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Abstract The purpose of the present paper is to make a mathematical study of the differences
and relations among possible structures inherent in an object, as well as of the whole structure
constituted by them (i.e., the structure of structures), against the background of the structuralism
by Claude Lévi-Strauss and others. Our discussion focuses on Blanchard’s categorical reformu-
lation of the notion of structure species introduced originally by Bourbaki. Under the equivalence
between structure species and constructive functors (in the sense of Blanchard), we discuss the
issue of how much information concerning a given category is contained in the knowledge about
structure species on that category. The main result of the present paper asserts that a category
can be reconstructed, up to a certain slight indeterminacy, from the category of structure species
on it. This result is partially motivated by various reconstruction theorems that have been shown
in the context of anabelian geometry.

1 Introduction: Lévi-Strauss’ structuralism

1.1 Structure of structures

Structuralism is a general theory of culture and methodology that focuses on relationships rather
than individual objects, or alternatively, where objects are defined by the set of relationships of
which they are part and not by the qualities possessed by them taken in isolation. According
to this mode of knowledge, phenomena of human life are not intelligible except through their
interrelations. These relations constitute a structure, and behind local variations in the surface
phenomena there are constant laws of abstract structure (cf. [4], [21], [2]).

Structuralism in Europe developed in the early 20th century from insights in the field of lin-
guistics of, mainly, Ferdinand de Saussure and the subsequent Prague, Moscow, and Copenhagen
schools of linguistics. After World War II, an array of scholars in the humanities borrowed Saus-
sure’s concepts for use in their respective fields. By the early 1960s, structuralism as a movement
was coming into its own and some believed that it offered a single unified approach to human
life that would embrace all disciplines. Claude Lévi-Strauss, a French anthropologist, was the
first such scholar, sparking a widespread interest in structuralism.

Lévi-Strauss defined “structure" as a whole consisting of elements and relations between ele-
ments, which retain their invariant properties through a series of transformations. To be precise,
a model with structural value satisfies several requirements described as follows (cf. [13], Part
5, Chap. XV):

(i) The structure exhibits the characteristics of a system. It is made up of several elements,
none of which can undergo a change without effecting changes in all the other elements.

(ii) For any given model there should be a possibility of ordering a series of transformations
resulting in a group of models of the same type.

(iii) The above properties make it possible to predict how the model will react if one or more of
its elements are submitted to certain modifications.
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(iv) The model should be constituted so as to make immediately intelligible all the observed
facts.

The structures listed, at least, as illustrations are kinships, political ideologies, mythologies,
ritual, art, code of etiquette, and even cooking (cf. [21]). The discernment of these structures
and their comparative analysis, which takes into account their distribution both historically and
geographically, is indeed the subject matter of structural anthropology.

In “The Elementary Structures of Kinship" (cf. [14]), Claude Lévi-Strauss examined kin-
ship systems from a structural point of view and demonstrated how apparently different social
organizations were different permutations of a few basic kinship structures. The kinship system
provides a way to order individuals according to certain rules; social organization is another way
of ordering individuals and groups; social stratifications, whether economic or political, provide
us with a third type; and all these orders can themselves be ordered by showing the kinds of rela-
tionship which exist among them, i.e., how they interact with one another on both the synchronic
and the diachronic levels.

One may construct models valid not only for one type of order (kinship, social organization,
economic relations, etc.) but where numerous models for all types of order are themselves
ordered inside a total model. In [21], Chap. II, N. Rotenstreich explained that

We do not start out with scattered concepts: we start with structures and move to
further structures. We start with order and move from another order or to an order of
orders. There is a structure to the relation between these orders or structures. This
“structure of structures" 1 is not just a static relation of coexistence, i.e. language
beside kinship, etc., or even not one of subordination whereby a narrow structure such
as rites is comprised in or is secondary to a wider structure such as society.

1.2 Main result of this paper

In the present paper, we make a mathematical study of the differences and relations among pos-
sible structures inherent in an object, as well as the whole structure constituted by them (i.e., the
structure of structures), against the background of the structuralism by Lévi-Strauss and others2.
Our discussion focuses on some objects treated in structural theory, starting with Bourbaki. As
is well known, Bourbaki, the collective pseudonym of a group of predominantly French math-
ematicians, undertook, in the mid-20th century, the task of making a unified development of
central parts of modern mathematics in largely formalized language.3 This resulted in a long
series of books “Éléments de Mathématique" that became very influential. In a manifesto writ-
ten by Bourbaki in 1950, some main principles of their structuralist view of mathematics were
presented.

In one of these books (cf. [3]), Bourbaki developed their theory of structures in a set-
theoretic manner; the building blocks are called structure species. Roughly speaking, a structure
species is a set, or a collection of sets, endowed with relations and operations not only among
their members but also among collections of elements of these sets, relations among them, etc.
A basic example is the structure species of ordered sets, where, from a set S, we obtain (by a
suitable echelon construction scheme) the power set P (S×S) of the product S×S and a binary
relation s ∈ P (S × S) (called the typical characterization) equipped with a relation describing
the axiom of an ordered set.

In [1], Blanchard introduced the concept of structure species on a category very close to
the concept of structure species in the sense of Bourbaki and proved that it is equivalent to the
concept of structure species in the sense of Sonner (cf. [22]). The purpose of the present paper
is to consider “structure of structures" formulated in terms of Blanchard’s structure species and
investigate how this concept can capture the essence of things. That is, we discuss the issue

1Lévi-Strauss developed a similar idea with the term “order of orders" (cf. [13]).
2Our work was written with the aim of building new bridges between mathematics and humanities studies, taking on the

work by Lévi-Strauss. It is partly inspired by some interesting articles by P. J. Larcombe, which incorporate a multicultural
point of view (cf., e.g., [10], [11]).

3In 1943, André Weil, one of the collaborators in Bourbaki, met Claude Lévi-Strauss in New York, which led to a small
collaboration. By using a mathematical model based on group theory, Weil described marriage rules for four classes of people
within Australian aboriginal society. This contribution appeared in an appendix of Lévi-Strauss’s book (cf. [14]).
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of how much information concerning a given category is contained in the knowledge about the
structure of structure species on that category.

The following is the main result of the present paper, which asserts that a category can be
reconstructed, up to a certain slight indeterminacy, from the category of structure species on it
(the proof will be given in § 3):

Theorem 1.1. Let us fix a universe U . Let X and X ′ be connected U -small categories. Denote
by SpX and SpX′ the categories of structure species on X and X ′ respectively. Also, denote
by Xop the opposite category of X . Then, the following two conditions are equivalent to each
other:

(a) X ∼= X ′ or Xop ∼= X ′.

(b) SpX ∼= SpX′ .

Here, given two categories C, D, we write C ∼= D if C is equivalent to D.

1.3 Remark on Theorem 1.1

Finally, we remark that Theorem 1.1 can be regarded as a variant of various reconstruction
theorems that have been shown in the context of anabelian geometry (cf. Remark 3.11). In
1983, A. Grothendieck wrote a letter to G. Faltings (cf. [7]), outlining what is today known
as the anabelian conjectures. (Many of the claims based on these conjectures have now been
proved by mathematicians.) These conjectures concern the possibility of reconstructing certain
arithmetic varieties (e.g., hyperbolic curve over a number or a p-adic local field) from their étale
fundamental groups.

Our study is partially motivated by the anabelian philosophy of Grothendieck; this is because
a structure species, or equivalently a constructive functor (cf. Definition 2.4, (i)), on a category
X may be regarded, in some sense, as categorical realization of coverings over X (cf. [22],
§ 3). Moreover, if X is a (profinite) groupoid, then one can interpret Theorem 1.1 as a recon-
struction assertion for X by means of the fundamental group associated with the Galois category
of constructive functors over X with finite fibers (cf. Remark 2.10). Similar category-theoretic
reconstructions can be found in [16], [17], and [23].

2 Structures species and constructive functors

In this section, we recall structure species on a category defined by Blanchard and the equiva-
lence between structure species and constructive functors. After that, we examine constructive
functors on a groupoid.

2.1 Preliminaries on categories

Let C be a category. We denote by Ob(C) (resp., Ob(C); resp., Mor(C)) the set of objects (resp.,
the set of isomorphism classes of objects; resp., the set of morphisms) in C. For two objects
a, b ∈ Ob(C), we denote by MorC(a, b) or Mor(a, b) the set of morphisms a → b in C. Also, we
write

Mor{a, b} := Mor(a, b) ∪ Mor(b, a)

(hence Mor{a, b} = Mor{b, a} and Mor{a, a} = Mor(a, a)). Also, write

Mor(a, b)≇
(

resp., Mor{a, b}≇
)

for the subset of Mor(a, b) (resp., Mor{a, b}) consisting of non-invertible morphisms. An object
a in C is said to be minimal if it is not an initial object and any monomorphism b ↪→ a in C,
where b is not an initial object, is necessarily an isomorphism.

Next, we denote by Cop the opposite category of C. Also, given each functor F : C → D, we
shall write F op : Cop → Dop for the functor between the respective opposite categories naturally



ON THE CATEGORY OF STRUCTURE SPECIES 109

induced by F . We denote by C∼= the category whose objects are the elements of Ob(C) and
whose morphisms are the isomorphisms in Mor(C). Given two categories C, D, we shall write

C ∼= D (resp., C
isom∼= D) if C is equivalent (resp., isomorphic) to D.

Recall that a category C is said to be a groupoid if the morphisms in C are all invertible. By a
groupoid in C, we mean a subcategory D of C forming a groupoid such that, if a, a′ are objects
in D and u : a ∼→ a′ is an isomorphism in C, then u lies in Mor(D). A groupoid D in C is called
maximal if every object a in C isomorphic to some object in D belongs to Ob(D).

A category C is said to be a preorder if Mor(a, b) has at most one element for all objects
a, b ∈ Ob(C). We write a < b if Mor(a, b) is nonnempty; the binary relation “<" in Ob(C) is
reflexive and transitive. If in addition “<" is symmetric, C is said to be an order. Note that “<" is
symmetric precisely when the only isomorphisms in the preorder C are the identity morphisms. If
(T,<) is a partial order, then we write T⊥ for the order defined in such a way that Ob(T⊥) = T
and Mor(a, b) ̸= ∅ precisely when a < b.

Throughout the present paper, we shall fix a universe U . Denote by Set the category consist-
ing of U -small sets and maps between them. Denote by Cat the category consisting of U -small
categories and functors between them. Moreover, denote by Ord the full subcategory of Cat
consisting of U -small orders. To each U -small set T , we associate the category Dis(T ), whose
objects are the elements in T and whose only morphisms are identity morphisms. The assign-
ment T 7→ Dis(T ) defines a functor Dis : Set → Ord.

2.2 Structure species

Let us recall the categorical reformulation of Bourbaki’s structure species discussed in [1]. Fix
a U -small category X .

Definition 2.1 (cf. [1], § 2, Definition 2.1). Denote by J : X∼= ↪→ X the natural inclusion.

(i) Let us consider a pair

Σ := (E,S)

consisting of two functors E : X → Ord, S : X∼= → Set. We say that Σ is a (covariant)
structure species on X if the composite Dis ◦ S is a subfunctor of E ◦ J , meaning that,
for every a ∈ Ob(X∼=), the category (Dis ◦ S)(a) is a subcategory of (E ◦ J)(a) and the
inclusion (Dis ◦ S)(a) ↪→ (E ◦ J)(a) is functorial with respect to a.

(ii) Let Σ := (E,S) and Σ′ := (E′, S′) be structure species on X . A morphism of structure
species from Σ to Σ′ is defines as a natural transformation ϕ : S → S′ such that, for every
morphism u : a → b in X and for every U ∈ Ob(S(a)) and V ∈ Ob(S(b)), we have
E′(u)(ϕa(U)) < ϕb(V ) whenever E(u)(U) < V .

Remark 2.2. Let Σ := (E,S) be a structure species on X . As mentioned in the Remark follow-
ing [1], § 2, Definition 2.1, E and S respectively correspond to the echelon and structure scheme
of Σ in the traditional terminology of Bourbaki (cf. [3], Chap. IV, § 1).

Example 2.3 (Continuous maps on topological spaces, [1], § 5). For each U -small set T , we
shall write P (T ) for the power set (i.e., the set of subsets) of T . Let P+ (resp., P−) be the
functor Set → Set (resp., Setop → Set) defined as follows:

• For each object T in Set, we set P+(T ) := P (T ) (resp., P−(T ) := P (T )).

• For each morphism f : T → T ′ in Set, we set P+(f) (resp., P−(f)) to be the map
P+(T ) → P+(T ′) given by U 7→ f(U) for every U ∈ P+(T ) (resp., the map P−(T ′) →
P−(T ) given by U ′ 7→ f−1(U ′) for every U ′ ∈ P (T ′)).

The maps P+(f) and P−(f) defined for any morphism f : T → T ′ in Set are non-decreasing
when both P (T ) (= P+(T ) = P−(T )) and P (T ′) (= P+(T ′) = P−(T ′)) are equipped with the
order structures determined by “⊆". Hence, the assignments T 7→ (P+(T ),⊆)⊥ and T 7→
(P−(T ),⊆)⊥, respectively, induce functors P+ : Set → Ord and P− : Setop → Ord.
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Now, let Z be a U -small subcategory of Setop. We write E := P+ ◦ (P−|Z) : Z → Set →
Ord. For each T ∈ Ob(Z), denote the set of topologies on T by T op(T ). If f : T ∼→ T ′ is a
bijection of U -small sets, then P+(P−(f)) induces a bijection T op(f) : T op(T ′)

∼→ T op(T ).
The assignments T 7→ T op(T ) and f 7→ T op(f) together yield a functor T op : Z∼= → Set. The
resulting pair

Σtop := (E, T op)

forms a structure species on Z.

We shall denote by

SpX

the category consisting of structure species on X and morphisms between them. If there exists
an equivalence of categories X

∼→ X ′ (where X ′ is another U -small category), then we can
construct an equivalence of categories SpX

∼→ SpX′ in an evident manner.

2.3 Constructive functors

Next, let us recall an equivalent realization of a structure species, i.e., a constructive functor in
the sense of [1]. In [22], § 2, Definition 3, this notion was introduced under the name “structure
species".

Definition 2.4 (cf. [1], § 3, Definitions 3.1 and 3.2). (i) Let F : Y → X be a functor between
U -small categories. We say that F is a constructive functor on X (or simply, F is con-
structive) if it satisfies the following conditions:

– F is faithful.

– For every a ∈ Ob(Y ) and for every isomorphism u in X with domain F (a), there ex-
ists uniquely an isomorphism uY in Y with domain a satisfying the equality F (uY ) =
u.

We often refer to the second condition as the lifting property on F .

(ii) Let F : Y → X and F ′ : Y ′ → X be constructive functors on X . A morphism of
constructive functors from F to F ′ is defined as a functor Φ : Y → Y ′ satisfying the
equality F ′ ◦ Φ = F .

We shall denote by

ConX

the category consisting of constructive functors on X and morphisms between them. One may
verify that ConX admits finite coproducts and fiber products. If f : X ′ → X is a functor between
U -small categories, then the assignment Y 7→ f∗(Y ) := Y ×X X ′ defines a functor

f∗ : ConX → ConX′ . (2.1)

Here, we shall construct a constructive functor associated to a structure species. Let Σ :=
(E,S) be a structure species on X . Denote by YΣ the category defined as follows:

• The objects of YΣ are pairs (a, T ) such that a ∈ Ob(X) and T ∈ S(a).

• The morphisms from (a, T ) to (a′, T ′) are morphisms u : a → a′ in X such that E(u)(T ) <
T ′, where “<" is the relation defined on the order E(a′). The composite law for morphisms
in YΣ is defined in a natural manner.

Moreover, we set

FΣ : YΣ → X
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to be the functor given by (a, T ) 7→ a and u 7→ u. This functor forms a constructive functor on
X (cf. [1], § 2, Propositions 2.1 and 2.2). To a morphism of structure species ϕ : Σ → Σ′, we
can associate a morphism of constructive functors Fϕ : FΣ → FΣ′ (but we will omit the details
of this construction). According to [1], § 4, Theorem 2, the assignments Σ 7→ FΣ and ϕ 7→ Fϕ

together define an equivalence of categories

SpX
∼→ ConX . (2.2)

2.4 Property of constructive functors

In this section, we observe one property of a constructive functor (cf. Proposition 2.7). Before
doing so, let us recall the connectedness of a category.

Definition 2.5. A category C is said to be connected if it is nonempty and for any pair of objects
a, b ∈ Ob(C), there exists a finite sequence (c1, · · · , cn) of objects in C such that c1 = a, cn = b,
and Mor{cj , cj+1} ≠ ∅ for any j = 1, · · · , n− 1.

Example 2.6. A category C is connected if it has either an initial object or a terminal object. In
particular, a category consisting of U -small sets containing either the empty set or a singleton is
connected.

Next, we prove the following assertion, which will be used in the subsequent discussion.

Proposition 2.7. Let F : Y → X and F ′ : Y ′ → X be constructive functors on X such that
Ob(Y ) ̸= ∅ and Y ′ is a connected groupoid. Also, let Φ : F → F ′ be a morphism of constructive
functors. Then, the maps Ob(Φ) : Ob(Y ) → Ob(Y ′) and Mor(Φ) : Mor(Y ) → Mor(Y ′)
induced by Φ are surjective.

Proof. By the assumption Ob(Y ) ̸= ∅, there exists an object aY in Y . Write aY ′ := Φ(aY ).
Now, let us take an arbitrary object bY ′ in Y ′. Since Y ′ is a connected groupoid, we can find
an isomorphism uY ′ : aY ′

∼→ bY ′ in Y ′. If we write u := F ′(uY ′), then the lifting property
on F implies that there exists an isomorphism uY : aY

∼→ bY in Y (for some bY ∈ Ob(Y ))
with F (uY ) = u. Since both uY ′ and Φ(uY ) are isomorphisms with domain aY ′ lifting u, the
lifting property on F again implies that uY ′ = Φ(uY ) and hence bY ′ = Φ(bY ). This shows the
surjectivity of Ob(Φ). The surjectivity of Mor(Φ) can be proved by using a similar argument,
so we will finish the proof here.

2.5 Constructive functor on a groupoid

This subsection deals with a specific constructive functor on a groupoid. From Proposition
2.9 described later, this constructive functor can be thought of as the universal covering of a
topological space or a graph (cf. Example 2.8, Remark 2.10).

Let G be a U -small groupoid and e an object in G. Suppose that G is connected, which
implies Mor(a, a′) ̸= ∅ for any a, a′ ∈ Ob(G). We shall set YG,e to be the category defined as
follows:

• The objects in YG,e are pairs (a, u) consisting of a ∈ Ob(G) and u ∈ Mor(e, a).

• The morphisms in YG,e from (a, u) to (a′, u′) are morphisms v : a → a′ satisfying u′ = v◦u.
The composition law for morphisms in YG,e is defined in an evident manner.

It is clear that YG,e is a connected groupoid and, for any (a, u), (a′, u′) ∈ Ob(YG,e), the set
Mor((a, u), (a′, u′)) has exactly one element. The assignments (a, u) 7→ a and v 7→ v together
define a functor

FG,e : YG,e → G,

which forms a constructive functor on G.
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Example 2.8. Let us consider the case where Ob(G) has exactly one element, which we denote
by ⊛. Denote by Aut(⊛) the automorphism group of ⊛. Then, the category YG,⊛ may be
regarded as the Cayley graph Cay(Aut(⊛)) of the group Aut(⊛) by taking the connection set as
Aut(⊛) itself, where the vertices and arcs in Cay(Aut(⊛)) are associated with the objects and
morphisms, respectively, in YG,⊛.

We shall prove the following proposition concerning the constructive functor FG,e.

Proposition 2.9. Let F : Y → G be a constructive functor on G.

(i) Denote by F−1(e) the preimage of the subset {e} (⊆ Ob(G)) via the map Ob(Y ) → Ob(G)
induced by F . Then, the map of sets

evF,e : Mor(FG,e, F )
∼→ F−1(e)

obtained by assigning Φ 7→ Φ((e, ide)) is bijective.

(ii) Suppose that Y is a connected groupoid. Then, any morphism of constructive functors Φ :
F → FG,e is an isomorphism. In particular, any endomorphism of FG,e is an isomorphism.

(iii) Suppose that Ob(Y ) ̸= ∅. Then, any monomorphism of constructive functors Φ : F ↪→ FG,e

is an isomorphism.

Proof. First, we prove the surjectivity of evF,e in assertion (i). Let eY be an element of F−1(e).
In what follows, we shall construct a morphism of constructive functors FG,e → F that is mapped
to eY via evF,e. Let us take an arbitrary object (a, u) of YG,e. Since F is constructive, there
exists a unique pair (aY , uY ) consisting of an object aY in Y and a morphism uY : eY → aY
with F (uY ) = u. Next, let v : (a, u) → (a′, u′) be a morphism in YG,e. Denote by vY the
unique lifting of v with domain aY . Since F is constructive, the morphism u′ (= v ◦ u) lifts
uniquely to a morphism in Y with domain eY . This implies a′Y = vY ◦ aY . Moreover, the lifting
property on F again implies that (ida)Y = idaY

and (v′ ◦ v)Y = v′Y ◦ vY for any morphism
v′ : (a′, u′) → (a′′, u′′). Thus, the assignments (a, u) 7→ aY and v 7→ vY define a morphism
ΦeY : FG,e → F , and this morphism satisfies evF,e(ΦeY ) = eY by construction. This implies
the surjectivity of evF,e.

Next, we prove the injectivity of evF,e. Let Φ be a morphism FG,e → F and write eY :=
evF,e(Φ). The problem is reduced to proving the equality Φ = ΦeY . To this end, let us take an
arbitrary element (a, u) of YG,e. Since u defines a morphism (e, ide) → (a, u) in YG,e, the image
Φ(u) defines a morphism eY (= Φ((e, ide))) → Φ((a, u)). This morphism is a unique lifting of
u ∈ Mor(G) with domain eY , so we have Φ((a, u)) = ΦeY ((a, u)). Thus, we obtain the equality
Φ = ΦeY , as desired. This completes the proof of the bijectivity of evF,e.

We prove assertion (ii). From Proposition 2.7 and the fact that YG,e is a connected groupoid,
it suffices to prove the injectivities of Ob(Φ) and Mor(Φ). Suppose that there exists two objects
cY , c′Y in Y with Φ(cY ) = Φ(c′Y ) =: (c, v). Since Y is a connected groupoid, there exists
an isomorphism vY : cY

∼→ c′Y in Y . The set Mor((c, v), (c, v)) coincides with {idv}, so the
equality Φ(vY ) = idv holds. The equality F = FG,e ◦ Φ implies F (vY ) = idY . But, by the
lifting property on F , vY must be equal to idcY , which implies cY = c′Y . This completes the
proof of the injectivity of Ob(Φ). A similar argument can be applied to prove the injectivity of
Mor(Φ) (so we omit the details).

Finally, we prove assertion (iii). Let Φ : F ↪→ FG,e be a monomorphism. Since Y ̸= ∅,
there exists a connected groupoid G0 in Y . The restriction F |G0 : G0 → G of F to G0 forms
a constructive functor on G. Then, it follows from assertion (ii) that the morphism Φ|G0 :
F |G0 → FG,e obtained by restricting Φ is an isomorphism. Here, suppose that there exists an
object a ∈ Ob(Y ) \ Ob(G0). Denote by G1 the groupoid in Y containing a (hence Ob(G0) ∩
Ob(G1) = ∅). For the same reason as above, the restriction Φ|G1 : F |G1 → FG,e of Φ to G1 forms
an isomorphism of constructive functors. Thus, we obtain two distinct morphisms (Φ|G0)

−1,
(Φ|G1)

−1 belonging to Mor(FG,e, F ) that coincide with each other after composing with Φ. This
contradicts the assumption that Φ is a monomorphism. This implies Ob(G0) = Ob(Y ). Next, if
there exists a morphism u ∈ Mor(Y ) \ Mor(G0), then the two morphisms idY and (Φ|G0)

−1 ◦ Φ

are distinct but identical to each other when composed with Φ. This is a contradiction, so the
equality Mor(Y ) = Mor(G0) must hold. This implies that Y = G0 and Φ = Φ|G0 . Thus, Φ

turns out to be an isomorphism.
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Let e′ be an object in G and w : e → e′ a morphism in G. Then, we obtain a morphism of
constructive functors

Φw := ev−1
FG,e′

((e, w−1)) : FG,e → FG,e′ . (2.3)

To be precise, this morphism is obtained by assigning (a, u) 7→ (a, u ◦ w−1) (for each (a, u) ∈
Ob(YG,e)) and v 7→ v (for each v ∈ Mor(YG,e)). From Proposition 2.9, (ii), Φw turns out to be an
isomorphism. The existence of Φw implies that the isomorphism class of the constructive functor
FG,e does not depend on the choice of e. By considering the case of e = e′ and applying again
Proposition 2.9, (ii), we see that the assignment w 7→ Φw defines an isomorphism of groups

ϕe := ev−1
FG,e,e

:
(
F−1
G,e(e) =

)
Aut(e) → AutConG

(FG,e), (2.4)

where AutConG
(FG,e) denotes the automorphism group of FG,e in ConG.

Remark 2.10. One may verify that the full subcategory Confin
G of ConG consisting of constructive

functors with finite fibers forms a Galois category (cf. [6], Exposé V, Théorèm 4.1 and Défi-
nition 5.1) by setting evF,e as the fiber functor. The above discussion shows that the resulting
fundamental group π1(Confin

G ; evF,e) of Confin
G with base point evF,e is isomorphic to the profinite

completion of the group Aut(e). Hence, if G is a profinite groupoid, then its equivalence class
can be reconstructed from the fundamental group π1(Confin

G ; evF,e). This fact is reminiscent of
“Grothendieck conjecture"-type theorems in anabelian geometry (cf. Remark 3.11).

Remark 2.11. The cultural model, as well as the paradigm for knowledge and practice, in the
modern Western world envisioned by the structuralism of Lévi-Strauss and others is character-
ized by an organizational structure of an arborescence system that looks for the origin of “things"
and for the culmination or conclusion of those “things". In this model, a small idea, like a seed,
takes root and grows into a tree with a sturdy trunk supporting numerous branches, all linked
to and traceable back to the original idea. 4 The results of Proposition 2.9 together with the
viewpoint of the previous Remark suggest that, in accordance with the picture of Lévi-Strauss’
structuralism, FG,e plays the role of a seed or a trunk in the system of structure species on G.

3 Proof of the main theorem

This section is devoted to proving Theorem 1.1. The nontrivial portion of that theorem is the im-
plication (b) ⇒ (a), which asserts that the equivalence class of a category X may be characterized
uniquely, up to a certain indeterminacy, from the categorical structure of SpX , or equivalently,
of ConX (cf. (2.3)).

In the following discussion, we will often speak of various things concerning ConX as be-
ing “reconstructed (or characterized) category-theoretically". By this, we mean that they are
preserved by an arbitrary equivalence of categories ConX

∼→ ConX′ (where X ′ is another
U -small category). For instance, the set of monomorphisms in ConX may be characterized
category-theoretically as the morphisms Φ : F → F ′ such that, for any F ′′, the map of sets
Map(F ′′, F ) → Map(F ′′, F ′) obtained by composing with Φ is injective. To simplify our no-
tation, however, we will omit explicit mention of this equivalence ConX

∼→ ConX′ , of X ′, and
of the various “primed" objects and morphisms corresponding to the original objects and mor-
phisms, respectively, in ConX .

Our tactic for completing the proof of the implication (b) ⇒ (a) (i.e., recognizing the structure
of X) is, as in [16], [17], and [23], to reconstruct step-by-step various partial information about
X from the categorical structure of ConX .

3.1 Reconstruction of the objects and their automorphisms

The first step of the proof is to reconstruct the set of isomorphism classes of objects in ConX and
their automorphism groups. Let us fix a U -small category X . Also, let us fix a skeleton X of X

4Due to criticism of how an object can be explained only with such a picture, a perspective that focuses (not only on the
origin and conclusion but) on the process of its creation and the possibility of its change arose later. It led to the establishment
of the position known today as post-structuralism. In this context, G. Deleuze and F. Guattari used the term “rhizome" to
describe a process of existence and growth that does not come from a single central point of origin (cf. [5]).
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(i.e., a full subcategory X of X such that the inclusion X ↪→ X is an equivalence of categories
and no two distinct objects in X are isomorphic).

If G and G′ are distinct connected maximal groupoids in X , then we see that Ob(G) ∩
Ob(G′) = ∅. Moreover, for an object e of X , there exists a unique connected maximal groupoid
Ge in X containing e. Thus, the assignment e 7→ Ge defines a bijective correspondence between
Ob(X) and the set of connected maximal groupoids in X . Also, we have a decomposition

Ob(X) =
∐
G

Ob(G),

where the disjoint union in the right-hand side runs over the set of connected maximal groupoids
in X .

Now, let e be an object in X . Denote by G the connected maximal groupoid in X containing
e (hence Ob(X) ∩ Ob(G) = {e}) and by ιG the natural inclusion G ↪→ X . The assignment
F 7→ ιG∗(F ) := ιG ◦ F defines a fully faithful functor

ιG∗ : ConG → ConX .

The following proposition can be proved immediately from the definitions of a constructive
functor and ιG∗ (so we will omit their proofs.)

Proposition 3.1. (i) The functor ιG∗ is left adjoint to the functor ι∗G : ConX → ConG (cf.
(2.3)). This means that for F ∈ Ob(ConX) and F ′ ∈ Ob(ConG), there exists a functorial
bijection

Mor(ιG∗(F
′), F )

∼→ Mor(F ′, ι∗G(F )). (3.1)

(ii) Let F be a constructive functor on X . Suppose that there exist a constructive functor F ′ on
G and a morphism F → ιG∗(F ′). Then, there exists a constructive functor F ′′ on G with
ιG∗(F ′′) ∼= F .

The following assertion is a direct consequence of assertion (ii) above.

Corollary 3.2. Let F be a constructive functor on G. Then, F is minimal in ConG if and only if
ιG∗(F ) is minimal in ConX .

We shall set

F+
G,e := ιG∗(FG,e) : YG,e → X.

When there is no fear of confusion, we will write F+
G := F+

G,e for simplicity. (This abbreviation
of the notation can be justified because of the existence of the isomorphism (2.5) and the fully
faithfulness of ιG∗. In fact, these facts show that the isomorphism class of F+

G,e depends only on
G; i.e., it does not depend on the choice of the skeleton X .)

Denote by

†Ob(X)
(
⊆ Ob(ConX)

)
the set of isomorphism classes of objects in ConX of the form F+

G for some connected groupoid
G in X . If G and G′ are connected maximal groupoids in X , then F+

G
∼= F+

G′ precisely when
G = G′. This implies that the assignment from each element e′ ∈ Ob(X) to the constructive
functor F+

G′ , where G′ denotes the connected maximal groupoid in X containing e′, defines a
bijection of sets

ξX : Ob(X)
∼→ †Ob(X).

Proposition 3.3. Let F be a constructive functor on X . Then, F is minimal in ConX if and only
if F is isomorphic to F+

G for some connected maximal groupoid G in X . In particular, the subset
†Ob(X) of Ob(ConX) can be reconstructed category-theoretically from the data ConX (i.e., of
a category).
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Proof. The “if" part of the required equivalence follows immediately from Proposition 2.9, (iii),
and Corollary 3.2.

In what follows, we prove the “only if" part. Let F : Y → X be a minimal object in
ConX . Since this object is nonempty, there exists an object a in Y . Denote by G the con-
nected maximal groupoid in X containing F (a). By the bijection evF,F (a) in Proposition 2.9,
(i), together with the adjunction relation (3.1), we can find a morphism of constructive functors
Φ : F+

G → F . It follows from Proposition 2.7 that the maps Ob(Φ) : Ob(YG,e) → Ob(Y ),
Mor(Φ) : Mor(YG,e) → Ob(Y ) induced by Φ are surjective.

Next, suppose that we are given two objects (a, u), (a, u′) in YG,e with Φ((a, u)) = Φ((a, u′)).
To prove the equality (a, u) = (a, u′), we may assume, after possibly composing Φ with a suit-
able automorphism of F+

G , that a = e. Denote by v the unique endomorphism of e in G satisfying
{v} = Mor((e, u), (e, u′)). Then, from the bijectivities of evF,e and evFG,e

, it can immediately
be seen that v = ide, i.e., (e, u) = (e, u′). This implies the injectivity of Ob(Φ). Moreover, since
Mor((a, u), (b, v)) is a singleton for any objects (a, u), (b, v) in YG,e, the injectivity of Ob(Φ)
implies that of Mor(Φ). Consequently, Φ turns out to be an isomorphism. This completes the
proof of the “only if" part.

Let e and G be as above. Then, for each w ∈ Aut(e), the automorphism Φw (cf. (2.5))
defines, via ιG∗, an automorphism Φ+

w of F+
G . By the bijectivity of ϕe (cf. (2.5)) and the fully

faithfulness of ιG∗, the assignment w 7→ Φ+
w defines an isomorphism of groups

ξ
∼=
e : Aut(e) ∼→ †Aut(e), (3.2)

where we set †Aut(e) := AutConX
(F+

G ). The following assertion can be verified immediately.

Proposition 3.4. The subset †Aut(e) of Mor(ConX) together with its group structure can be
reconstructed category-theoretically from the data (ConX , F+

G ) (i.e., of a category and a minimal
object in this category).

3.2 Reconstruction of the non-invertible morphisms

Suppose that we are given two distinct objects e, e′ in X . Denote by G and G′ the connected
maximal groupoids in X containing e and e′, respectively. Then, each non-invertible morphism
v ∈ Mor(e, e′) (i.e., v ∈ Mor(e, e′)≇) associates the category

YG,G′,v, or simply, Yv,

defined as follows:
• Ob(YG,G′,v) = Ob(YG,e) ⊔ Ob(YG′,e′);
• Mor(YG,G′,v) = Mor(YG,e) ⊔ Mor(YG′,e′) ⊔

∐
(a,u)∈Ob(YG,e),

(a′,u′)∈Ob(YG′,e′ )

Mor((a, u), (a′, u′)), where

Mor((a, u), (a′, u′)) := {u′ ◦ v ◦ u−1} for each (a, u) ∈ Ob(YG,e), (a′, u′) ∈ Ob(YG′,e′);
• The composition law for morphisms in YG,G′,v is defined in a natural manner.

Denote by

F+
G,G′,v : YG,G′,v → X

the functor given by (a, u) 7→ a (for each (a, u) ∈ Ob(YG,G′,v)) and w 7→ w for each w ∈
Mor(YG,G′,v). Then, F+

G,G′,v forms a constructive functor on X , and the natural inclusions
F+
G,e ↪→ F+

G,G′,v and F+
G′,e′ ↪→ F+

G,G′,v together yield a monomorphism

ϒG,G′,v : F+
G,e ⊔ F+

G′,e′ ↪→ F+
G,G′,v,

which is not invertible because of the existence of v ∈ Mor(YG,G′,v). When there is no fear of
confusion, we will write F+

v := F+
G,G′,v and ϒv := ϒG,G′,v.

Next, denote by

Ce,e′

the category defined as follows:



116 Y. Wakabayashi

• The objects in Ce,e′ are pairs (F,ϒ) consisting of a constructive functor F : Y → X on X
and a non-invertible monomorphism ϒ : F+

G,e ⊔ F+
G′,e′ ↪→ F in ConX .

• The morphisms from (F,ϒ) to (F ′,ϒ′) are morphisms of constructive functors Ψ : F → F ′

satisfying ϒ′ = Ψ ◦ ϒ.

For each non-invertible morphism v : e → e′ in X , the pair (F+
G,G′,v,ϒG,G′,v) introduced above

specifies an object of Ce,e′ . The assignment (F,ϒ) 7→ F defines a functor

Ce,e′ → ConX . (3.3)

By taking account of Proposition 3.3, we see that the category Ce,e′ together with the functor (3.2)
can be reconstructed category-theoretically from the data (ConX , F+

G,e, F
+
G′,e′) (i.e., of a category

and two distinct minimal objects in this category). We identify Ce,e′ with Ce′,e via the equivalence
of categories Ce,e′

∼→ Ce′,e obtained by switching the factors F+
G,e⊔F

+
G′,e′

∼→ F+
G′,e′⊔F

+
G,e. Under

this identification, F+
G′,G,v′ and ϒG′,G,v′ (where v′ ∈ Mor(e′, e)≇) may be regarded as elements

of Ob(Ce,e′) and Mor(Ce,e′), respectively.
Moreover, we denote by

†Mor{e, e′}≇ (⊆ Mor(ConX))

the set of morphisms in ConX of the form ϒv for some v ∈ Mor{e, e′}≇. Since v ̸= v′ implies
(F+

v ,ϒv) ≇ (F+
v′ ,ϒv′), the assignment v 7→ ϒv defines a bijection of sets

ξ
≇
e,e′ : Mor{e, e′}≇ ∼→ †Mor{e, e′}≇. (3.4)

Proposition 3.5. Let (F,ϒ) be an object in Ce,e′ . Then, the following two conditions are equiva-
lent to each other:

(a) (F,ϒ) is minimal in Ce,e′ and there is no triple of morphisms

(ϒ0 : F+
G,e → F0,ϒ

′
0 : F+

G′,e′ → F ′
0,Φ : F0 ⊔ F ′

0 → F )

in ConX such that Φ is an isomorphism and satisfies the equality ϒ = Φ ◦ (ϒ0 ⊔ ϒ′
0).

(b) (F,ϒ) is isomorphic to (F+
v ,ϒv) for some v ∈ Mor{e, e′}≇.

In particular, the subset †Mor{e, e′}≇ of Mor(ConX) can be reconstructed category-theoretically
from the data (ConX , F+

G,e, F
+
G′,e′) (i.e., of a category and two distinct minimal objects in this

category).

Proof. Since the implication (b) ⇒ (a) can be immediately verified from the definition of (F+
v ,ϒv),

we only consider the inverse direction. Let (F : Y → X,ϒ) be an object in Ce,e′ satisfying the
conditions in (a). Denote by Y G,e and Y G′,e′ the subcategories in Y defined as the images
via ϒ of YG,e and YG′,e′ , respectively. By the lifting property on F , Y G,e and Y G′,e′ , respec-
tively, specify connected maximal groupoids in Y . Now, suppose that there exists an object
a0 in Ob(Y ) \ (Ob(Y G,e) ⊔ Ob(Y G′,e′)). If G0 denotes the connected maximal groupoid in
Y containing a0, then the minimality of (F,ϒ) implies that Y must be equal to the disjoint
union Y G,e ⊔ Y G′,e′ ⊔ G0. But this is a contradiction because of the second condition in (a).
Hence, we have Ob(Y ) = Ob(Y G,e) ⊔ Ob(Y G′,e′). Since ϒ is a monomorphism, the functors
YG,e → Y G,e, YG′,e′ → Y G′,e′ obtained by restricting ϒ are an isomorphism (cf. the proof of
Proposition 3.3); by using these isomorphisms, we consider YG,e ⊔ YG′,e′ to be a subcategory
of Y . From the second condition in (a), there exists objects a ∈ Ob(Y G,e), a′ ∈ Ob(Y G′,e′)
such that Mor{a, a′} ≠ ∅. Hence, the subcategory YG,e ⊔ YG′,e′ of Y extends to a subcategory
of the form YG,G′,v for some v ∈ Mor{e, e′}. It follows from the minimality of (F,ϒ) that the
inclusion YG,G′,v ↪→ Y must be an isomorphism. This completes the proof of the implication (a)
⇒ (b).
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3.3 Reconstruction of the composition law

Let e, e′, G, and G′ be as above. We shall set

Com(e, e′)
∼= :=

{
(u, u′, u′′) ∈ Aut(e)× Mor(e, e′)≇ × Mor(e, e′)≇

∣∣∣u′′ = u′ ◦ u
}
,

Com(e, e′)
∼=
op :=

{
(u, u′, u′′) ∈ Aut(e)× Mor(e′, e)≇ × Mor(e′, e)≇

∣∣∣u′′ = u ◦ u′
}
.

We will prove the following assertion.

Proposition 3.6. Let us choose u ∈ Aut(e) and v1, v2 ∈ Mor{e, e′}≇. Then, the following two
conditions are equivalent to each other:

(a) Either v2 = v1 ◦ u or v2 = u ◦ v1 holds.

(b) Either ϒv2 = ϒv1 ◦ (idF+
G
⊔ Φu−1) or ϒv2 = ϒv1 ◦ (idF+

G
⊔ Φu) holds.

In particular the image of Com(e, e′)
∼= ⊔ Com(e, e′)

∼=
op via the bijection

ξ
∼=
e,e,e′ := ξ

∼=
e × ξ

≇
e,e′ × ξ

≇
e,e′ : Aut(e)× Mor{e, e′}≇ × Mor{e, e′}≇

∼→ †Aut(e)× †Mor{e, e′}≇ × †Mor{e, e′}≇

can be reconstructed category-theoretically from the data (ConX , F+
G,e, F

+
G′,e′), i.e., of a category

and two distinct minimal objects in this category (cf. Proposition 3.4 for the category-theoretic
reconstruction of †Aut(−)).

Proof. The assertion follows from the various definitions involved.

Let G,G′, G′′ be connected maximal groupoids in X . Denote by e, e′, and e′′ the objects of
X belonging to G, G′, and G′′, respectively. Moreover, set

Com(e, e′, e′′)≇ :=
{
(u, u′, u′′) ∈ Mor(e, e′)≇ × Mor(e′, e′′)≇ × Mor(e, e′′)≇

∣∣∣u′′ = u′ ◦ u
}
,

Com(e, e′, e′′)
≇
op :=

{
(u, u′, u′′) ∈ Mor(e′, e)≇ × Mor(e′′, e′)≇ × Mor(e′′, e)≇

∣∣∣u′′ = u ◦ u′
}
.

We will prove the following assertion.

Proposition 3.7. Suppose that we are given morphisms v ∈ Mor{e, e′}≇, v′ ∈ Mor{e′, e′′}≇,
and v′′ ∈ Mor{e, e′′}≇. Then, the following two conditions are equivalent to each other

(a) Either v ◦ v′ or v′ ◦ v can be defined and one of the equalities v′′ = v ◦ v′, v′′ = v′ ◦ v holds.

(b) The colimit F+
limit of the diagram

F+
G′

inclusion //

inclusion

��

F+
G′,G′′,v′

F+
G,G′,v

exists in ConX , and there exists a monomorphism F+
G,G′′,v′′ ↪→ F+

limit in ConX via which the
morphism ϒv′′ : F+

G,e ⊔ F+
G′′,e′′ ↪→ F+

v′′ is compatible with the morphism F+
G,e ⊔ F+

G′′,e′′ ↪→
F+

limit arising naturally from ϒv and ϒv′ .
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In particular, the image of Com(e, e′, e′′)≇ ⊔ Com(e, e′, e′′)
≇
op via the bijection

ξ
≇
e,e′,e′′ := ξ

≇
e,e′ × ξ

≇
e′,e′′ × ξ

≇
e,e′′ : Mor{e, e′}≇ × Mor{e′, e′′}≇ × Mor{e, e′′}≇

∼→ †Mor{e, e′}≇ × †Mor{e′, e′′}≇ × †Mor{e, e′′}≇

can be reconstructed category-theoretically from the data (ConX , F+
G,e, F

+
G′,e′ , F

+
G′′,e′′), i.e., a

category and three distinct minimal objects in this category (cf. Proposition 3.5 for the category-
theoretic reconstruction of †Mor{−,−}≇).

Proof. The assertion follows from the various definitions involved.

Remark 3.8. Let a ∈ Mor(e, e′) and b ∈ Mor{e′, e′′}. Then, it follows from the above propo-

sition that, by means of the image of Com(e, e′, e′′)≇ ⊔ Com(e, e′, e′′)
≇
op via ξ

≇
e,e′,e′′ , one can

recognize whether or not the composite b ◦ a can be defined in X (i.e., the codomain of a coin-
cides with the domain of b).

Now let us combine the previous two propositions (and Proposition 3.4). Let G, G′, G′′, e,
e′, and e′′ be as above. Moreover, we will write

Com(e, e′, e′′) :=
{
(u, u′, u′′) ∈ Mor(e, e′)× Mor(e′, e′′)× Mor(e, e′′)

∣∣∣u′′ = u′ ◦ u
}
,

Com(e, e′, e′′)op :=
{
(u, u′, u′′) ∈ Mor(e′, e)× Mor(e′′, e′)× Mor(e′′, e)

∣∣∣u′′ = u ◦ u′
}
.

That is to say, Com(e, e′, e′′) and Com(e, e′, e′′)op are defined as the graphs of the composition
law defining X .

For each e, e′ ∈ Ob(X), we write

†Mor{e, e′} =

{
†Aut(e) ⊔ †Mor{e, e}≇ if e = e′,
†Mor{e, e}≇ if e ̸= e′.

If e = e′ (resp., e ̸= e′) in X , then we have Mor{e, e′} = Aut(e) ⊔ Mor{e, e}≇ (resp.,

Mor{e, e′} = Mor{e, e′}≇). Hence, the bijections ξ
∼=
(−) (cf. (3.1)) and ξ

≇
(−),(−) (cf. (3.2)) to-

gether yield a bijection

ξe,e′ : Mor{e, e′} ∼→ †Mor{e, e′}.

Propositions 3.4, 3.6, and 3.7 imply the following assertion.

Corollary 3.9. The image of Com(e, e′, e′′) ⊔ Com(e, e′, e′′)op via the bijection

ξe,e′,e′′ := ξe,e′ × ξe′,e′′ × ξe,e′′ : Mor{e, e′} × Mor{e′, e′′} × Mor{e, e′′}
∼→ †Mor{e, e′} × †Mor{e′, e′′} × †Mor{e, e′′}

can be reconstructed category-theoretically from the data (ConX , F+
G,e, F

+
G′,e′ , F

+
G′′,e′′), i.e., of a

category and three distinct minimal objects in this category (cf. Propositions 3.4 and 3.5 for the
category-theoretic reconstruction of †Mor{−,−}).

3.4 Proof of Theorem 1.1

We can now prove Theorem 1.1 by applying the results obtained so far. First, let us prove
the implication (a) ⇒ (b). To this end, it suffices to show that SpX ∼= SpXop , or equivalently
ConX

∼= ConXop (cf. (2.3)). But this fact can be verified because the assignment from each
constructive functor F : Y → X to F op : Y op → Xop yields an equivalence of categories
δX : ConX

∼→ ConXop .
Next, let us consider the inverse direction (b) ⇒ (a). Suppose that there exists an equivalence

of categories SpX
∼→ SpX′ ; this equivalence together with (2.3) determines an equivalence of
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categories α : ConX
∼→ ConX′ . Let us fix skeletons of X and X ′, which we denote by X and X

′

respectively. By Proposition 3.3, α induces, via ξX and ξX′ , a bijection

α : Ob(X)
∼→ Ob(X

′
).

It follows from Propositions 3.4 and 3.5 that, for each e, e′ ∈ Ob(X), the equivalence α induces,
via ξe,e′ and ξα(e),α(e′), a bijection

αe,e′ : Mor{e, e′} ∼→ Mor{α(e), α(e′)}.

Moreover, by applying Corollary 3.9 and using ξe,e′,e′′ and ξα(e),α(e′),α(e′′), we obtain a bijection

αe,e′,e′′ : Com(e, e′, e′′) ⊔ Com(e, e′, e′′)op

∼→ Com(α(e), α(e′), α(e′′)) ⊔ Com(α(e), α(e′), α(e′′))op

for any e, e′, e′′ ∈ Ob(X). If X has only one object e, then the bijections αe, αe,e, and αe,e,e

show that X ∼= X
′
, which implies X ∼= X ′. Hence, it suffices to consider the case where

♯Ob(X) ≥ 2. Since X is assumed to be connected, there exists a morphism u0 : e0 → e′0 in X
with e0 ̸= e′0.

Here, suppose that αe0,e
′
0
(u) ∈ Mor(α(e0), α(e′0)). By the connectedness of X again, one

may verify (cf. Remark 3.8) that αe,e′ is restricted to a bijection

α⊚
e,e′ : Mor(e, e′) ∼→ Mor(α(e), α(e′))

for any e, e′ ∈ Ob(X). Moreover, αe,e′,e′′ is restricted to a bijection

α⊚
e,e′,e′′ : Com(e, e′, e′′)

∼→ Com(α(e), α(e′), α(e′′))

for any e, e′, e′′ ∈ Ob(X). The bijections α, α⊚
e,e′ , and α⊚

e,e′,e′′ for various e, e′, e′′ together yield
an equivalence of categories X ∼→ X

′
. Thus, we conclude that X ∼= X ′.

On the other hand, suppose that αe0,e
′
0
(u0) ∈ Mor(α(e′0), α(e0)). Write α′ := δX′ ◦ α, where

δ(−) denotes the equivalence of categories constructed in the proof of (a) ⇒ (b). Then, we have
α′
e0,e

′
0
(u0) ∈ MorX′op(α(e0), α(e′0)). By applying the above discussion to α′, we conclude that

X ∼= X ′op (or equivalently, Xop ∼= X ′). This completes the proof of the implication (b) ⇒ (a).
Thus, we have finished the proof of Theorem 1.1.

Remark 3.10. The above proof shows that, in order to reach the conclusion, it suffices to assume
the connectedness only for either X or X ′. In other words, the connectedness of X can be
characterized category-theoretically by the category SpX .

Remark 3.11. The reconstruction carried out in Theorem 1.1 is reminiscent of “Grothendieck
conjecture"-type theorems in anabelian geometry. Anabelian geometry is, roughly speaking, an
area of arithmetic geometry that discusses the issue of how much information concerning the
geometry of certain arithmetic varieties (e.g., hyperbolic curves over a number field or a p-adic
local field) is contained in the knowledge of the étale fundamental groups, or equivalently, the
categories of finite étale coverings.

The classical point of view of anabelian geometry centers around a comparison between two
arithmetic varieties (or more generally, two geometric objects of the same kind) via their étale
fundamental groups and it is referred to as bi-anabelian geometry. On the other hand, mono-
anabelian geometry, being an alternative and relatively new formulation, centers around the task
of establishing a group-theoretic algorithm whose input data consists of a single abstract topolog-
ical group isomorphic to the étale fundamental group of a single geometric object. In particular,
it requires us to reconstruct, unlike the bi-anabelian formulation, the desired data without any
mention of some “fixed reference model" copy of initial objects. For basic references, we refer
the reader to [8], [18].

As explicitly verbalized in [22], § 3, constructive functors on a category X may be regarded,
in some sense, as categorical realizations of coverings over X . In fact, if X is a groupoid G, then
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the results of Proposition 2.9 enable us to consider the constructive functor FG,e : YG,e → G
as if it were the universal covering of G. Accordingly, we might say that SpX (∼= ConX by
(2.3)) is like the Galois category consisting of finite étale coverings. Notwithstanding the fact
that Theorem 1.1 is stated in a completely bi-anabelian way, the proof of the theorem actually
furnishes a mono-anabelian algorithm that reconstructs X from SpX . Here, however, we will
omit the details of the formulation, as well as the proof, in that way.

Remark 3.12. C. Lévi-Strauss developed a structuralist theory of mythology which attempted
to explain how seemingly fantastical and arbitrary tales could be so similar across cultures (cf.
[12], [13]). Because he believed that there was no one authentic version of a myth, rather that
they were all manifestations of the same language, he sought to find the fundamental units of
myth, namely, the mytheme.

The canonical formula of mythical transformation is an expression proposed in 1955 by Lévi-
Strauss in order to account for the abstract relations occurring between characters and their
attributes in a myth understood as the collection of its variants. According to the canonical
formula, a myth is reducible to an expression:

fx(a) : fy(b) ∼= fx(b) : fa−1(y), (3.5)

where each of these four arguments consist of a term variable (a and b), and a function variable
(x and y). This formula describes a structural relationship between a set of narrative terms and
their transmutative relationships. See [15] for a reference on this formula.

Note that J. Morava tried to develop a truly mathematical argument for the canonical formula
(cf. [19], [20]). He proposed to interpret it as the existence of an anti-isomorphism of the
quaternion group. On the other hand, as a mathematical study of myths in another direction, we
might expect that some kind of symmetry or structure on the whole category of structure species
satisfying the condition expressed by (3.12) serves as a metaphorical explanation of some truth
that Lévi-Strauss expected from myths. However, at the time of writing the present paper, the
author does not have any effective ideas for the development of this argument.

4 Appendix: Category of categories over a category

In this Appendix, we establish, as an analogy of Theorem 1.1, the reconstruction of a category
X from the category of categories over X , i.e., the category of functors F : Y → X (that are not
necessarily a structure species). The conclusion differs from the case of Theorem 1.1 in that we
can reconstruct (up to a certain indeterminacy) not only the equivalence class of X but also its
isomorphism class. The following Proposition 4.1 (resp., 4.2; resp., 4.3) will be proved by using
a much simpler argument than the proof in the corresponding previous assertion, i.e., Proposition
3.3 (resp., 3.5; resp., 3.7). So we will leave their proofs to the reader.

Let X be a U -small category. Denote by

CatX

the category defined as follows:
• The objects are functors of the form F : Y → X , where Y is a U -small category;
• The morphisms from F : Y → X to F ′ : Y ′ → X are functors Ψ : Y → Y ′ satisfying
F = F ′ ◦ Ψ.

The identity functor idX : X ∼→ X is a terminal object in this category.
For each object e in X , we shall write Ye := Dis({e}) and write

Fe : Ye ↪→ X

for the natural functor; this functor specifies an object in CatX . We denote by
‡Ob(X) (⊆ Ob(CatX))

the set of objects in CatX of the form Fe for some e ∈ Ob(X). The assignment e 7→ Fe gives a
bijection of sets

ζX : Ob(X)
∼→ ‡Ob(X).
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Proposition 4.1. Let F : Y → X be an object in CatX . Then, F is minimal in CatX if and only
if F is isomorphic to Fe for some e ∈ Ob(X). In particular, the subset ‡Ob(X) of Ob(CatX)
can be reconstructed category-theoretically from the data CatX (i.e., of a category).

Next, let e and e′ be (possibly the same) objects in X . For each morphism v : e → e′ in X , we
shall set Yv to be the subcategory of X satisfying Ob(Yv) = {e, e′} and Mor(Yv) = {ide, ide′ , v}.
Then, we obtain the natural inclusion

Fv : Yv ↪→ X.

The inclusions Ye ↪→ Yv and Ye′ ↪→ Yv induce the morphism

ϒv : Fe ⊔ Fe′ → Fv

in CatX .
We shall denote by

De,e′

the category defined as follows:

• The objects in De,e′ are pair (F,ϒ) consisting of an object F : Y → X in CatX and a
non-invertible monomorphism ϒ : Fe ⊔ Fe′ ↪→ F ;

• The morphisms from (F,ϒ) to (F ′,ϒ′) are morphisms Ψ : F → F ′ satisfying ϒ′ = Ψ ◦ ϒ.

For each element v ∈ Mor(e, e′), the pair (Fv,ϒv) introduced above specifies an object in De,e′ .
The assignment (F,ϒ) 7→ ϒ defines a functor

De,e′ → CatX . (4.1)

It follows from Proposition 4.1 that the category De,e′ together with the functor (4) can be recon-
structed category-theoretically from the data (CatX , Fe, Fe′) (i.e., of a category and two minimal
objects in this category). Also, as in the case of “Ce,e′" introduced in § 3.2, there exists a natural
identification De,e′ = De′,e, by which we will not distinguish between De,e′ and De′,e. In partic-
ular, this identification allows us to consider (Fw,ϒw)’s for various w ∈ Mor(e′, e) as objects in
De,e′ . We denote by

‡Mor{e, e′}

the set of morphisms in CatX of the form ϒv for some v ∈ Mor{e, e′}. The assignment v 7→ ϒv

defines a bijection of sets

ζe,e′ : Mor{e, e′} ∼→ ‡Mor{e, e′}.

Proposition 4.2. Let (F,ϒ) be an object in CatX . The following two conditions are equivalent
to each other:

• (F,ϒ) is minimal in De,e′ and there is no triple of morphisms

(ϒ0 : Fe → F0,ϒ
′
0 : Fe′ → F ′

0,Ψ : F0 ⊔ F ′
0 → F )

in CatX such that Ψ is an isomorphism and satisfies the equality ϒ = Ψ ◦ (ϒ0 ⊔ ϒ′
0).

• (F,ϒ) is isomorphic to (Fv,ϒv) for some v ∈ Mor{e, e′}.

In particular, the subset ‡Mor{e, e′} of Mor(CatX) can be reconstructed category-theoretically
from the data (CatX , Fe, Fe′) (i.e., of a category and two minimal objects in this category).

Given three (possibly the same) objects e, e′, e′′ in X , we shall write

Com(e, e′, e′′)Cat :=
{
(u, u′, u′′) ∈ Mor(e, e′)× Mor(e′, e′′)× Mor(e, e′′)

∣∣∣u′′ = u′ ◦ u
}
,

Com(e, e′, e′′)Catop :=
{
(u, u′, u′′) ∈ Mor(e′, e)× Mor(e′′, e′)× Mor(e′′, e)

∣∣∣u′′ = u ◦ u′
}
.

Then, we have the following assertion.
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Proposition 4.3. Let us choose u ∈ Mor{e, e′}, u′ ∈ Mor{e′, e′′}, and u′′ ∈ Mor{e, e′′}. Then,
the following two conditions are equivalent to each other:

• Either u ◦ u′ or u′ ◦ u can be defined and one of the equalities u′′ = u ◦ u′, u′′ = u′ ◦ u
holds.

• The colimit F Cat
limit of the diagram

Fe

inclusion //

inclusion

��

Fu′

Fu

exists in CatX , and there exists a monomorphism Fu′′ ↪→ F Cat
limit in CatX via which the

morphism ϒu′′ : Fe ⊔ Fe′′ ↪→ Fu′′ is compatible with the morphism Fe ⊔ Fe′′ ↪→ F Cat
limit

arising naturally from ϒu and ϒu′ .

In particular, the image of Com(e, e′, e′′)Cat ⊔ Com(e, e′, e′′)Catop via the bijection

ζe,e′,e′′ := ζe,e′ × ζe′,e′′ × ζe,e′′ : Mor{e, e′} × Mor{e′, e′′} × Mor{e, e′′}
∼→ ‡Mor{e, e′} × ‡Mor{e′, e′′} × ‡Mor{e, e′′}

can be reconstructed category-theoretically from the data (CatX , Fe, Fe′ , Fe′′) (i.e., of a category
and three minimal objects in this category).

The previous three propositions enable us to prove the following assertion. (The proof is
entirely similar to the proof of Theorem 1.1.)

Theorem 4.4. Let X and X be connected U -small categories. Then, the following conditions
are equivalent to each other:

(a) X
isom∼= X ′ or Xop

isom∼= X ′.

(b) CatX ∼= CatX′ .

Proof. The implication (a) ⇒ (b) follows immediately from the existence of an equivalence of
categories CatX

∼→ CatXop obtained by assigning F 7→ F op for each F ∈ CatX .
Next, we shall consider the inverse direction (b) ⇒ (a). Suppose that there exists an equiv-

alence of categories β : CatX
∼→ CatX′ . By Proposition 4.1, β induces, via ζX and ζX′ , a

bijection

β : Ob(X)
∼→ Ob(X ′).

It follows from Proposition 4.2 that, for each e, e′ ∈ Ob(X), the equivalence β induces, via ζe,e′
and ζβ(e),β(e′), a bijection of sets

βe,e′ : Mor{e, e′} ∼→ Mor{β(e), β(e′)}.

Moreover, by applying Proposition 4.3 and using the bijections ζe,e′,e′′ and ζβ(e),β(e′),β(e′′), we
obtain a bijection

βe,e′,e′′ : Com(e, e′, e′′)Cat ⊔ Com(e, e′, e′′)Catop

∼→ Com(β(e), β(e′), β(e′′))Cat ⊔ Com(β(e), β(e′), β(e′′))Catop

for any e, e′, e′′ ∈ Ob(X). If X has only one object e, then the bijections β, βe,e, and βe,e,e show

that X
isom∼= X ′. Hence, it suffices to consider the case where ♯Ob(X) ≥ 2. Since X is assumed

to be connected, there exists a morphism u0 : e0 → e′0 in X with e0 ̸= e′0.
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Here, suppose that βe0,e
′
0
(u0) ∈ Mor(β(e0), β(e′0)). From the connectedness of X again, one

may verify (for the same reason as stated in the comment on Remark 3.8) that βe,e′ is restricted
to a bijection

β
⊚
e,e′ : Mor(e, e′) ∼→ Mor(β(e), β(e′))

for any e, e′ ∈ Ob(X). Moreover, βe,e′,e′′ is restricted to a bijection

βe,e′,e′′ : Com(e, e′, e′′)Cat
∼→ Com(β(e), β(e′), β(e′′))Cat

for any e, e′, e′′ ∈ Ob(X). The bijections β, β
⊚
e,e′ , and β

⊚
e,e′,e′′ for various e, e′, e′′ ∈ Ob(X)

yield an isomorphism of categories X ∼→ X ′.
On the other hand, if βe0,e

′
0
(u0) ∈ Mor(β(e′0), β(e0)), then the problem, as in the proof of

Theorem 1.1, is reduced to the previous case by using the equivalence of categories CatX′
∼→

CatX′op given by F 7→ F op. At any rate, we conclude that X
isom∼= X ′ or Xop

isom∼= X ′, as desired.
This completes the implication (b) ⇒ (a).
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