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Abstract Let L be a C-lattice. The minimal spectrum Σ(M) of a lattice module M over L
is the collection of all minimal elements of M . In this paper, we study the Zariski topology
on Σ(M) induced by topology of the second spectrum Specs(M) on M . The linkage between
topological assets of Σ(M) and the algebraic properties ofM are established. Further, we studied
various properties under which Σ(M) is Max-spectral.

1 Introduction

H. Ansari-Toroghy et. al. in [2], studied algebraic properties of a ring module with the assistance
of topological properties of the minimal spectrum of same module. In lattice modules theory,
the notion of minimal element is an abstraction of minimal submodule in a module over ring.
In [18], N. Phadatare and V. Kharat used minimal elements in a lattice module M over L to
study the second radical elements of M . In this paper, we extend the study of N. Phadatare
and V. Kharat and obtained topological characterizations of minimal spectrum Σ(M) of a lattice
module M .

For further development in the study of ideal theory of commutative ring R, a new structure
called multiplicative lattices was framed by M. Ward and R. Dilworth( see [23]).

A complete lattice L is called a multiplicative lattice if L has least elements 0L and greatest
elements 1L along with additional binary operation called multiplication which is denoted by ·
and defined as a · b = ab ≤ a ∧ b for a, b ∈ L satisfying conditions given below
i) a.b = b.a, for all a, b ∈ L.
ii) a · (b · c) = (a · b) · c, for all a, b, c ∈ L.
iii) For a, bα ∈ L, a.(∨αbα) = ∨α(a.bα), α ∈ I (an index set).
iv) a · 1L = a, for all a ∈ L.
Element c ∈ L is called compact, if a ≤ ∨iai, i ∈ I( an index set) then for some n ∈ Z+ we
have ai1 , ai2 , · · · ain such that a ≤ ai1 ∨ ai2 ∨ · · · ∨ ain . If each member of L is a join of compact
elements of L, then L is called compactly generated.

A C-lattice is multiplicative lattice L in which 1L is both compact and multiplicative identity
and L is generated under joins by a multiplicatively closed subset C of compact elements.
For more details on C−lattice L, the reader may refer ( [4], [15], [21]-[22]).
Element p ∈ L such that p ̸= 1L is prime if p1.p2 ≤ p implies p1 ≤ p or p2 ≤ p. Element m ̸= 1L

of L is maximal, if m ≤ a < 1L then m = a. Define the set σ(L) = {p ∈ L|pis prime} and
Max(L) = {m ∈ L|m is maximal}. By Dl(a), we mean the collection of all prime elements
p ∈ L such that a ≤ p for any a ∈ L. In [12], F. Callialp et. al. introduced a topology over σ(L)
with {Dl(a)|a ∈ L} as the family of closed sets.

The work of R. Dilworth [4], attracted many researchers in the area of Noetherian ring. In
[14], E. Johnson viewed a Noetherian lattice module. Afterward, the study of Noetherian lattice
modules have been further broaden for abstract module theory.

A lattice module M over a C-lattice L with least element 0M and greatest element 1M is a
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complete lattice and consisting an operation · : L ×M → M such that a · N = aN satisfying
conditions (i) to (iv) given below.

(i) (ab) ·N = a · (b ·N), for all a, b ∈ L and N ∈M .

(ii) (
∨
α

aα) · (
∨
β

Nβ) = (
∨
α,β

(aα ·Nβ)), for all aα ∈ L and Nβ ∈M .

(iii) 1L ·N = N , where N ∈M .

(iv) 0L ·N = 0M , where N ∈M .

Element N ∈ M is called meet principal, if for each a ∈ L and A ∈ M , we have A ∧ aN =
(a ∧ (A : N))N . Element N ∈ M is called join principal, if ((aN ∨ A) : N) = (a ∨ (A : N))
for each a ∈ L and A ∈ M . If N is both meet principal and join principal, then N is called
principal element of M . Note that, if each member of M is join of principal elements then M is
called principally generated or PG-lattice.

For P,Q ∈M and a ∈ L, (P : Q) is the largest element c of L satisfying cQ ≤ P and (P : a)
is the largest element C of M satisfying aC ≤ P , where “ : ” is called the residual division
operation.

Throughout the paper L is a C-lattice and M is a lattice module over L.
In [9], F. Callialp et. al. extend the study of S. Yassemi in [24] and introduced the second

lattice module M . Thereafter, the concept of second lattice module studied by many authors
intensively (see [9], [10] and [18]).

Element N ̸= 0M of M is called second, for a ∈ L, either aN = N or aN = 0M . Let
Specs(M) denotes the set {P ∈M | P is second}. Hence, there exists a topology τ on Specs(M)
having {DS(N)|N ∈M} as the family of closed sets, where DS(N) = {K ∈ Specs(M)|(0M :
N) ≤ (0M : K)}.

More definitions and details related to lattice modules and topology, the reader may refer
([3], [6]- [16], [17]-[18]).

Recently, many researchers have contributed a lot in the study of algebraic and topological
aspect of commutative ring R and module over a commutative ring R (see [1], [13], [20], [25]).

2 Zariski Topology on Σ(M)

Definition 2.1 ([10]). A non-zero element K of M is minimal, whenever 0M ≤ N < K implies
N = 0M , N ∈M .

Denote the set Σ(M) = {N ∈ M |N is minimal}. Note that, every minimal element of a
lattice module M is second. Converse is not true (see [17] for example). Therefore, we have
Σ(M) ⊆ Specs(M). Also, note that for N ∈M , where M is a lattice module over a C-lattice L.
If N is second then (0M : N) is a prime element of L.

For N ∈M , define the set Dmin(N) = {K ∈ Σ(M)|(0M : N) ≤ (0M : K)}.

Theorem 2.2. Let M be a lattice module over L. Then for N,K,Ni ∈ M following statements
hold.

(i) Dmin(1M ) = Σ(M) and Dmin(0M ) = ∅, where ∅ denote the empty set.

(ii) ∩i∈ID
min(Ni) = Dmin(∧i∈I(0M : (0M : Ni)), where I is an indexed set.

(iii) Dmin(N) ∪Dmin(K) = Dmin(N ∨K).

Proof. (1) By definition Dmin(1M ) = {K ∈ Σ(M)|(0M : 1M ) = 0L ≤ (0M : K)} = Σ(M)
and Dmin(0M ) = {K ∈ Σ(M)|(0M : 0M ) = 1L ≤ (0M : K)} = ∅.
(2) Let S ∈ ∩i∈ID

min(Ni). Then S ∈ Dmin(Ni) for each i ∈ I , therefore (0M : Ni) ≤ (0M :
S) for each i ∈ I and hence ∨i∈I(0M : Ni) ≤ (0M : S). Therefore by Lemma 2.3 (iii) and
(iv) we have (0M : ∧i∈I(0M : (0M : Ni))) ≤ (0M : (0M : (0M : S))) = (0M : S) and hence
S ∈ Dmin(∧i∈I(0M : (0M : Ni)).
(3) It is clear that Dmin(N) ∪ Dmin(K) ⊆ Dmin(N ∨ K), where N,K ∈ M . Now, let P ∈
Dmin(N ∨ K). Therefore (0M : N ∨ K) ≤ (0M : P ) and hence (0M : N) ∧ (0M : K) ≤



MINIMAL SPECTRUM OF LATTICE MODULES 127

(0M : P ). Since P is minimal and hence second elements of M , we have (0M : P ) is a prime
elements of L, therefore (0M : N) ∧ (0M : K) ≤ (0M : P ) implies (0M : N) ≤ (0M : P )
or (0M : K) ≤ (0M : P ). This implies that P ∈ Dmin(N) or P ∈ Dmin(K), consequently,
P ∈ Dmin(N) ∪Dmin(K).

Hence, there exists a topology τmin on Σ(M) having {Dmin(N)|N ∈ M} as the family of
closed sets. In fact, τmin is the subspace topology induced by τ on Σ(M).
We essentially need following Lemmas throughout the paper.

Lemma 2.3. [16] For x ∈ L and A,B,C ∈M , following hold.

(i) x ≤ (0M : (0M : x)).

(ii) A ≤ (0M : (0M : A)).

(iii) If A ≤ B then (C : B) ≤ (C : A).

(iv) (0M : A) = (0M : (0M : (0M : A))).

(v) (A : B ∨ C) = (A : B) ∧ (A : C).

Lemma 2.4. [17] LetM be a PG-lattice over L. IfK ∈M is minimal then (0M : K) is maximal
element of L.

Lemma 2.5. [17] For a lattice module M over L and N,K ∈M if (0M : N) ≤ (0M : K), then
Dmin(K) ⊆ Dmin(N).

Lemma 2.6. [17] For lattice M over L and N,K ∈M . Then
Dmin(N) = Dmin((0M : (0M : N))).

It is well known that L = L/(0M : 1M ) = {x ∈ L | (0M : 1M ) ≤ x ≤ L} is multiplicative
lattice and for a ∈ L, a represents the element of L.

Let M be a PG-lattice over L and Max(L) be the collection of all maximal elements of L.
Let the map ψ : Σ(M) → Max(L) defined by ψ(N) = (0M : N) is called the natural map of
Σ(M). A lattice module M is min-surjective if either M = 0M or has a surjective natural map.
Also, M is min-injective if the natural map ψ is injective.

Lemma 2.7. Let M be a PG-lattice over L, and ψ : Σ(M) → Max(L) be the natural map.
Then the below statements (i) and (ii) hold.

(i) ψ is a continuous map.

(ii) ψ is closed and open, if M is min-surjective.

Proof. (i) Suppose that S ∈ ψ−1(Dl(a)). Then there exists b ∈ Dl(a) such that S = ψ−1(b).
Therefore ψ(S) = b and so (0M : S) = b. This implies that a ≤ (0M : S) = b and hence
a ≤ (0M : S) = b, therefore by Lemma 2.3 (iii) and (iv), (0M : (0M : a)) ≤ (0M : S). Thus
S ∈ Dmin((0M : a)), consequently, ψ−1(Dl(a)) ⊆ Dmin((0M : a)).
Now, suppose that for a ∈ L, K ∈ Dmin((0M : a)). Then (0M : (0M : a)) ≤ (0M : K).
Since a ≤ (0M : (0M : a)), a ≤ (0M : (0M : a)) ≤ (0M : K). Therefore, K ∈ ψ−1(Dl(a)).
Hence, Dmin((0M : a)) ⊆ ψ−1(Dl(a)). Consequently, ψ−1(Dl(a)) = Dmin((0M : a)). That
is, inverse image of closed set is closed and so ψ is continuous.
(ii) Suppose that ψ is min-surjective. By part (i), for N ∈M , ψ−1(Dl((0M : N)))
= Dmin((0M : (0M : N))). By Lemma 2.6, we have Dmin((0M : (0M : N))) = Dmin(N), and
so ψ−1(Dl((0M : N))) = Dmin(N). As ψ is surjective, ψ◦ψ−1(Dl((0M : N))) = ψ(Dmin(N))

implies that ψ(Dmin(N)) = Dl((0M : N)). Hence, ψ is closed. Similarly, ψ(Σ(M)−Dmin(N)) =

Max(L)−Dl((0M : N)), i.e., ψ open.

Note that, in the cofinite topology closed sets are either finite sets or the whole set itself (see
[3]).

Theorem 2.8. If the infimum of any collection of maximal elements of L is zero and M is a
PG-lattice over L. Then Σ(M) is a topological space with cofinite topology.
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Proof. Suppose that for N ∈ M , Dmin(N) is a proper closed subset of Σ(M) which is infinite.
Then for each K ∈ Dmin(N), (0M : N) ≤ (0M : K). By Lemma 2.4, (0M : N) is less equal
infinite number of maximal elements of L. Since the meet of any collection of maximal elements
of L is zero, we have (0M : N) = 0L. This implies that Dmin(N) = Σ(M), a contradiction,
consequently Σ(M) is the cofinite topology.

Note that a topological space X is said to be Noetherian, if and only if every ascending
(descending) chain of open (closed) is stationary (see [3] and [6]).

Corollary 2.9. If the infimum of any collection of maximal elements of L is zero and M is a
PG-lattice over L. Then Σ(M) is a Noetherian topological space.

For X ⊆ Σ(M), denote the join of all elements of X by
∨
X and the closure of X by X .

Theorem 2.10. [17] For a lattice M over L and Y ⊆ Σ(M), Dmin(
∨
Y ) = Y . Hence, Y is

closed if and only if Dmin(
∨
Y ) = Y .

A topological space X is irreducible if for any decomposition X ⊆ A1 ∪ A2 with closed
subsets Ai of X with i = 1, 2, we have A1 = X or A2 = X . An irreducible component of a
topological space X is a maximal irreducible subset of X . A singleton subset and its closure in
X are irreducible (see [3] and [6]).
Following Corollary follows from Theorem 2.10.

Corollary 2.11. For N ∈ Σ(M), Dmin(N) is an irreducible and closed subset of Σ(M).

For a proper element N ∈ M , the min-radical of N is denoted by Jmin(N) and defined as
the join of all elements of Dmin(N) i.e., Jmin(N) =

∨
Dmin(N). In case Dmin(N) = ∅ then

Jmin(N) = 0M . An element N ∈M is said to be min-radical element if N = Jmin(N).

We prove the following characterization.

Theorem 2.12. For a lattice M over L and N,K ∈ M , Dmin(K) ⊆ Dmin(N) if and only if
Jmin(K) ≤ Jmin(N).

Proof. Suppose that for N,K ∈ M , Dmin(K) ⊆ Dmin(N). Then ∨Dmin(K) ≤ ∨Dmin(N),
that is, Jmin(K) ≤ Jmin(N).

Conversely, suppose that Jmin(K) ≤ Jmin(N). Then by Lemma 2.3(iii), (0M : Jmin(N)) ≤
(0M : Jmin(K)). Therefore by Lemma 2.5, Dmin(Jmin(K)) ⊆ Dmin(Jmin(N)), that is,
Dmin(

∨
Dmin(K)) ⊆ Dmin(

∨
Dmin(N)). Consequently, Dmin(K) ⊆ Dmin(N) by Corollary

2.11.

Now, we give the characterization of Σ(M) to be a Noetherian topological space.

Corollary 2.13. Let M be a lattice over L. Then the following statements are equivalent.

(i) Σ(M) is a Noetherian topological space.

(ii) The descending chain condition for min-radical elements of M holds.

Let L be a C-lattice and a ∈ L. A J-radical of a is denoted by J(a) and defined as J(a) =
∧{p ∈Max(L)|a ≤ p}. Note that a ∈ L is said to be a J-radical element if J(a) = a.

Lemma 2.14. Let M (̸= 0M ) be a PG-lattice over L. If M is min-surjective, then the following
statements hold.

(i) For N ∈M , J((0M : N)) = (0M : Jmin(N)).

(ii) If q is a J-radical element of L with (0M : 1M ) ≤ q, then there exists Q ∈ Σ(M) with
(0M : Q) = q.
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Proof. (i) Suppose that M is min-surjective and Dmin(N) ̸= ∅. By definition,
J((0M : N)) = ∧x∈Dl((0M :N))x and (0M : Jmin(N)) = (0M : ∨K∈Dmin(N)K) = ∧K∈Dmin(N)(0M :
K) by Lemma 2.3(v). Since M is min-surjective, for each x ∈ Dl((0M : N)) there exists
P ∈ Σ(M) such that (0M : P ) = x and so ∧x∈Dl((0M :N))x = ∧P∈Dmin(N)(0M : P ). Therefore,
we have J((0M : N)) = ((0M : Jmin(N)).
(ii) Suppose that q is a J-radical element of L containing (0M : 1M ). Since M is min-surjective,
for every m ∈ Dl((0M : N)) there exists Km ∈ Σ(M) such that (0M : Km) = m. But q is J-
radical with (0M : 1M ) ≤ q, therefore by definition, q = J(q) = ∧m∈Dl(q)m = ∧m∈Dl(q)(0M :
Km) = (0M : ∨m∈Dl(q)Km) by Lemma 2.3(5).

Theorem 2.15. Let M (̸= 0M ) be a PG-lattice over L and ψ be a surjective natural map. Then
Σ(M) is Noetherian if and only if Max(L) is Noetherian.

Proof. Suppose thatMax(L)) is Noetherian. To prove Σ(M) is Noetherian, in view of Corollary
2.13, it is enough to show that the descending chain condition for min-radical elements of M
holds. As such, let N1 ≥ N2 ≥ · · · ≥ Ni ≥ · · · be a descending chain for min-radical elements
of M . Then by Lemma 2.3(3) and Lemma 2.14(1), J((0M : N1) ≤ J((0M : N2)) ≤ · · · ≤
J((0M : Ni)) ≤ · · · is an ascending chain of J-radical elements of L. In fact (0M : N1) ≤
(0M : N2) ≤ · · · ≤ (0M : Ni) ≤ · · · is an ascending chain of J-radical elements of L because
(0M : 1M ) ≤ (0M : Ni) for Ni ∈ M . Since Max(L) is Noetherian, there exists k ∈ Z+ such
that (0M : Ni) = (0M : Ni+k) for all i ∈ Z+. Therefore by Lemma 2.10, for all i ∈ Z+,
Dmin(Ni) = Dmin(0M : (0M : Ni)) = Dmin(0M : (0M : Ni+k)) = Dmin(Ni+k) and hence
for all i ∈ Z+, Ni = Jmin(Ni) =

∨
Dmin(Ni) =

∨
Dmin(Ni+k) = Jmin(Ni+k) = Ni+k.

Consequently, Σ(M) is Noetherian.
The necessary part is clear.

For K ∈M , element P of M is a Jmin-component of K, if (0M : P ) is the minimal element
of the family of J-radical prime elements containing (0M : K).

We essentially need the following Lemma.

Lemma 2.16. [19] A subset S of Max(L) is irreducible if and only if
∧
S is prime.

Theorem 2.17. Let M (̸= 0M ) be a PG-lattice over L and and M is min-surjective. Then for
N ∈M below statements hold.

(i) A subset Y of Σ(M) is an irreducible closed if and only if Y = Dmin(N) with (0M : N) is
a J-radical prime element of L.

(ii) A subsetW of Σ(M) is an irreducible component ofDmin(N) if and only ifW = Dmin(N ′)
for some Jmin-component N ′ of N .

Proof. (i) Suppose that Y is an irreducible and closed subset of Σ(M). Then by Corollary 2.11,
for some N ∈ Σ(M), we have Y = Dmin(N). Since M is min-surjective and by Lemma 2.7,
we have ψ(Dmin(N)) = Dl((0M : N)) is an irreducible and closed subset of Max(L), and
therefore by Lemma 2.16, ∧Dl((0M : N)) is prime, consecuently, (0M : N) is a J-radical prime
element of L.

Conversely, suppose that Y = Dmin(K) with (0M : K) is a J-radical prime element of L.
Note that,Dmin(K) is a closed subset of Σ(M). Now, to show thatDmin(K) is irreducible. Sup-
pose for N,P ∈ M , Dmin(K) ⊆ Dmin(N) ∪Dmin(P ). Then ψ(Dmin(K)) ⊆ ψ(Dmin(N)) ∪
ψ(Dmin(P )), therefore by Lemma 2.7, Dl((0M : K)) ⊆ Dl((0M : N)) ∪Dl((0M : P )). Since
(0M : K) is a J-radical prime element of L, by Lemma 2.16,Dl((0M : K)) is an irreducible sub-
set of Max(L) therefore Dl((0M : K)) ⊆ Dl((0M : N)) or Dl((0M : K)) ⊆ Dl((0M : P )) and
hence by Lemma 2.7, Dmin(K) ⊆ Dmin(N) or Dmin(K) ⊆ Dmin(P ), consequently Dmin(K)
is irreducible.
(ii) Suppose that W ⊆ Σ(M) is an irreducible component of Dmin(N). Note that, irre-
ducible component is closed, therefore by (i), W = Dmin(X) with (0M : X) is a J−radical
prime element of L. In order to prove that (0M : X) is a J-component of (0M : N), let



130 S. Mitkari, R. Pathak, N. Phadatare and M. Agalave

(0M : N) ≤ q ≤ (0M : X), where q is J−radical prime element of L. Since M is min-
surjective, there exists Q ∈ Σ(M) with q = (0M : Q) by Lemma 2.14(ii). Therefore (0M :
N) ≤ (0M : Q) ≤ (0M : X) and so Dmin(X) ⊆ Dmin(Q) ⊆ Dmin(N). Since W = Dmin(X)
is an irreducible component of Dmin(N), we have Dmin(X) = Dmin(Q) and hence by using
Lemma 2.12, we have (0M : X) = (0M : Q), i.e., (0M : X) is the minimal element of the family
of J-radical prime elements, consequently, (0M : X) is a J-component of (0M : N).

Conversely, suppose that W = Dmin(N ′) for some Jmin-component N ′ of N . Then by
(i), W = Dmin(N ′) is an irreducible and closed subset of Σ(M). In order to prove that W =
Dmin(N ′) is an irreducible component of Dmin(N). Suppose Dmin(N ′) ⊆ Dmin(N ′′) ⊆
Dmin(N) where N ′′ ∈M such that (0M : N ′′) is a J-radical prime element L. Then by Lemma
2.3(v), (0M : Jmin(N)) ≤ (0M : Jmin(N ′′)) ≤ (0M : Jmin(N ′)) therefore by Lemma 2.14(i),
J(0M : N) ≤ J(0M : N ′′) ≤ J(0M : N ′). Since (0M : N ′) and (0M : N ′′) are J-radical prime
elements of L and (0M : N) ≤ J(0M : N), we have (0M : N) ≤ (0M : N ′′) ≤ (0M : N ′).
But N ′ is a Jmin-component of N , therefore (0M : N ′′) = (0M : N ′) and hence Dmin(N ′) =
Dmin(N ′′) consequently, W = Dmin(N ′) is an irreducible component of Dmin(N).

Theorem 2.18. Let M be a PG-lattice over L and M is a min-surjective. Then the following
statements hold.

(i) Σ(M) is connected if and only if Max(L) is connected.

(ii) Σ(M) is irreducible if and only if Max(L) is irreducible.

(iii) Σ(M) is compact if and only if Max(L) is compact.

Proof. i) Suppose that Σ(M) is a connected space, then Max(L) is connected by Lemma 2.7.
Conversely, suppose that Max(L) is a connected space. If Σ(M) is disconnected, then

for N,K ∈ M , Σ(M) = Dmin(N) ∪ Dmin(K) with Dmin(N) ∩ Dmin(K) = ∅, where
Dmin(N), Dmin(K) are nonempty closed subsets of Σ(M). Therefore by Lemma 2.7,Max(L) =

ψ(Σ(M)) = ψ(Dmin(N))∪ψ(Dmin(K)) = Dl((0M : N))∪Dl((0M : K)) withDl((0M : N))∩
Dl((0M : K)) = ∅, where Dl((0M : N)) and Dl((0M : K)) are nonempty closed subsets of
Max(L). This implies that Max(L) is disconnected, a contradiction, consequently Σ(M) is a
connected space.
ii) Follows from i).
iii) Suppose that Σ(M) is a compact space. Then by Lemma 2.7, ψ(Σ(M)) =Max(L) is also a
compact space.
Conversely, suppose that Max(L) is a compact space and for Ni ∈ M , {Dmin(Ni)|i ∈ I} is a
family of closed subsets of Σ(M) with ∩i∈ID

min(N) = ∅. Then by Lemma 2.7, {ψ(Dmin(Ni))|i ∈
I} is a family of closed subsets of Max(L) with ∩i∈Iψ(Dmin(Ni)) = ∅. Since Max(L) is
a compact space, there exists a finite subset I1 of I with ∩i∈I1ψ(D

min(Ni)) = ∅ and hence
∩i∈I1D

min(Ni) = ∅ because M is min-surjective, consequently Σ(M) is compact.

Theorem 2.19. Let M be a PG-lattice over L. Then the given below statements are equivalent.

(i) M is min-injective.

(ii) Σ(M) is a T0-space.

(iii) Σ(M) is a T1-space.

Proof. i) ⇒ iii) Suppose that N,K ∈ Σ(M) with N ̸= K. Since N ∈ Σ(M), we have
N ∈ Dmin(N). We contend that K /∈ Dmin(N). Indeed, if K ∈ Dmin(N) then (0M : N) ≤
(0M : K). Now, since M is principally generated, by Lemma 2.4, we have, (0M : N), (0M :
K) ∈ Max(L) therefore (0M : N) = (0M : K) and hence (0M : N) = (0M : K). As M is
min-injective, we have N = K, a contradiction and consequently Σ(M) is a T1-space.
iii) ⇒ ii) followes from defination.
ii) ⇒ i) Suppose that M is not min-injective. Then there exist P,K ∈ Σ(M) such that
(0M : P ) = (0M : K) and P ̸= K. Since Σ(M) is a T0-space, there exists N ∈ M such
that P /∈ Dmin(N) and K ∈ Dmin(N), i.e., (0M : N) ≰ (0M : P ) and (0M : N) ≤ (0M : K),
a contradiction to the fact that (0M : P ) = (0M : K), consequently M is min-injective.



MINIMAL SPECTRUM OF LATTICE MODULES 131

Hochster [5] characterized Max-spectral spaces. A space X is Max-spectral if and only if X
satisfy the following conditions:

(i) X is a T1-space.

(ii) X is compact.

Theorem 2.20. Let M be a PG-lattice over L. If M is min-injective then Σ(M) is Max-spectral
space in each of the following cases.

(i) (0M : 1M ) is a maximal element of L.

(ii) Σ(M) is a finite set.

(iii) The meet of any collection of maximal elements of L is zero.

(iv) The descending chain condition for min-radical elements of M holds.

Proof. i) Suppose that (0M : 1M ) is a maximal element of L. Then |Σ(M)| ≤ 1, indeed if
S1, S2 ∈ Σ(M), then both (0M : S1) and (0M : S2) are maximal elements of L by Lemma 2.4.
Since (0M : 1M ) is maximal, we have (0M : 1M ) = (0M : S1) = (0M : S2) therefore S1 = S2
because M is Min-injective, and hence |Σ(M)| ≤ 1, consequently, Σ(M) is Max-spectral.
ii) Follows from the fact that every finite set is compact.
For iii) and iv) use Corollary 2.9 and Lemma 2.13 respectively and follows from the fact that
every Noetherian topological space is compact.

Corollary 2.21. Let M be a PG-lattice over L. If Σ(M) is a Max-spectral topological space,
then M is min-injective.

Proof. Follows from Theorem 2.19.

3 Conclusions

In this paper, we have studied the Zariski topology on Σ(M), where M is a lattice module over
a C-lattice L and discussed the some basic properties (topological) like Compact, Noetherian,
Irreducible, Connected, etc. Furthermore, for Σ(M) to be the Max-spectral space, we have
obtained different conditions on M and L.
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