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Abstract In this paper, hypergroup joins (formed by unions of compact and discrete spaces)
involving semi-bounded generalized hypergroups are investigated. Several classic hypergroup
spaces associated with joins are expanded to create discrete, semi-bounded generalized hyper-
groups. The notion of "semi-boundedness", which has previously been defined only for discrete
generalized hypergroups, is extended in a natural way to include non-discrete spaces. It is shown,
through proof and example, that the join of a compact hypergroup with a semi-bounded discrete
generalized hypergroup can result in a locally compact, semi-bounded generalized hypergroup
that is neither compact nor discrete.

1 Introduction

The study of hypergroups has led to ever more generalization, as new objects arise from more
familiar ones. Hypergroup structures studied in the early 20th century by F. Marty and M.S. Wall
involved spaces of conjugacy classes and double cosets of topological groups (see the introduc-
tion in [1]). The notion of a signed hypergoup arose from an example, provided by Jewett in the
1970s, where the dual of a relatively simple three element hypergroup failed to be a hypergroup
([3] , Example 9.1C, page 51). Semi-bounded generalized hypergroups were introduced in the
later 20th century as part of an investigation of spaces of orthogonal polynomials (see [5] and
[4].) It has since been shown that semi-bounded generalized hypergroups can arise naturally as
dual spaces of standard hypergroups ([6], Example 6.2, page 79)).

The notion of semi-boundedness has commonly been restricted to discrete generalized hy-
pergroups. However, the concept can be expanded to include non-discrete, locally compact
spaces. In this paper it will be shown that the join of a compact group, hypergroup or signed
hypergroup with a discrete, semi-bounded generalized hypergroup will result in a semi-bounded
locally compact generalized hypergroup that may not be discrete.

A signed hypergroup join is the union of a compact generalized hypergroup, H that admits
a Haar measure with full support, and a discrete generalized hypergroup, J , whose intersection
is necessarily taken to be the identity of the two spaces. The join, H ∨ J , is given a generalized
hypergroup structure born from the structures of H and J . Hypergroup joins were originally
introduced in [3] where it was noted that the join of two hypergroups is again a hypergroup.
Hypergroup joins were studied further by Vrem in [10]. In this paper, we expand the notion
of joins to generalized hypergroups. In particular, we show that the join of two generalized
hypergroups is again a generalized hypergroup, even when the discrete portion is semi-bounded
and not bounded.

2 Definition and Structure

The definition of a generalized hypergroup given here matches the discrete generalized hyper-
groups given in [5]. The setup and notation, however, follows that which is used in [3], [1] and
others. An explanation of how the different notations correspond can be found in [7] (Prop 5.2.1,
page 315).
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PRELIMINARY NOTATION: Let X be a locally compact topological space. Let Cb(X) be
the set of continuous and bounded real-valued functions on X . Let Mb(X) represent the space
of bounded Radon measures on X , and let Mc(X) represent the set of measures in Mb(X) that
have compact support. Let Γ(X) represent the set of all locally compact subsets of X . For each
x ∈ X , the Dirac measure δx is defined by δx(A) = 1 if x ∈ A ⊆ X , and 0 otherwise.

Definition 2.1. A generalized hypergroup is a quadruple (X, ∗, ,̌ e) where X is a locally compact
topological space, ∗ is an associative binary convolution function ∗ : X ×X → Mc(X) (which
maps (x, y) ∈ X × X to ∗(x, y) = δx ∗ δy ∈ Mc(X)), x 7→ x̌ is an involutive map from
X onto itself for which ˇ̌x = x for all x ∈ X , and e ∈ X is an identity element for which
δx ∗ δe = δx = δe ∗ δx for all x ∈ X .

For all x, y ∈ X , the involution must satisfy the properties (δx ∗ δy )̌ = δy̌ ∗ δx̌ and
e ∈ supp(δx ∗ δy)⇔ y = x̌.

Additionally, if X is discrete, then δx ∗ δx̌(e) > 0 for all x ∈ X .

If X is not discrete, then the system must satisfy the following continuity requirements:
i) the map (x, y) 7→ δx ∗ δy must be continuous where Mb(X) is given the topology of point-

wise convergence with respect to Cb(X), and
ii) the map (x, y) 7→ supp(δx ∗ δy) must be continuous where Γ(X) is given the Michael

topology ([3], 2.5, page 12).

A generalized hypergroup is commutative if δx ∗ δy = δy ∗ δx for all x, y ∈ X , hermitian if
x̌ = x for all x ∈ X , and normal if δx ∗ δy(K) = 1 for all x, y ∈ X .

Definition 2.2. If X is a generalized hypergoup, and H,K ⊆ X , then

H ∗K =
⋃

(h,k)∈H×K

support(δh ∗ δk).

Definition 2.3. A closed non-void subsetH ofX is a generalized subhypergroup ofX if Ȟ = H
and H ∗H = H .

A focus of this paper is on the notion of semi-boundness, which has previously been con-
sidered only for discrete spaces. The definition given below expands this notion to non-discrete
spaces, and matches the more familiar statement for discrete spaces.

Definition 2.4. A generalized hypergroup is semi-bounded if, for each x ∈ X ,

γ(x) = sup
y∈X
{‖ δx ∗ δy ‖} <∞,

and bounded if
k = sup

x∈X
{|γ(x)|} <∞.

If each δx ∗ δy is a probability measure, then X is a (standard) hypergroup, and X is a group
if each δx ∗ δy is another Dirac measure. A generalized hypergroup is a signed hypergroup if it
is real, normal and bounded. With both groups and hypergroups, the norm-bounding constant
k = 1, and with signed hypergroups k ≥ 1.

Definition 2.5. Given f ∈ Cb(X), µ ∈Mb(X), and x, y ∈ X , the functions fx , δx ∗ µ , f̌ and µ̌
are defined by

i) fx(y) = f(x ∗ y) = δx ∗ δy(f) =
∫
X
fd(δx ∗ δy);

ii) δx ∗ µ(f) = µ(fx);
iii) f̌(x) = f(x̌);
iv) µ̌(f) = µ(f̌).

Definition 2.6. A measuremwith full support on a generalized hypergroupX is pseudo-invariant
if ∫

X
f(x ∗ y)g(y)dm(y) =

∫
X
f(y)g(x̌ ∗ y)dm(y) for all f, g ∈ Cc(X) and x ∈ X .
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Definition 2.7. A measure m with full support on a generalized hypergroup X is a Haar measure
if δx ∗m(f) = m(fx) = m(f) = m ∗ δx(f) for all x ∈ X and f ∈ Cc(X).

If X is compact, an invariant Haar measure can be normalized so that ‖ m ‖= 1. If X is
discrete, an invariant Haar measure can be unit-normalized so that m(e) = 1.

Lemma 5.1D in [3] (page 24) shows that all Haar measures on hypergroups are pseudo-
invariant.

It was shown in [4] (Lemma 2.3, page 371) that every discrete generalized hypergoup X
admits a pseudo-invariant measure. Moreover, the pseudo-invariant measure is a Haar measure
if and only if X is normal ([4], Theorem 2.5, page 372). Such a measure will invariably be a
positive multiple of the function m(x) = (δx ∗ δx̌(e))−1.

For non-discrete, non-compact signed hypergroups, Rösler assumes the existence of a pseudo-
invariant measure ([7] page 304), and proves it will be a Haar measure if and only if X is normal
([7], Corollary 3.4, page 305). Rösler also notes the existence of a pseudo-invariant measure
implies the involution property (δx ∗ δy )̌ = δy̌ ∗ δx̌ ([8], page 149).

However, in order to ensure that fx ∈ Cc(X) whenever f ∈ Cc(X), it is necessary to either
assume ∪x∈Xsupp(fx) is a relatively compact subset of X for each f ∈ Cc(X) (see axiom A1
in [8], page 149), or add an additional axiom concerning the support of the measures δx ∗ δy;
c ∈ supp(δa ∗ δb)⇔ b ∈ supp(δǎ ∗ δc) ∀a, b, c ∈ X . (see [9], page 89).

Example 2.8. For any positive real number θ > 0, the generalized hypergroup Z2(θ) is the
two-element set {0, a} with identity e = 0 and convolution defined by

δ0 ∗ δ0 = δ0,
δ0 ∗ δa = δa = δ0 ∗ δa, and
δa ∗ δa = θδ0 + (1− θ)δa.

The hermitian space Z2(θ) is a group if θ = 1, a standard hypergroup if 0 < θ < 1, and is
signed if θ > 1. The space is bounded with k = θ + |(1− θ)|.

The normalized Haar measure is

w =
θ

(θ + 1)
δ0 +

1
θ + 1

δa.

The unit-normalized Haar measure is

m = δ0 +
1
θ
δa.

Example 2.9. An unbounded, semi-bounded, commutative, hermitian, signed, and normal gen-
eralized hypergoup structure can be defined on the set N0 = {0, 1, 2, 3, ...} by taking e = 0 to be
the identity, and convolution defined by

δn ∗ δm = δmax {n,m} for all n 6= m, and
δn ∗ δn =

∑n−1
j=0 δj + (1− n)δn.

Note that, for each n ∈ N,

γ(n) = sup
m∈N0

{‖ δn ∗ δm ‖} = 2n− 1 <∞.

The unit-normalized Haar measure is w =
∑∞
j=0 δj .

Later in this paper it will be noted that the generalized hypergroup (N0, ∗, ,̌ e) results from an
infinite join of signed hypergroups of the form Z2(θ).

3 Generalized Hypergroup Joins

A "join" is formed from the union of a compact and a discrete generalized hypergroup, whose
intersection is taken to be the identity element e of each space. The compact portion must be
bounded and admit a Haar measure.
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Definition 3.1. Let (H, ∗) be a bounded, compact generalized hypergroup that admits a Haar
measure wH , normalized so that wH(H) = 1. Let (J, ·) be any discrete generalized hypergroup.
Take H ∩ J = {e} and endow the union K = H ∪ J with the unique topology for which both H
and J are closed subspaces of K. Let J̃ = J \{e}, and define a convolution, # , on K as follows:

i) If x, y ∈ H , then δx#δy = δx ∗ δy.
ii) If x, y ∈ J and x 6= y̌, then δx#δy = δx · δy.
iii) If x ∈ H and y ∈ J̃ , then δx#δy = δy.
iv) If x ∈ J̃ , and δx · δx̌ =

∑
z∈J czδz , then

δx#δx̌ = cewH +
∑
z∈J̃

czδz.

With the above convolution, and with involution as on H and J , respectively, K is called
the join of H and J and is written K = H ∨ J . It is easily shown that H is a generalized
subhypergroup of K. For this reason we usually use the symbol ∗ for both the convolution on H
and K. A different symbol, usually · , is used for the convolution on J , since J is a generalized
subhypergroup of K if and only if H = {e}. Clearly K is commutative/hermitian if and only if
both H and J are commutative/hermitian, respectively.

Note that the formula
δx#δy = cewH +

∑
z∈J̃

czδz

holds even when x, y ∈ J̃ with x 6= y̌, since in that case e /∈ supp(δx · δy) ensures that ce = 0.

Hereinafter, we let H̃ = H \ {e} and J̃ = J \ {e}. Also, throughout this paper it is assumed
that any suitable H admits a normalized Haar measure wH .

Theorem 3.2. Let (H, ∗) and (J, ·) be a suitable compact signed hypergroup and discrete gen-
eralized hypergroup. Then the join K = (H ∨ J, ∗) is a generalized hypergroup.

Proof. It’s clear that ˇ̌x = x, and δx ∗ δe = δx = δe ∗ δx for all x ∈ K.
To see that the involution properties hold, let x, y ∈ K.
If x, y ∈ H , or x, y ∈ J̃ with x 6= y̌, then it is clear that (δx ∗ δy )̌ = δy̌ ∗ δx̌.
If x ∈ H, y ∈ J̃ , then (δx ∗ δy )̌ = (δy )̌ = δy̌ = δy̌ ∗ δx̌.
If x = y̌ ∈ J̃ , then

(δx ∗ δx̌)̌ = (cewH +
∑
z∈J̃

czδz )̌ = cew̌H +
∑
z∈J̃

cz δ̌z = cewH +
∑
z∈J̃

cz δ̌z = δx̌ ∗ δx.

It is clear that e ∈ supp(δx ∗ δy) ⇔ y = x̌, since it is assumed to hold for both (H, ∗) and
(J, ·). Also, since K is discrete if and only if H is finite, in that case δx ∗ δx̌(e) > 0 would hold
for both H and J , and thus for K as well.

To see that each δx ∗ δy has compact support even when K is not compact (which occurs
when J is infinite), let x, y ∈ K. The conclusion is clear if x, y ∈ H , or x, y ∈ J̃ with x 6= y̌, or
x ∈ H and y ∈ J̃ . For the remaining case, if x ∈ J̃ , then

δx ∗ δx̌ = cewH +
∑
z∈J̃

czδz

has compact support since wH has compact support (supp(wH) = H) and the sum is a finite
sum.

IfK is not discrete, then the convolution ∗ onK will be continuous. To see that both the maps
(x, y) 7→ δx ∗ δy and (x, y) 7→ supp(δx ∗ δy) are continuous, let (xα, yα)→ (x, y) ∈ K ×K.

Case a) x, y ∈ H̃ . Since H̃ ⊆ H ∨ J is open, we have that H̃ × H̃ ⊆ K × K is open
which implies there is an α0 such that α ≥ α0 implies (xα, yα) ∈ H̃ × H̃ ⊂ H ×H and hence
δxα
∗ δyα → δx ∗ δy (and supp(δxα

∗ δyα)→ supp(δx ∗ δy)), since ∗ is cont on H .
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Case b) x, y ∈ J̃ , x 6= y̌. Then J̃ ⊂ H ∨ J is an open subset and hence J̃ × J̃ ⊂ K × K
is open which implies there is an α0 such that α ≥ α0 implies (xα, yα) ∈ J̃ × J̃ and hence
δxα ∗ δyα → δx ∗ δy (and supp(δxα ∗ δyα)→ supp(δx ∗ δy)), since J̃ is discrete.

Case c) x ∈ H̃ and y ∈ J̃ implies δx ∗ δy = δy = δy ∗ δx. Then
(x, y) ∈ H̃×J̃ ⊂ K×K is open which implies there is an α0 s.t. α ≥ α0 implies (xα, yα) ∈ H̃×J̃
and hence δxα ∗ δyα = δyα . Thus yα → y implies δyα → δy (and supp(δyα)→ supp(δy)) implies
δxα
∗ δyα → δx ∗ δy (and supp(δxα

∗ δyα)→ supp(δx ∗ δy)).

Case d) x ∈ J̃ (which implies x̌ ∈ J̃). Let (xα, yα) → (x, x̌). Then J discrete implies
(xα, yα) = (x, x̌) eventually.

It remains to show that the convolution of point masses is associative. Note that if µ ∈Mb(K)
with supp(µ) ⊆ H and x ∈ J̃ , then δx ∗ µ = µ(H)δx = µ ∗ δx. To see this let f ∈ Cc(K); then

δx ∗ µ(f) =
∫
H

f(x ∗ t)dµ(t) =
∫
H

f(x)dµ(t) = µ(H)f(x) = µ(H)δx(f).

Similarly for µ∗δx. For the normalized Haar measure wH , we then have δx∗wh = δx = wH ∗δx.
Now let x, y, z ∈ K.

Case a) x, y, z ∈ H . This is clear.

Case b) One element (say z) in J̃ , the others in H . Then

(δx ∗ δy) ∗ δz = δz = δx ∗ (δy ∗ δz).

Case c) One element (say z) in H , the others in J̃ . Let δx · δy =
∑
s∈J csδs. Then

(δx∗δy)∗δz = (cewH+
∑
s∈J̃

csδs)∗δz = cewH∗δz+
∑
s∈J̃

cs(δs ∗ δz) = cewH+
∑
s∈J

csδs = δx∗δy = δx∗(δy∗δz).

Case d) x, y, z ∈ J̃ . Let δx · δy =
∑
s∈J csδs, δž · δz =

∑
s∈J dsδs,

δy · δz =
∑
s∈J psδs, and δx · δx̌ =

∑
s∈J qsδs. Then

(δx ∗ δy) ∗ δz = (cewH +
∑
s∈J̃

csδs) ∗ δz = ceδz +
∑

s∈J̃,s 6=ž

csδs · δz + cžδž ∗ δz

= ceδz +
∑
s∈J̃

csδs · δz − cžδž · δz + cžδž ∗ δz

= (δx · δy) · δz + cž(δž ∗ δz − δž · δz)
= δx · (δy · δz) + cž(dewH − deδe).

Similarly δx ∗ (δy ∗ δz) = δx · (δy · δz) + px̌(qewH − qeδe). Thus we need to show that
cžde = px̌qe. But this holds since∑

s∈J
csδs · δz = (δx · δy) · δz = δx · (δy · δz) =

∑
s∈J

psδx · δs.

Evaluating both sides at e yields cžde = px̌qe as desired.

Theorem 3.3. The join K = H ∨ J is normal if and only if both (H, ∗) and (J, ·) are normal.

Proof. This result is clear for every case other than δx ∗ δx̌ when x ∈ J̃ . For that case, note that

δx ∗ δx̌(K) = cewH(H) +
∑
z∈J̃

czδz(J̃) = ce +
∑
z∈J̃

cz = δx · δx̌(J).

Theorem 3.4. The join K = (H ∨ J, ∗) is semi-bounded if and only if J is semi-bounded, and
bounded if and only if J is bounded. If (H, ∗) and (J, ·) are bounded by constants kH and kJ ,
respectively, then k = max {kH , kJ} will be the norm-bounding constant for the join (K, ∗).
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Proof. Let x, y ∈ K. If x, y ∈ H , then ‖ δx∗δy ‖≤ kH , where kH is the norm-bounding constant
for H . Thus K is bounded on H by kH . If x ∈ H and y ∈ J̃ , then ‖δx ∗ δy‖ = ‖δy‖ = 1. If
x, y ∈ J , then ‖ δx ∗ δy ‖=‖ δx · δy ‖ since δx ∗ δy = δx · δy if x 6= y, and

‖δx ∗ δx̌‖ = (|ce|wH +
∑
z∈J̃

|cz|δz)(K) = ‖δx · δx̌‖.

Hence, for x ∈ J , γ(x) = supy∈K{‖ δx ∗ δy ‖} = supy∈J{‖ δx · δy ‖}.

Thus the boundedness and/or semi-boundedness of K on J will coincide, and if kJ is the
norm-bounding constant for (J, ·), then k = max {kH , kJ} will be the norm-bounding constant
for the join (K, ∗).

Theorem 3.5. Let wJ be the unit-normalized pseudo-invariant measure on J , and let wJ̃ be the
restriction of wJ to J̃ . The measure m = wH + wJ̃ is pseudo-invariant if and only if wH is
pseudo-invariant.

Proof. Here wJ(x) = (δx̌ ∗ δx(e))−1, which is unit-normalized in the manner of discrete signed
hypergroups. In particular, wJ(e) = 1, even if J happens to be finite.

Suppose that wH is pseudo-invariant. Let f, g ∈ Cc(K) and x ∈ K. Then∫
K

f(x ∗ y)g(y)dm(y) =

∫
H

f(x ∗ y)g(y)dwH(y) +
∫
J̃

f(x ∗ y)g(y)dw̃J(y).

Case a) x ∈ H . Then∫
K

f(x ∗ y)g(y)dwH(y) =
∫
H

f(y)g(x̌ ∗ y)dwH(y) +
∫
J̃

f(y)g(y)dw̃J(y)

=

∫
H

f(y)g(x̌ ∗ y)dwH(y) +
∫
J̃

f(y)g(x̌ ∗ y)dw̃J(y)

=

∫
K

f(y)g(x̌ ∗ y)dm(y).

Case b) x ∈ J̃ with δx̌ · δx =
∑
z∈J czδz and δx · δx̌ =

∑
z∈J dzδz . Recall that

wJ(x) = (δx̌ · δx(e))−1 = (ce)−1 and wJ(x̌) = (δx · δx̌(e))−1 = (de)−1 and wJ(e) = 1. Thus

∫
K

f(x ∗ y)g(y)dm(y)

=

∫
H

f(x)g(y)dwH(y) +

∫
J̃\{x̌}

f(x · y)g(y)dw̃J(y) + f(x ∗ x̌)g(x̌)wJ(x̌)

= f(x)wH(g) +

∫
J

f(x · y)g(y)dwJ(y)− f(x)g(e)− f(x · x̌)g(x̌)wJ(x̌)

+ g(x̌)wJ(x̌)(dewH(f) +
∑
z∈J̃

f(z)dz)

=

∫
J

f(y)g(x̌ · y)dwJ(y) + f(x)wH(g)− f(x)g(e)

− f(x · x̌)g(x̌)wJ(x̌) + g(x̌)wH(f) + g(x̌)wJ(x̌)
∑
z∈J̃

f(z)dz

= g(x̌)wH(f) +

∫
J

f(y)g(x̌ · y)dwJ(y) + f(x)wH(g)− f(x)g(e)

− f(x · x̌)g(x̌)wJ(x̌) + g(x̌)wJ(x̌)f(x · x̌)− g(x̌)wJ(x̌)f(e)de
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= g(x̌)wH(f) +

∫
J̃\{x}

f(y)g(x̌ · y)dwJ(y)

+ f(e)g(x̌) + f(x)g(x̌ · x)wJ(x) + f(x)wH(g)− f(x)g(e)− g(x̌)f(e)

= g(x̌)wH(f) +

∫
J̃\{x}

f(y)g(x̌ · y)dwJ(y)

+ f(x)wJ(x)(cewH(g) +
∑
z∈J̃

g(z)cz)− f(x)g(e) + f(x)wJ(x)g(e)ce

= g(x̌)wH(f) +

∫
J̃\{x}

f(y)g(x̌ · y)dwJ(y) + f(x)wJ(x)g(x̌ ∗ x)

=

∫
H

f(y)g(x̌ ∗ y)dm(y) +

∫
J̃

f(y)g(x̌ ∗ y)dm(y) =

∫
K

f(y)g(x̌ ∗ y)dm(y).

Finally, if m is pseudo-invariant, then so is wH since H is a signed subhypergroup of K.

Lemma 3.6. If K = H ∨ J and λ is a Haar measure on H , then λ ∗ δy = δy ∗ λ = λ for all
y ∈ H and λ ∗ δy = δy ∗ λ = λ(H)δy for all y ∈ J̃ .

Proof. If y ∈ H , then the result is clear. If y ∈ J̃ and f ∈ C∞(K), then

∫
K

fd(δy ∗ λ) =
∫
K

∫
K

f(t)d(δy ∗ δz)(t)dλ(z)

=

∫
H

∫
K

f(t)d(δy ∗ δz)(t)dλ(z) =
∫
H

∫
K

f(t)dδy(t)dλ(z)

=

∫
H

f(y)dλ(z) = f(y)λ(H).

Similarly,

∫
K

fd(λ ∗ δy) =
∫
K

∫
K

f(t)d(δz ∗ δy)(t)dλ(z)

=

∫
H

∫
K

f(t)d(δz ∗ δy)(t)dλ(z) =
∫
H

∫
K

f(t)dδy(t)dλ(z)

=

∫
H

f(y)dλ(z) = f(y)λ(H).

Theorem 3.7. Let K = H ∨ J . If wH and wJ are normalized (and unit normalized) Haar
measures on (H, ∗) and (J, ·), respectively, then the measure m = wH + wJ̃ , where wJ̃ is wJ
restricted to J̃ , is a Haar measure on the join K = (H ∨ J, ∗).

Proof. Here, again, wJ(x) = (δx̌ ∗ δx(e))−1 is unit-normalized in the manner of discrete signed
hypergroups, Take m = wH +wJ̃ as Haar measure on K. Clearly m is supported on K. We will
check that m is left-invariant. Let f ∈ C+

c (K) and x ∈ K. We need to show that δx ∗m(f) =
m(f). Note that

δx ∗m(f) = δx ∗ wH(f) + δx ∗ wJ̃(f) =
∫
H

δx ∗ δt(f)dwH(t) +
∑
s∈J̃

δx ∗ δs(f)wJ̃(s).

Case a) If x ∈ H , then δx ∗ δs = δs for all s ∈ J̃ . Thus

δx ∗ wJ̃(f) =
∑
s∈J̃

δx ∗ δs(f)wJ̃(s) =
∑
s∈J̃

f(s)wJ̃(s).
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Using the previous Lemma,

δx ∗m(f) = δx ∗ wH(f) + δx ∗ wJ̃(f) = wH(f) +
∑
s∈J̃

f(s)wJ̃(s) = wH(f) + wJ̃(f) = m(f).

Case b) If x ∈ J̃ , then using the previous Lemma,

δx ∗m(f) = δx ∗ wH(f) + δx ∗ wJ̃(f) = f(x) + δx ∗ wJ̃(f)

= f(x)wJ(e) +
∑
s∈J̃

δx ∗ δs(f)wJ̃(s) =
∑
s∈J

δx ∗ δs(f)wJ(s)

=
∑

s∈J\{x̌}

δx · δs(f)wJ(s) + δx ∗ δx̌(f)wJ(x̌)

=
∑
s∈J

f(x · s)wJ(s)− δx · δx̌(f)wJ(x̌) + δx ∗ δx̌(f)wJ(x̌).

Now,
δx ∗ δx̌ − δx · δx̌ = cewH +

∑
t∈J̃

ctδt −
∑
t∈J

ctδt = cewH − ceδe.

So, we have that

δx ∗ δx̌(f)wJ(x̌)− δx · δx̌(f)wJ(x̌) = wJ(x̌)[ce

∫
H

fdwH − cef(e)] =
∫
H

fdwH − f(e)

since ce = wJ(x̌)
−1. Thus,

δx ∗m(f) =
∑
s∈J

f(s)wJ(s) +

∫
H

f(t)dwH(t)− f(e)

=
∑
s∈J̃

f(s)wJ(s) +

∫
H

f(t)dwH(t) = m(f).

Therefore m is a Haar measure on K.

Corollary 3.8. The join K = H ∨ J admits a Haar measure if and only if both (H, ∗) and (J, ·)
are normal.

Proof. By Theorem 2.5 in [4] (page 372), (J, ·) admits a Haar measure if and only if (J, ·) is
normal. By Corollary 3.4 in [7] (page 305), a pseudo-invariant measure on (H, ∗) is a Haar
measure if and only if (H, ∗) is normal.

Theorem 3.9. The join K = H ∨ J satisfies the property c ∈ supp(δa ∗ δb)⇔
b ∈ supp(δǎ ∗ δc) ∀a, b, c ∈ X , if and only if both (H, ∗) and (J, ·) satisfy the property.

Proof. It is clear that both (H, ∗) and (J, ·) satisfy the property if the join does. Assume (H, ∗)
and (J, ·) satisfy the property, and let a, b, c ∈ K.

Case 1) a, b, c ∈ H . Then the property holds since ∗K = ∗H .

Case 2) a, b, c ∈ J̃ . Then

c ∈ supp(δa ∗ δb) ⇐⇒ c ∈ supp(δa · δb) ⇐⇒ b ∈ supp(δǎ · δc) ⇐⇒ b ∈ supp(δǎ ∗ δc).

Case 3a) a ∈ H and b, c ∈ J̃ . Then

c ∈ supp(δa ∗ δb) = supp(δb) ⇐⇒ b ∈ supp(δc) = supp(δǎ ∗ δc).

Case 3b) a, c ∈ J̃ and b ∈ H . Then

c ∈ supp(δa ∗ δb) = supp(δa) ⇐⇒ H ⊆ supp(δǎ ∗ δc) ⇐⇒ b ∈ supp(δǎ ∗ δc).
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Case 3c) a, b ∈ J̃ and c ∈ H . Then

c ∈ supp(δa ∗ δb) ⇐⇒ ǎ = b ⇐⇒ b ∈ supp(δǎ) = supp(δǎ ∗ δc).

Case 4) One element (say a) in J̃ and the other two in H . Then it is not possible to have
c ∈ supp(δa ∗ δb) = supp(δa) = {a}. Nor is it possible to have b ∈ supp(δǎ ∗ δc) = supp(δǎ) =
{ǎ}.

4 Generalized Hypergroup Join Examples

Joins of simple Z2(θ) systems, described in Example 2.8, have previously been developed when
the Z2(θ) are groups or hypergroups (0 < θ ≤ 1). In the examples given here, the Z2(θ) are
allowed to be signed (θ > 1), leading to the rise of semi-bounded systems.

Example 4.1. For n ∈ N, let Z2(n) = {0, n} so that each Z2(n) is a two-element signed hyper-
group with δn ∗ δn = nδ0 + (1− n)δn, and Z2(n) ∩Z2(m) = {0} whenever n 6= m. Further, let
K1 = Z2(1) and, for n > 1, let Kn = Kn−1 ∨ Z2(n).

Note that forming Kn = Kn−1 ∨Z2(n) uses the normalized Haar measure on Kn−1, and the
discrete unit-normalized Haar measure on Z2(n).

Then K1 = {0, 1} is a group and, for n > 1, Kn = {0, 1, 2, ..., n} is a hermitian signed
hypergroup with convolution

δ0 ∗ δn = δn for all n ∈ Kn,
δn ∗ δm = δmax{n,m}, for all n 6= m, and

δn ∗ δn =
∑n−1
j=0 δj + (1− n)δn.

The norm-bounding constant on each Kn is kn = 2n− 1.

The normalized Haar measure on each Kn is

wn =
1
n

n∑
j=0

δj .

Example 4.2. The infinite join construction used in this example was originally described by
Jewett [3] for hypergroups. Infinite hypergroup joins are studied extensively in [2]. Here, an
infinite join of signed hypergroups gives rise to a semi-bounded generalized hypergroup.

Let K be the union of the sets (Kn) described in the previous example.

K =
⋃
n

Kn = {0, 1, 2, 3, ..........}.

The involution and convolution are formed, for n,m ∈ K, by noting that n,m ∈ Kmax {n,m}
and using the involution and convolution as defined on Kmax {n,m}. These are well-defined since,
by construction, Kn is a signed subhypergroup of Km whenever n ≤ m, and supp(δn ∗ δm) ⊆
Kmax {n,m}.

The resulting space is the discrete, unbounded, semi-bounded, hermitian, commutative, signed
and normal generalized hypergroup on N0 = {0, 1, 2, 3, ...} that was described in Example 2.9.

Example 4.3. Vrem showed how a hypergroup space very similar to this example can result
from a projective limit of joins ([10], Example 4.5, page 494).

Let (H, ∗) = {1/2, 1/3, 1/4, ......., 0} be the one-point compactification of the set
{1/n : n ∈ N, n ≥ 2}. The space is hermitian, the identity is e = 0, and the convolution is given,
for x = 1/n, y = 1/m ∈ H , by

δx ∗ δy = δmax{x,y} if x 6= y, and

δ1/n ∗ δ1/n = −δ1/n + (3/2)n−2
∞∑

p=n+1

(2/3)p−2δ1/p.
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The norm bounding constant is k = 3. To see this, note that ‖δx ∗ δy‖ = 1 if x 6= y, and

‖δ1/n ∗ δ1/n‖ = 1 + (3/2)n−2
∞∑

p=n+1

(2/3)p−2 = 3.

The normalized Haar measure on H is given by wH({1/n}) = (2/3)n−2 and, for A ⊆ H ,

wH(A) =
∑

x∈A\{0}

wH(x).

Example 4.4. This final example is unbounded, semi-bounded, hermitian, commutative, normal,
and has a Haar measure, but it is not discrete or compact.

Let (H, ∗) = {1/2, 1/3, 1/4, ......., 0} be the signed hypergroup from Example 4.3. Let
(J, ·) = N0 = {0, 1, 2, 3, ...} be the semi-bounded generalized hypergroup from Example 2.9.

To review, the convolution on (J, ·) is

δn · δm = δmax{n,m} if n 6= m;
δn · δn =

∑n−1
j=0 δj + (1− n)δn.

Then the join K = H ∨ J = {0, ..., 1/n, ..., 1/3, 1/2, 1, 2, 3, ...} will be a semi-bounded
locally compact generalized hypergroup that is not bounded or discrete or compact.

The identity is e = 0, and the convolution is

δx ∗ δy = δmax{x,y} if x 6= y;

δ1/n ∗ δ1/n = −δ1/n + (3/2)n−2
∑
p>n

(2/3)p−2δ1/p for 1/n < 1;

δn ∗ δn =
∞∑
p=2

(2/3)p−2δ1/p +
n−1∑
j=1

δj + (1− n)δn for n ≥ 1;

For x, y ∈ H , or if x 6= y, the norms ‖δx ∗ δy‖ are bounded by k = 3. The norms are not
bounded on J and, for n ∈ J , the semi-bounded function is given by

γ(n) = sup
m∈N0

{‖ δn ∗ δm ‖} = 2n− 1 <∞.

The Haar measure on K is w = wH +wJ . That is w({1/n}) = (2/3)n−2 for 1/n ∈ H \ {0},
w({n}) = 1 for n ∈ J̃ and, for A ⊆ K,

w(A) =
∑

x∈A\{0}

w(x).

Conclusion: In [6] it was shown that discrete semi-bounded generalized hypergroups can arise
naturally as the dual space of a standard hypergroup. Here we have shown that semi-bounded
generalized hypergroups, both discrete and non-discrete, can arise arise naturally through Joins.
In particular, since every compact hermitian group, and every known hypergroup, is normal and
has a Haar measure, joining any such group or hypergroup with a semi-bounded generalized
hypergroup will result in a semi-bounded generalized hypergroup.
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