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Abstract In this paper, we focus on obtaining the closed-form solution for the following
bidimensional system of higher-order rational difference equations:

u
(1)
n+1 =

1

3 − 2u(2)n−m

, u
(2)
n+1 =

1

3 − 2u(1)n−m

, n,m ∈ N0,

where the initial values u
(1)
−j and u

(2)
−j , j ∈ {0, 1, ...,m} are real numbers not equal to 3/2. We

show that the solutions of this system are associated with Mersenne numbers and/or Mersenne-
Lucas numbers. It is shown that the global stability of positive solutions of this system holds.
Finally, we provide numerical examples to illustrate our results.

1 Introduction

In recent decades, there has been a growing interest in determining the behavior of the solutions
of difference equations or systems (see., [1], [2], [21], [22]) as the main problem in the theory of
difference equations. One of the ways to treat this problem is to provide solutions of difference
equations or systems. So, the search for solutions in the closed form of difference equations
and/or systems has attracted the attention of many mathematicians (see., [3]−[4], [15]−[26],
[33]−[35], [38]−[39]). Their application is prevalent in modeling the evolutionary patterns of
variables like exchange rates, particularly when data is sampled at discrete time intervals. No-
tably, in econometrics, stochastic terms are often integrated when modeling difference equations
(see., [5]−[11], [27]−[32]). Furthermore, at the beginning of the 18th century, the following
homogeneous linear difference equations of the 2nd-order were solved by De Moivre [14],

un+1 = αun + βun−1, n ≥ 1,

where α, β ∈ R or C such that β ̸= 0, in particular, we give information about Mersenne se-
quence that establishes a significant part of our study, defined as follows

Mn+1 = 3Mn − 2Mn−1, n ≥ 1,

with initial conditions M0 = 0 and M1 = 1. The following Binet formula of the Mersenne
numbers gives, Mn = (an − bn) / (a− b) , where a = 2 and b = 1 (see., [12]), and the closed-
form expression for the Mersenne-Lucas numbers are mn = an + bn (see., [36], [37]). This
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led to the emergence of a new problem, which is how to turn nonlinear difference equations
or systems into linear difference equations or systems. Now, in this paper, we seek to provide
a class of system of nonlinear difference equations which can be solved in explicit form, but
the solutions are expressed by Mersenne numbers, is the following bidimensional system of
nonlinear difference equations,

u
(1)
n+1 =

1

3 − 2u(2)n−m

, u
(2)
n+1 =

1

3 − 2u(1)n−m

, n,m ∈ N0, (1.1)

and the initial values u(1)−m, ..., u
(1)
0 , u

(2)
−m, ..., u

(2)
0 are real numbers not equal to 3/2.

2 Main results

To solve system (2.5) , we need to utilize the following lemmas.

Lemma 2.1. Consider the homogeneous linear difference equation with constant coefficients

γn+1 − 3γn + 2γn−1 = 0, n ≥ 0, (2.1)

with initial conditions γ0, γ−1 ∈ R. Then,

∀n ≥ 0, γn = γ0Mn+1 − 2γ−1Mn,

where (Mn, n ≥ 0) is the Mersenne sequence.

Proof. The difference equation (2.1) is ordinarily solved using the characteristic polynomial,

λ2 − 3λ+ 2 = (λ− 2) (λ− 1) = 0,

and the roots of this equation are
λ1 = a, λ2 = b.

These roots are linked to the roots of the Mersenne number sequence. The closed form general
solution of the equation (2.1) is given by

∀n ≥ −1, γn = c1a
n + c2b

n,

where γ0, γ−1 are initial values such that{
γ0 = c1 + c2

γ−1 =
c1

a
+

c2

b

,

and c1, c2 are given by:
c1 = a (γ0 − γ−1) , c2 = aγ−1 − bγ0,

after some calculations, we get

γn = a (γ0 − γ−1) a
n + (aγ−1 − bγ0) b

n

= γ0

(
an+1 − bn+1

a− b

)
− 2γ−1

(
an − bn

a− b

)
.

The lemma is proved.

Lemma 2.2. Consider the homogeneous linear difference equation with constant coefficients

δn+1 + 3δn + 2δn−1 = 0, n ≥ 0, (2.2)

with initial conditions δ0, δ−1 ∈ R. Then,

∀n ≥ 0, δn = (−1)n (δ0Mn+1 + 2δ−1Mn) ,

where (Mn, n ≥ 0) is the Mersenne sequence.
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Proof. The difference equation (2.2) is ordinarily solved using the characteristic polynomial,
λ2 + 3λ+ 2 = 0, and the roots of this equation are

λ1 = −a, λ2 = −b.

These roots are linked to the roots of the Mersenne number sequence. The closed form general
solution of the equation (2.2) is given by

∀n ≥ −1, δn = (−1)n (c̃1a
n + c̃2b

n) ,

where δ0, δ−1 are initial values such that δ0 = c̃1 + c̃2

δ−1 = − c̃1

a
− c̃2

b

,

and c̃1, c̃2 are given by:
c̃1 = a (δ0 + δ−1) , c̃2 = −bδ0 − aδ−1,

after some calculations, we get

δn = (−1)n
(
a (δ0 + δ−1) a

n + (−bδ0 − aδ−1) b
3n)

= (−1)n
(
δ0

(
an+1 − bn+1

a− b

)
+ 2δ−1

(
an − bn

a− b

))
.

The lemma is proved.

Lemma 2.3. Consider the following system of difference equations{
v
(1)
n+1 = 3v(2)n − 2v(1)n−1

v
(2)
n+1 = 3v(1)n − 2v(2)n−1

, n ≥ 0, (2.3)

with initial conditions v(1)−1, v
(1)
0 , v

(2)
−1, v

(2)
0 ∈ R. Then, we have:

v
(1)
2n = v

(1)
0 M2n+1 − 2v(2)−1M2n, v

(2)
2n = v

(2)
0 M2n+1 − 2v(1)−1M2n,

v
(1)
2n+1 = v

(2)
0 M2(n+1) − 2v(1)−1M2n+1, v

(2)
2n+1 = v

(1)
0 M2(n+1) − 2v(2)−1M2n+1.

Proof. From system (2.3), we obtain the following system v
(1)
n+1 + v

(2)
n+1 = 3

(
v
(1)
n + v

(2)
n

)
− 2

(
v
(1)
n−1 + v

(2)
n−1

)
v
(1)
n+1 − v

(2)
n+1 = −3

(
v
(1)
n − v

(2)
n

)
− 2

(
v
(1)
n−1 − v

(2)
n−1

) , n ≥ 0, (2.4)

Using the change of variables γn = v
(1)
n +v

(2)
n and δn = v

(1)
n −v

(2)
n , we can write the system(2.4)

as {
γn+1 = 3γn − 2γn−1

δn+1 = −3δn − 2δn−1
, n ≥ 0,

by Lemmas 2.1 − 2.2, we have

∀n ≥ 0, γn = γ0Mn+1 − 2γ−1Mn,

∀n ≥ 0, δn = (−1)n (δ0Mn+1 + 2δ−1Mn) ,

hence, the closed form general solution of the system (2.3) is(
v
(1)
n , v

(2)
n

)
=

(
(γn + δn)

/
2 , (γn − δn)

/
2
)
, n ≥ 0. The lemma is proved.
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2.1 On the system (2.5)

In this subsection, we consider the following 1st-order system of difference equations,

u
(1)
n+1 =

1

3 − 2u(2)n

, u
(2)
n+1 =

1

3 − 2u(1)n

, n ∈ N0. (2.5)

To find the closed form of the solutions of the system (2.5) we consider the following change
variables

u(1)n =
v
(2)
n−1

v
(1)
n

, u(2)n =
v
(1)
n−1

v
(2)
n

,

then the system (2.5) becomes{
v
(1)
n+1 = 3v(2)n − 2v(1)n−1

v
(2)
n+1 = 3v(1)n − 2v(2)n−1

, n ≥ 0.

By Lemma 2.3, we can easily obtain the closed-form general solution of the equation (2.5). This
is summarized in the following theorem:

Theorem 2.4. Let
{
u
(1)
n , u

(2)
n , n ≥ 0

}
be a solution of equation (2.5). Then,

u
(1)
2n =

M2n − 2u(1)0 M2n−1

M2n+1 − 2u(1)0 M2n

,

u
(1)
2n+1 =

M2n+1 − 2u(2)0 M2n

M2(n+1) − 2u(2)0 M2n+1

,

u
(2)
2n =

M2n − 2u(2)0 M2n−1

M2n+1 − 2u(2)0 M2n

,

u
(2)
2n+1 =

M2n+1 − 2u(1)0 M2n

M2(n+1) − 2u(1)0 M2n+1

,

where (Mn, n ≥ 0) is the Mersenne sequence.

Proof. Straightforward and hence omitted.

2.2 On the system (1.1)

In this paper, we study the System (1.1), which is an extension of System (2.5). Therefore, the
System (1.1) can be written as follows

u
(1)
(m+1)(n+1)−t

=
1

3 − 2v(2)(m+1)n−t

, v
(2)
(m+1)(n+1)−t

=
1

3 − 2u(1)(m+1)n−t

,

for t ∈ {0, 1, ...,m} and n ∈ N. Now, using the following notation,

u
(1)
n,t = u

(1)
(m+1)n−t

, u
(2)
n,t = u

(2)
(m+1)n−t

, t ∈ {0, 1, ...,m} ,

we can get (m+ 1)−systems similar to System (2.5),

u
(1)
n+1,t =

1

3 − 2u(2)n,t

, u
(2)
n+1,t =

1

3 − 2u(1)n,t

, n ∈ N0,

for t ∈ {0, 1, ...,m} . Through the above discussion, we can introduce the following Theorem
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Theorem 2.5. Let
{
u
(1)
n , u

(2)
n , n ≥ −m

}
be a solution of equation (1.1). Then, for t ∈ {0, 1, ...,m} ,

u
(1)
2(m+1)n−t

=
M2n − 2u(1)−tM2n−1

M2n+1 − 2u(1)−tM2n

,

u
(1)
(m+1)(2n+1)−t

=
M2n+1 − 2u(2)−tM2n

M2(n+1) − 2u(2)−tM2n+1

,

u
(2)
2(m+1)n−t

=
M2n − 2u(2)−tM2n−1

M2n+1 − 2u(2)−tM2n

,

u
(2)
(m+1)(2n+1)−t

=
M2n+1 − 2u(1)−t−M2n

M2(n+1) − 2u(1)−tM2n+1

,

where (Mn, n ≥ 0) is the Mersenne sequence.

Proof. The proof of Theorem 2.5 is based on Theorem 2.4 for (m+ 1)−systems (1.1).

Corollary 2.6. Let
{
u
(1)
n , u

(2)
n , n ≥ −m

}
be a solution of equation (1.1). Then, for t ∈ {0, 1, ...,m} ,

u
(1)
2(m+1)n−t

=
m2n+1 − 3 − 4u(1)−t (m2n−1 − 2)

2m2n+1 − 4 − 2u(1)−t (m2n+1 − 3)
,

u
(1)
(m+1)(2n+1)−t

=
2m2n+1 − 4 − 2u(2)−t (m2n+1 − 3)

m2n+3 − 3 − 4u(2)−t (m2n+1 − 2)
,

u
(2)
2(m+1)n−t

=
m2n+1 − 3 − 4u(2)−t (m2n−1 − 2)

2m2n+1 − 4 − 2u(2)−t (m2n+1 − 3)
,

u
(2)
(m+1)(2n+1)−t

=
2m2n+1 − 4 − 2u(1)−t− (m2n+1 − 3)

m2n+3 − 3 − 4u(1)−t (m2n+1 − 2)
,

where (mn, n ≥ 0) is the Mersenne-Lucas sequence.

Proof. We see that it suffices to remark

2M2n = m2n+1 − 3 and M2n+1 = m2n+1 − 2, (see., [37]).

Corollary 2.7. Let
{
u
(1)
n , u

(2)
n , n ≥ −m

}
be a solution of equation (1.1). Then, for t ∈ {0, 1, ...,m} ,

u
(1)
2(m+1)n−t

=
Mnmn − 2u(1)−t

(
Mnmn−1 − 2n−1

)
Mn+1mn − 2n − 2u(1)−tMnmn

,

u
(1)
(m+1)(2n+1)−t

=
Mn+1mn − 2n − 2u(2)−tMnmn

Mn+1mn+1 − 2u(2)−t (Mn+1mn − 2n)
,

u
(2)
2(m+1)n−t

=
Mnmn − 2u(2)−t

(
Mnmn−1 − 2n−1

)
Mn+1mn − 2n − 2u(2)−tMnmn

,

u
(2)
(m+1)(2n+1)−t

=
Mn+1mn − 2n − 2u(1)−t−Mnmn

Mn+1mn+1 − 2u(1)−t (Mn+1mn − 2n)
,

where (Mn, n ≥ 0) is the Mersenne sequence and (mn, n ≥ 0) is the Mersenne-Lucas sequence.

Proof. We see that it suffices to remark

M2n = Mnmn and M2n+1 = Mn+1mn − 2n (see., [13]).
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Remark 2.8. There are many systems whose solutions can be expressed by Mersenne and Mersenne-
Lucas numbers, which are

u
(1)
n+1 =

1

ak − bku
(2)
n−m

, u
(2)
n+1 =

1

ak − bku
(1)
n−m

, n,m ∈ N0, k ≥ 1,

where (ak, bk) =
(
ak + bk, (ab)

k
)

∈ {(3, 2) ; (5, 4) ; (9, 8) ; (17, 16) ; ...} , k ≥ 1. Using the
results of Theorem 2.5, we get

u
(1)
2(m+1)n−t

=
M2kn − 2u(1)−tMk(2n−1)

Mk(2n+1) − 2u(1)−tM2kn

,

u
(1)
(m+1)(2n+1)−t

=
Mk(2n+1) − 2u(2)−tM2kn

M2k(n+1) − 2u(2)−tMk(2n+1)

,

u
(2)
2(m+1)n−t

=
M2kn − 2u(2)−tMk(2n−1)

Mk(2n+1) − 2u(2)−tM2kn

,

u
(2)
(m+1)(2n+1)−t

=
Mk(2n+1) − 2u(1)−t−M2kn

M2k(n+1) − 2u(1)−tMk(2n+1)

, k ≥ 1.

3 Global stability of positive solutions of (1.1)

In the following, we will study the global stability character of the solutions of system (1.1).
Obviously, the positive equilibriums of system (1.1) are

E1 =
(
u
(1)
1 , u

(1)
2

)
= (1, 1) , E2 =

(
u
(2)
1 , u

(2)
2

)
=

1
2
(1, 1) .

Let the functions h1, h2 : (0,+∞)
2(m+1) → (0,+∞) defined by

h1

((
u
(1)
0:m

)′
,
(
u
(2)
0:m

)′
)
=

1

3 − 2u(2)n−m

, h2

((
u
(1)
0:m

)′
,
(
u
(2)
0:m

)′
)
=

1

3 − 2u(1)n−m

,

where x0:m = (x0, x1, ..., xm)
′
. Now, it is usually useful to linearized system (1.1) around the

equilibrium point E2 in order to facilitate its study. For this purpose, introducing the vectors

X ′
n :=

((
U (1)

n

)′
,
(
U (2)

n

)′
)

where U (1)
n =

(
u
(1)
n , u

(1)
n−1, ..., u

(1)
n−m

)′

and U (2)
n =

(
u
(2)
n , u

(2)
n−1, ..., u

(2)
n−m

)′
. With these notations, we obtain the following representa-

tion
Xn+1 = FmXn, (3.1)

where

Fm =


O′

(m−1) 0 O′
(m−1)

1
2

I(m−1) O(m−1) O(m−1) O(m−1)

O′
(m−1)

1
2 O(m−1) 0

O(m−1) O(m−1) I(m−1) O(m−1)

 ,

with O(k,l) denotes the matrix of order k × l whose entries are zeros, for simplicity, we set
O(k) := O(k,k) and O(k) := O(k,1) and I(m) is the m × m identity matrix. We summarize the
above discussion in the following theorem

Theorem 3.1. The positive equilibrium point E2 is locally asymptotically stable.

Proof. After some preliminary calculations, the characteristic polynomial of Fm is given by:

PFm (λ) = det
(
Fm − λI(2(m+1))

)
= Λ1 (λ)− Λ2 (λ) ,

where Λ1 (λ) = λ2(m+1) and Λ2 (λ) =
1
4 , then |Λ2 (λ)| < |Λ1 (λ)| ,∀λ : |λ| = 1. By Rouche’s

Theorem, all zeros of Λ1 (λ) − Λ2 (λ) = 0 lie in the unit disc |λ| < 1. Thus, the positive
equilibrium point E2 is locally asymptotically stable.
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Corollary 3.2. For every well defined solution of system (1.1), we have limu
(1)
n = limu

(2)
n = 1

2 .

Proof. From Theorem 2.5, we have

limu
(1)
2(m+1)n−t

= lim
M2n − 2u(1)−tM2n−1

M2n+1 − 2u(1)−tM2n

= lim
1 − 2u(1)−t

M2n−1
M2n

M2n+1
M2n

− 2u(1)−t

=
1 − u

(1)
−t

2 − 2u(1)−t

=
1
2
,

limu
(1)
(m+1)(2n+1)−t

= lim
M2n+1 − 2u(2)−tM2n

M2(n+1) − 2u(2)−tM2n+1

= lim
1 − 2u(2)−t

M2n
M2n+1

M2(n+1)

M2n+1
− 2u(2)−t

=
1 − u

(2)
−t

2 − 2u(2)−t

=
1
2
.

The rest of the proof, showing that limu
(1)
n is similar to the proof for limu

(2)
n , completes the

proof of Corollary 3.2.

The following result is an immediate consequence of Theorem 3.1 and Corollary 3.2.

Corollary 3.3. The unique positive equilibrium point E2 is globally asymptotically stable.

4 Numerical Examples

In order to clarify and shore theoretical results from the previous section, we present some inter-
esting numerical examples in this section.

Example 4.1. We consider an interesting numerical example for the system of difference equa-
tions (1.1) when m = 1 with the initial conditions u

(1)
−1 = 1.3, u(1)0 = 2, u(2)−1 = 0.2 and

u
(2)
0 = 1.1. The plot of the solutions is shown in Figure 1.

0 5 10 15 20 25 30 35 40

n

-1

-0.5

0

0.5

1

1.5

2

2.5

3

u n(1)
,u n(2)

u
n
(1)

u
n
(2)

Figure1.The plot of the solutions of system (1.1),when m = 1 and we put the initial

conditions u(1)−1 = 1.3, u(1)0 = 2, u(2)−1 = 0.1 and u
(2)
0 = 1.1.
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Example 4.2. We consider an interesting numerical example for the system of difference equa-
tions (1.1) when m = 2 with the initial conditions

i 0 1 2
u
(1)
−i −3 −4 −1

u
(2)
−i −1 −3 0

Table 1. The initial conditions.

The plot of the solutions is shown in Figure 2.

0 5 10 15 20 25 30 35 40 45

n

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

u n(2)
,u n(2)

u
n
(1) u

n
(2)

Figure 2. The plot of the solutions of system (1.1); when we put the initial conditions in
Table 1.

Example 4.3. We consider an interesting numerical example for the system of difference equa-
tions (1.1) when m = 3 with the initial conditions

i 0 1 2 3

u
(1)
−i 0.3 0.1 0.2 0.2

u
(2)
−i 0.4 0.3 0.1 0.3

Table 2. The initial conditions.

The plot of the solutions is shown in Figure 3.

0 10 20 30 40 50 60

n

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

u n(1)
,u n(2)

u
n
(1) u

n
(2)

Figure 3. The plot of the solutions of system (1.1); when we put the initial conditions in
Table 2.

In these examples, we show that the solutions of the system (1.1) for some cases are globally
asymptotically stable.
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