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Abstract This article aims to solve positively Anderson-Badawi Conjecture of n-Absorbing
and strongly n-absorbing ideals of commutative rings in the class of u-rings. The main result
extends and recovers Anderson-Badawi’s related result on Prufer domains [3, Corollary 6.9].

1 Introduction

Throughout this article, R denotes a commutative ring with 1 ̸= 0. In 2007, A. Badawi in-
troduced the concept of 2-absorbing ideals of commutative rings as a generalization of prime
ideals. He defined an ideal I of R to be 2-absorbing if whenever a, b, c ∈ R and abc ∈ I , then ab
or ac or bc is in I [4]. As in the case of prime ideals, 2-absorbing ideals have a characterization
in terms of ideals. Namely, I is 2-absorbing if whenever I1, I2, I3 are ideals of R and I1I2I3 ⊆ I ,
then I1I2 or I1I3 or I2I3 is contained in I [4, Theorem 2.13].

In 2011, D.F. Anderson, A. Badawi inspired from the definition of 2-absorbing ideals and de-
fined the n-absobing ideals for any positive integer n as follows: An ideal I is called n-absorbing
ideal if whenever x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there are n of the xi’s whose product
is in I. Also they introduced the strongly-n-absorbing ideals as another generalization of prime
ideals, where an ideal I of R is said to be a strongly n-absorbing ideal if whenever I1 . . . In+1 ⊆ I
for ideals I1, . . . , , In+1 of R, then the product of some n of the Ij’s is contained in I . Obviously,
a strongly n- absorbing ideal of R is also an n-absorbing ideal of R, and by the last fact in the
previous paragraph, 2-absorbing and strongly 2 absorbing are the same. Moreover, D.F. Ander-
son and A. Badawi were able to prove that n-absorbing and strongly n-absorbing are equivalent
in the class of Prufer domains [3, Corollary 6.9]. Then they conjectured that these two con-
cepts are equivalent in any commutative ring [3, Conjecture 1]. For more about the absorbing
concepts, one may refer to [1, 2, 3, 4, 5, 7, 11].

In 1975, Jr. P. Quartararo and H.S. Butts defined the u-rings to be those rings in which if
an ideal I is contained in the union of ideals, then it must be contained in one of them. Then,
they proved that it suffices to consider the case I is finitely generated ideal of R [10, Proposition
1.1] (i.e., R is a u-ring if each finitely generated ideal I satisfies the condition that when I is
contained in the union of ideals, then it must be contained in one of them.). Moreover, in [10,
Corollary 1.6], they proved that the class of Prufer domains (domains in which every finitely
generated ideal is invertible) is contained in the class of u-rings. So we have the following
diagram of implications:
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Prufer domains
⇓

u-rings

where the implication is irreversible in general; see Example 3.9 for a u-ring which is not a
domain, particularly, not a Prufer domain.

In section one of this paper, we provide an alternative proof of [4, Theorem 2.13]. The
technique of this proof helps in proving the main result of Section 2, which solves positively
Anderson-Badawi’s Conjecture of n-Absorbing and strongly n-absorbing ideals in the class of
u-rings. The main result (Theorem 3.1) extends and recovers Anderson-Badawi’s related result
on Prufer domains (Corollary 3.7).

2 Alternative proof of [4, Theorem 2.13].

As we mentioned in the introduction, 2-absorbing ideals and strongly 2-absorbing ideals are the
same. This follows trivially from [4, Theorem 2.13]. In this section, we present an alternative
proof of [4, Theorem 2.13], which inspires us in solving [3, Conjecture 1] in the class of u-rings.
For the seek of completeness, We provide the proof of the following lemma; which can be found
as an exercise in the classical ring theory texts.

Lemma 2.1. Let I be an ideal of R. If I = I1 ∪ I2, where I1 and I2 are also ideals, then I = I1
or I = I2.

Proof. Suppose I1 \ I2 and I2 \ I1 are nonempty. Let a ∈ I1 \ I2 and b ∈ I2 \ I1. Since I1 ∪ I2 is
ideal, a+b ∈ I1∪I2. Assume, without loss of generality, that a+b ∈ I1. Then b = (a+b)−a ∈ I1,
a contradiction. Therefore, either I1 \ I2 = ϕ or I2 \ I1 = ϕ; equivalently, I1 ⊆ I2 or I2 ⊆ I1. So
that I = I1 or I = I2.

Now, we prove a few lemmas in a sequence, finishing with the proof of Theorem 2.4.

Lemma 2.2. Suppose that I is a 2-absorbing ideal of R, J is an ideal of R and xyJ ⊆ I for
some x, y ∈ R. Then xy ∈ I or xJ ⊆ I or yJ ⊆ I .

Proof. Suppose xy ̸∈ I . Denote by Jx = {z ∈ J | xz ∈ I} and Jy = {z ∈ J | yz ∈ I}. It is not
hard to show that Jx and Jy are ideals. Now, if a ∈ J , then xya ∈ I . But I being 2-absorbing
and xy ̸∈ I imply that xa ∈ I or ya ∈ I . Thus, either a ∈ Jx or a ∈ Jy, and hence J = Jx ∪ Jy.
Therefore, by Lemma 2.1, either J = Jx, and hence xJ ⊆ I or J = Jy, and hence yJ ⊆ I .

We generalize the previous lemma as follows:

Lemma 2.3. Suppose that I is a 2-absorbing ideal of R, I1 and I2 are ideals of R, and xI1I2 ⊆ I
for some x ∈ R. Then xI1 ⊆ I or xI2 ⊆ I or I1I2 ⊆ I .

Proof. Suppose xI2 ̸⊆ I . By Lemma 2.2, for all y ∈ I1, either xy ∈ I or yI2 ⊆ I . Let
N = {y ∈ I1 | xy ∈ I} and M = {y ∈ I1 | yI2 ⊆ I}. Then M and N are ideals of R, and
similarly as in the proof of Lemma 2.2, I1 = N ∪M . Thus, again by Lemma 2.1, either I1 = N ,
and in this case xI1 ⊆ I , or I1 = M , and in this case I1I2 ⊆ I .

Finally, we use the above lemmas to prove the main theorem of this section.

Theorem 2.4. [4, Theorem 2.13] An ideal I of R is 2-absorbing ideal if and only if it is strongly
2-absorbing ideal.

Proof. Obviously, strongly 2-absorbing ideals are 2-absorbing. Conversely, Assume that I is
2-absorbing and I1I2I3 ⊆ I , where I1, I2, and I3 are ideals of R. Further, Suppose I2I3 ̸⊆ I , and
let N = {x ∈ I1 | xI2 ⊆ I} and M = {x ∈ I1 | xI3 ⊆ I}. Then M and N are ideals. By Lemma
2.3, all x ∈ I1 are in either N or M , and thus I1 = N ∪ M . Therefore by Lemma 2.1, either
I = N or I = M ; which implies that I1I2 ⊆ I or I1I3 ⊆ I .
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3 The main result.

The following conjecture was announced in [3].
Anderson and Badawi’s conjecture: In every ring, the notions of n-absorbing ideals and strongly
n-absorbing ideals are equivalent.

It is easy to see that strongly n-absorbing ideals are n-absorbing. We aim to find conditions
for the converse to hold. We adopt the following terminology from [6] and [10]: If I1, ..., In are
ideals of R, then I1 ∪ ... ∪ In is called an efficient covering of I if I ⊆ I1 ∪ ... ∪ In, but I is not
contained in the union of any n− 1 of these ideals [6]. In view of this definition, an ideal I of R
is called a u-ideal if there is no efficient covering of I with more then one ideal.

The following result solves Anderson and Badawi’s conjecture to u-rings, generalizing thus
Corollary 6.9 from [3].

Theorem 3.1. In a u-ring, an n-absorbing ideal is strongly n-absorbing.

In order to prove this main theorem (Theorem 3.1), we prove the following four lemmas:

Lemma 3.2. A principal ideal is a u-ideal.

Proof. Say I ⊆ I1 ∪ ... ∪ In, and I = (x). Then for some j, x ∈ Ij so I ⊆ Ij .

Lemma 3.3. Let I be an n-absorbing ideal of R, and I1, ..., In+1 be u-ideals of R. Suppose that
the following condition is satisfied:

whenever I1 · · · In+1 ⊆ I , and at least k + 1 of the ideals I1, ..., In+1 are principal, then I
contains a product of some n of them.

Then the same holds when we replace k + 1 with k. Here n ≥ k ≥ 0.

Proof. Assume the statement is true for I and k + 1. Let I1 · · · In+1 ⊆ I , where Ij is principal
for j ≤ k. Assume

∏
j≤n Ij ̸⊆ I . For all i ≤ n, let

Ji = {y ∈ In+1 | y
∏

j ̸=n+1,i

Ij ⊆ I}

Then by our assumption, In+1 = ∪i≤nJi. Since it is a u-ideal, it is equal to some Ji. But then∏
j ̸=i

Ij ⊆ I

This concludes the proof.

Lemma 3.4. Let I be an n-absorbing ideal. If I1 · · · In+1 ⊆ I , where every Ij is a u-ideal, then
I contains the product of some n of these ideals.

Proof. By the definition of I , and Lemma 3.2, the statement holds when I1, ..., In+1 are all
principal ideals. We use Lemma 3.3 to induct down from the case k = n (where we require k+1
ideals to be principle) to k = 0 (where we require no ideals to be principle), which is exactly
what we want.

Now, we are ready to introduce the proof of the main theorem of this article (Theorem 3.1).
Proof of Theorem 3.1: Assume the contrary. Then in some u-ring, there are ideals I, I1, ..., In+1

such that I is n-absorbing and I1 · · · In+1 ⊆ I , but I doesn’t contain the product of any n of these
ideals. But R is a u-ring, and hence I1, ..., In are u-ideals. Lemma 3.4 gives a contradiction.

Remark 3.5. We can alter the proof of Lemma 3.4 above slightly, to get a more general statement
when n = 2. Indeed, notice that if I = I1 ∪ I2, then I = I1 or I2 (well-known). Then we can
drop the condition of the ideals needing to be u-ideals from Lemma 3.4, and hence we obtain for
arbitrary rings, every 2-absorbing ideal is strongly 2-absorbing. This is Theorem 2.4.
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We can use this to give an alternative proof to [3, Corollary 6.9]. To achieve that, we cite the
following result first.

Proposition 3.6. Every invertible ideal is a u-ideal, and a Prüfer domain is a u-ring.

Proof. See [10, Theorem 1.5 and Corollary 1.6].

As a straightforward application of Theorem 3.1, we recover Anderson-Badawi’s related
result on Prufer domains

Corollary 3.7. In Prüfer domains, an n-absorbing ideal is strongly n-absorbing.

Lastly, to ensure that u-rings is strictly larger that the class of Prüfer domains, we prove
the following lemma which provides an example of one such family of u-rings. A more general
result; which was proved in the same way; can be found in [10].

Lemma 3.8. Suppose R is a ring with Q ⊆ R. Then R is a u-ring.

Proof. Let I = I1 ∪ · · · ∪ In be an efficient covering of I . Take a1 ∈ I1 with a1 ̸∈ Ij for j ̸= 1.
Choose a2 analogously. Then for all k ∈ Z, a1+ka2 ̸∈ I1, I2. Since there are infinite possibilities
for k, there will be a1 + ka2 and a1 + la2 in the same Ij . But then (k − l)a2 ∈ Ij , so a2 ∈ Ij for
j ̸= 2, contradiction.

The following is an example of a u-ring which is not a domain, and hence not a Prüfer
domain.

Example 3.9. Q × Q is a ring with zero divisors (not domain) which contains Q ∼= 0 × Q as a
subring. Consequently, by Lemma 3.8, Q×Q is a u-ring.
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