one number is used
once at most. Moreover, every positive integer can be written in a unique way as the sum of one
or more distinct Fibonacci numbers in such a way that the sum does not include any two con-
secutive Fibonacci numbers. This is known as Zeckendorf’s theorem, and a sum of Fibonacci
numbers that satisfies these conditions is called a Zeckendorf representation.

Note that The authors, in [1], introduced the notion of the Fibonacci representation, as a
general form of the Zeckendorf representation and provided some upper bounds for it by using a
combination of the elementary arithmetic and the center-of-mass technique. Also, for a detailed
study of the center-of-mass technique applying to elementary arithmetic problems (e.g. inequal-
ities), see [2], which is an elementary approach to a class of the Diophantine equations using
center of mass.

• The authors assume that the reader is familiar with the results in number theory that we use
in this article. Actually, the internet search will provide all necessary sources that are required
and mentioned in this paper without any direct reference.

2 The Golden Ratio and some Comparative Cases of Two Fibonacci Numbers

In this section we mainly focus on the golden ratio and discuss a few simple properties of Fi-
bonacci numbers (Proposition 2.2, Corollary 2.3, and Remark 2.4) and conclude the section with
a result related to the limits of the (consecutive) quotients of Fibonacci numbers in general. We
recall some definitions and properties related to the golden ratio ϕ and its conjugate ψ for the
sake of comparison with the generalized forms given in the main section of the paper (Section 3).

We now start with the definition of the golden ratio, denoted by ϕ.
• Two quantities, real numbers a > b > 0, are in the golden ratio if their ratio is the same as

the ratio of their sum to the larger of the two quantities. That is,

a+ b

a
=
a

b
= ϕ,

where the Greek letter “phi" (ϕ) denotes the golden ratio and from the above identity, we get
the quadratic equation

x2 − x− 1 = 0

by assuming x = a
b .

Thus,

ϕ =
1 +

√
5

2
and ψ =

1 −
√

5
2

are two distinct roots of the above quadratic equation and they are algebraic numbers (i.e. a
number is algebraic if it is the root of a polynomial equation with integer coefficients).

Clearly, the constant ϕ satisfies the quadratic equation ϕ2 = ϕ+ 1, and is an irrational
number with a value of

ϕ =
1 +

√
5

2
≈1.618033988749 · · ·.

and
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ψ =
1 −

√
5

2
≈−0.618033 · · ·.

Because ϕ is a ratio between positive quantities, ϕ is necessarily the positive root. The
negative root is in fact the negative inverse − 1

ϕ , which shares many properties with the golden
ratio and we have

ψ =
1 −

√
5

2
= 1 − ϕ = − 1

ϕ
≈−0.6180339887 · · ·.

Historically, there is a rectangle whose proportions are found most pleasing to the eye. It is
neither too fat nor too skinny, neither too long nor too short. As a result of the definition of ϕ,
we can define a golden rectangle as follows:

• A rectangle is called a golden rectangle if the ratio of the longer side to the shorter side is
the golden ratio. For example, a rectangle with sides equal to 1+

√
5 and 2 is a golden rectangle.

In the next section, we will define the notion of the golden rectangle of order k ≥ 0 for any
nonnegative real number k.

Note that, from the above quadratic equation, the sum and the product of ϕ and ψ, respec-
tively, are

ϕ+ ψ = 1 and ϕψ = −1.

Clearly, from the above identity, we have ψ = −ϕ−1.

• As a result of the equation x2 = x+1, one can easily decompose any positive integer power
of ϕ into a linear combination of ϕ and a constant as follows.

Remark 2.1. Since the golden ratio satisfies the equation ϕ2 = ϕ+ 1, this expression can be used
to decompose higher powers ϕn as a function of lower powers, which in turn can be decomposed
all the way down to a linear combination of ϕ and a constant using induction on n ≥ 2, an integer.

• Note that similar to the above remark, we can also decompose ψn (n ≥ 2, an integer) into
a linear combination of ψ and a constant since ψ2 = ψ + 1.
We now write some simple relations between two or three Fibonacci numbers.

Proposition 2.2. Let n ≥ 3 be a fixed integer and fn−2 + fn−1 = fn three successive Fibonacci
numbers. Then

(a) fn−1 < (fn + fn−2)/2.

(b) 2fn−2 < fn.

(c) fn≤3fn−2.

Proof. (a) fn−3 = fn−1 − fn−2 < fn−2 implies

2fn−1 − fn−2 < fn−1 + fn−2

implies

2fn−1 < fn + fn−2,

which implies the desired result.
(b) fn−2 < fn−1 implies 2fn−2 < fn−1 + fn−2 = fn.
(c) fn−3 = fn−1 − fn−2 < fn−2 implies

fn−1 < 2fn−2

implies

fn−1 + fn−2 < 3fn−2,

which implies the desired result.



54 Elham Mehdi-Nezhad and Amir M. Rahimi

Corollary 2.3. Let n ≥ 3 be a fixed integer and fn−2 + fn−1 = fn three successive Fibonacci
numbers. Then

2fn−2≤fn≤3fn−2.

Proof. The proof follows directly from parts (b) and (c) of the proposition above.

Remark 2.4. It is well-known that the sequence { fn
fn−1

}∞2 approaches the golden ratio as n goes
to infinity. The golden ratio is

1 +
√

5
2

≈1.61803398875 · · ·,

which is less than 2. But from the corollary above, we have fn
fn−2

∈ [2, 3] for all n ≥ 3.

We now write the limit of the (consecutive) quotients of the Fibonacci numbers for a special
case and we end this section with results for the general case.

From the remark above, we have

limn→∞
fn
fn−2

= lim fn−2+fn−1
fn−2

= lim(1 + fn−1
fn−2

) = 1 + ϕ = ϕ2≈2.61803398875 · · · ∈ [2, 3].

We now end the section with a result related to the limits of the (consecutive) quotients of
the Fibonacci numbers in general, which is ϕm for any integer m ≥ 1. Note that in the next
section we will show that ϕ1 = 1

2ϕ
2 (Example 3.3(b)) and show that ϕk ∈ (1, ϕ] for all k ≥ 0

(Proposition 3.5), which is different from ϕm for any integer m ≥ 1, except for the case ϕk = ϕ
if and only if k = 0.

limn→∞
fn+m
fn

= ϕm,

because the ratios between consecutive Fibonacci numbers approaches ϕ. That is,

fn+m
fn

=
fn+1

fn

fn+2

fn+1

fn+3

fn+2
· · · fn+m

fn+m−1

which approaches the product ofm factors of ϕ as n goes to infinity. Note that by the limit law
for product of the convergent sequences, the limit of the product of a finite number of convergent
sequences is equal to the product of their limits.

3 The Golden Ratio of Order k

In this section, we study some numerical and algebraic properties of ϕk and ψk and their rela-
tions to ϕ and ψ, respectively, (Theorems 3.4, 3.6, Remarks 3.2, and 3.9) with some examples for
some special values of k (Example 3.3). In particular, it is shown that ϕk = ϕ and ψk = ψ if and
only if k = 0. We show that Z[(k + 1)ϕk] is a subring of the ring Z[ϕ0 = ϕ] for any nonnegative
integer k (Remark 3.9). In a manner similar to the cases of ϕn and ψn, it is also shown that ϕnk
[resp. ψnk ] can be decomposed into a linear combination of ϕk [resp. ψk] and a constant for any
integer n ≥ 2 (Remark 3.8). It is shown that ϕk and ψk are bijective maps from nonnegative reals
to (1, ϕ] and [ψ, 1), respectively, (Propositions 3.5 and 3.7). We also define the golden rectangle
of order k (or k-golden rectangle for short), as a general form of the classic golden rectangle,
with a class of examples for any real k ≥ 0. We will show that the ratio of height to width
of the pages of the Gutenberg Bible is the golden ratio of order k ̸= 0 (see Example 3.11 and
Remark 3.10). Finally, we end the paper by posing a question related to the Penrose tiling and
quasicrystals in connection to the golden ratio of order k > 0.

We now extend the notion of the golden ratio.

Definition 3.1. Let a > b > 0 be two real numbers and k ≥ 0 a fixed real number. We say that
a/b is a golden ratio of order k, denoted ϕk, if it satisfies the following identity

a

b
=

(2k + 1)(k + 1)a− (k2 + k − 1)b
(k + 1)2a
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From the above identity, we get the quadratic equation

(k + 1)2x2 − (2k + 1)(k + 1)x+ (k2 + k − 1) = 0

by assuming x = a
b .

Thus,

ϕk =
(2k + 1) +

√
5

2(k + 1)
and ψk =

(2k + 1)−
√

5
2(k + 1)

are two distinct roots of the above quadratic equation and they are algebraic numbers when
k ≥ 0 is an integer (i.e. a number is algebraic if it is the root of a polynomial equation with
integer coefficients). Obviously, ϕ0 = ϕ and ψ0 = ψ (see the previous section for the definition
of ϕ and ψ).

As a result of the above definition (Definition 3.1), we can extend the notion of a golden
rectangle as follows:

• A rectangle is called a golden rectangle of order k (or a k-golden rectangle for short) if
the ratio of the longer side to the shorter side is the golden ratio of order k (k ≥ 0 a fixed real
number). For example, a rectangle with sides equal to (2k + 1) +

√
5 and 2(k + 1) is a golden

rectangle of order k ≥ 0.

Note that, from the above quadratic equation, the sum and the product of ϕk and ψk, respec-
tively, are

ϕk + ψk =
(2k + 1)
(k + 1)

and

ϕkψk =
k2 + k − 1
(k + 1)2 .

Clearly, from the above identity, we have

ψk =
(k2 + k − 1)
(k + 1)2 ϕ−1

k ,

which satisfies the special case for k = 0.

Remark 3.2. We now write the relationship between ϕk and ψk with ϕ and ψ, respectively, as
follows:

ϕk =
(2k + 1) +

√
5

2(k + 1)
=

1
k + 1

(k + ϕ)

and

ψk =
(2k + 1)−

√
5

2(k + 1)
=

1
k + 1

(k + ψ).

• Clearly ϕk = a
b since a/b is larger than 1 and ψk ̸= a

b since ψk < 1 for all k ≥ 0 from the
fact that ψ≈−0.6180339887 · · · < 0 (see Theorem 3.6(c)).
We now write some examples of ϕk and ψk for some special values of k.

Example 3.3. The following are true.

(a) k = 0, then ϕ0 = ϕ and ψ0 = ψ.

(b) k = 1, then ϕ1 =
1
2(1 + ϕ) = ϕ2

2 .

(c) k = 1, then ψ1 =
1
2(1 + ψ) = ψ2

2 .
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(d) k = ϕ, then ϕk = 1
ϕ+1(ϕ+ ϕ) = 1

ϕ2 (2ϕ) = 2
ϕ = 2ϕ−1 = −2ψ.

(e) k = 1+ϕ
2 , then ϕk = 1+3ϕ

3+ϕ .

(f) k = 1+ψ
2 , then ψk = 1+3ψ

3+ψ .

(g) k = −ψ, then ψk = 0.

The following two theorems provide some numerical properties of ϕk and ψk, respectively,
for any (fixed) nonnegative real number k.

Theorem 3.4. The following are true.

(a) Let k ≥ 0 be a real number. Then ϕk = ϕ if and only if k = 0.

(b) If k ≥ 0 is a real number, then ϕk ̸= 1.

(c) If k ̸= 0 is a positive real number, then 1 < ϕk < ϕ.

(d) limk→∞ϕk = 1.

Proof. (a) The proof of the sufficiency is clear. To prove the necessity, assume that ϕk = ϕ.
Thus, (k + 1)ϕ = k + ϕ implies k(ϕ− 1) = 0, which implies k = 0 since ϕ ̸= 1.

(b) Suppose ϕk = 1. Then (k + 1) = k + ϕ implies ϕ = 1, which is a contradiction. (c)
Since 1 < ϕ, then k < kϕ implies (k + ϕ) < kϕ+ ϕ = (k + 1)ϕ, which implies ϕk < ϕ. Also,
1 < ϕ implies k + 1 < k + ϕ, which implies 1 < ϕk.

(d) ϕk = 1
k+1(k + ϕ) = k+1

k+1 − 1
k+1 + ϕ

k+1 = 1 − 1
k+1 + ϕ

k+1
Now the result follows as k goes to infinity.

We now show that ϕk is a bijective map from nonnegative reals to the half open interval (1, ϕ].

Proposition 3.5. Let k ≥ 0 be a real number. Then ϕk : R+ = [0,∞) → (1, ϕ] is a bijection (i.e.
one-to-one and onto map).

Proof. It is injective since ϕk = ϕl implies (l + 1)(k + ϕ) = (k + 1)(l + ϕ) implies that
(l − k)(ϕ− 1) = 0, which implies l − k = 0 since ϕ ̸= 1 and hence l = k.

It is also surjective since for any α ∈ (1, ϕ], ϕk = α when k = ϕ−α
α−1 . Note that k ≥ 0 since

(ϕ− α) ≥ 0 and (α− 1) > 0.

In the following theorem, we will see some common properties of ψk and ϕk as discussed in
the above theorem for ϕk.

Theorem 3.6. The following are true.

(a) Let k ≥ 0 be a real number. Then ψk = ψ if and only if k = 0.

(b) If k ≥ 0 is a real number, then ψk ̸=1.

(c) If k ≥ 0 is a real number, then ψk < 1.

(d) If k > −ψ, then ψk > 0.

(e) If 0 ≤ k ≤ −ψ, then ψk ≤ 0; and for the special cases, ψk = ψ or 0 whenever k = 0 or
k = −ψ, respectively.

(f) limk→∞ψk = 1.

Proof. (a) The proof of the sufficiency is clear. To prove the necessity, assume that ψk = ψ.
Thus, (k+1)ψ = k + ψ implies k(ψ−1) = 0, which implies k = 0 since ψ≈−0.6180339887 · · ·̸=1.

(b) Suppose ψk = 1. Then (k + 1) = k + ψ implies ψ = 1, which is a contradiction since
ψ≈−0.6180339887 · · ·̸=1.

(c) Since ψ < 0, then k + ψ < k < k + 1 implies ψk < 1. Note that k + 1 is positive for
all k ≥ 0. (d) The proof follows directly from the fact that k + 1 is positive for all k ≥ 0 and
k + ψ > 0 from the hypothesis.

(e) Since 0 ≤ k ≤ −ψ, then k+1 > 0 and k+ψ≤0 implies the desired result; and the special
cases are clear.

(f) The proof is similar to the proof of Part (d) of Theorem 3.4.
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Now, in a manner similar to the proof of Proposition 3.5, we show that ψk is a bijective map
from nonnegative reals to the half open interval [ψ, 1).

Proposition 3.7. Let k ≥ 0 be a real number. Then ψk : R+ = [0,∞) → [ψ, 1) is a bijection
(i.e. one-to-one and onto map).

Proof. ψk is injective since ψk = ψl implies

(l+ 1)(k + ψ) = (k + 1)(l+ ψ)

implies that (l − k)(ψ − 1) = 0, which implies l − k = 0 since ψ ̸= 1; Hence l = k.
It is also surjective since for any α∈ [ψ, 1), ψk = α when k = ψ−α

α−1 . Note that k ≥ 0 since
(ψ − α)≤0 and (α− 1) < 0.

We now show that ϕnk can be decomposed into a linear combination of ϕk and a constant for
any integer n ≥ 2 using induction on n.

Remark 3.8. Consider the quadratic equation

(k + 1)2x2 − (2k + 1)(k + 1)x+ (k2 + k − 1) = 0.

Following Definition 3.1, we have x2 = Akx−Bk, where Ak =
(2k+1)
(k+1) and Bk =

(k2+k−1)
(k+1)2 .

From this, for x = ϕk, the constant ϕk satisfies the quadratic equation ϕ2
k = Akϕk − Bk. As

a result, one can easily decompose any positive integer power of ϕk into a linear combination of
ϕk and a constant.

Thus, we can write xn for all integers n ≥ 2 as follows:
x3 = x2x = Akx

2 −Bkx, and assume that
xn = Akx

(n−1) −Bkx
(n−2).

Hence, the proof by induction on n ≥ 2 provides the desired result as follows:

x(n+1) = xnx = (Akx
(n−1) −Bkx

(n−2))x = Akx
n −Bx(n−1).

Note that similar to the argument in the above remark, we can also decompose ψnk (n ≥ 2, an
integer) into a linear combination of ψk and a constant since ψ2

k = Akψk −Bk.

We now construct an algebraic structure (a ring) based on ϕk for any integer k ≥ 0.

Remark 3.9. Let k ≥ 0 be a fixed integer. Then the set

Rk = Z[(k + 1)ϕk] = {a+ b(k + 1)ϕk | a, b ∈ Z}

is a ring since

(k + 1)2ϕ2
k = (k + 1)2(Akϕk −Bk) = (2k + 1)(k + 1)ϕk − (k2 + k − 1),

where Ak =
(2k+1)
(k+1) and Bk = k2+k−1

(k+1)2 . That is,

(a+ b(k + 1)ϕk)(c+ d(k + 1)ϕk) ∈ Z[(k + 1)ϕk].

Also, Rk is a subring of R0 = Z[ϕ0 = ϕ] for each fixed positive integer k ≥ 0.

• We now write a short note on some erroneous ideas and examples of disputed observations
related to the golden ratio. Then in the following remark we will show that one of these mea-
surements which is related to the Gutenberg Bible, corresponds to ϕk for some k ̸= 0 (Example
3.11). Note that the following note is taken from Wikipedia by searching for “golden ratio".

Remark 3.10. The golden ratio has been used to analyze the proportions of natural objects as
well as artificial systems such as financial markets, in some cases based on dubious fits to data.
The golden ratio appears in some patterns in nature, including the spiral arrangement of leaves
and other parts of vegetation.
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Some 20th-century artists and architects, including Le Corbusier and Salvador Dalí, have
proportioned their works to approximate the golden ratio, believing it to be aesthetically pleas-
ing. These uses often appear in the form of a golden rectangle.
Some specific proportions in the bodies of many animals (including humans) and parts of the
shells of mollusks are often claimed to be in the golden ratio. There is a large variation in the
real measures of these elements in specific individuals, however, and the proportion in question
is often significantly different from the golden ratio. The ratio of successive phalangeal bones
of the digits and the metacarpal bone has been said to approximate the golden ratio. The nau-
tilus shell, the construction of which proceeds in a logarithmic spiral, is often cited, usually with
the erroneous idea that any logarithmic spiral is related to the golden ratio, but sometimes with
the claim that each new chamber is golden-proportioned relative to the previous one. However,
measurements of nautilus shells do not support this claim.

Studies by psychologists, starting with Gustav Fechner c. 1876, have been devised to test the
idea that the golden ratio plays a role in human perception of beauty. While Fechner found a
preference for rectangle ratios centered on the golden ratio, later attempts to carefully test such
a hypothesis have been, at best, inconclusive.

In investing, some practitioners of technical analysis use the golden ratio to indicate support
of a price level, or resistance to price increases, of a stock or commodity; after significant price
changes up or down, new support and resistance levels are supposedly found at or near prices
related to the starting price via the golden ratio. The use of the golden ratio in investing is also
related to more complicated patterns described by Fibonacci numbers (e.g. Elliott wave principle
and Fibonacci retracement). However, other market analysts have published analyses suggesting
that these percentages and patterns are not supported by the data.

• Historian John Man states that both the pages and text area of the Gutenberg Bible were
“based on the golden section shape". However, according to his own measurements, the ratio of
height to width of the pages is 1.45.

Example 3.11. According to the above measurement of the Gutenberg Bible, we can calculate k
for ϕk = 1.45, which is the golden ratio of order k≈0.3734̸=0, from the following formula:

(k + 1)1.45 = k + ϕ.

Finally, we end the paper by posing a question related to the Penrose tiling and quasicrystals
in connection to the golden ratio of order k > 0. Between 1973 and 1974, Roger Penrose de-
veloped Penrose tiling, a pattern related to the golden ratio both in the ratio of areas of its two
rhombic tiles and in their relative frequency within the pattern. This gained in interest after Dan
Shechtman’s Nobel-winning 1982 discovery of quasicrystals with icosahedral symmetry, which
were soon afterward explained through analogies to the Penrose tiling.

Question: Is there any tiling, in general, or similar to the Penrose tiling whose pattern sat-
isfies the golden ratio of order k > 0? Moreover, is there any quasicrystal in nature whose
structure satisfies the golden ratio of order k > 0?
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