
Palestine Journal of Mathematics

Vol 13(3)(2024) , 138–146 © Palestine Polytechnic University-PPU 2024

k-Content semimodule

S. Swomin

Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 15A03, Secondary 16Y60.

Keywords and phrases: semimodule, inverse semimodule, E-torsionfree semimodule, k-content semimodule.

The author would like to thank the reviewers and editor for their constructive comments and valuable suggestions that
improved the quality of the paper.

S. Swomin is thankful to Dr. Mridul Kanti Sen for various discussions and suggestions regarding this article. The author is
also thankful to Dr. Sunil Kumar Maity for his guidance as Ph.D supervisor.

Corresponding Author: S. Swomin

Abstract The study of semimodules over semirings is an essential tool in characterizing
properties of the semirings and plays a central role in many areas of Mathematics. In this paper,
inverse semimodules over the semiring R is considered where R is a distributive lattice of rings.
Ohm and Rush [8], defined content modules and algebra over commutative ring and studied
different interesting properties. The objective of this article is to introduce and investigate several
properties of k-content semimodules as a generalization of content modules.

1 Introduction

Semimodules over semirings have an important role and have many applications in structure
theory, computer science and cryptography (see [1]). In 1999, J. S. Golan [2] addressed on semi-
module over semiring. The concept of inverse semimodule over a semiring was introduced by
Yusuf [3], in 1966 and he obtained several results for inverse semimodules which are generaliza-
tion of the corresponding results in module theory. In 2020, Sen, Bhuniya and Maity [4], studied
congruences, specially the R-module congruences, on inverse semimodules. Farzalipour and
Ghiasvand [5], studied on weakly semiprime subsemimodules and in [6], the author discussed
on colon operations and special types of ideals. Also, some remarks on ideals of commutative
semirings has been studied by P. Nashepour [7]. Ohm and Rush [8], defined Content modules
and algebra over commutative ring and studied different interesting properties. Later on, in [9],
the authors defined content semimodule over a commutative semiring with zero and studied its
properties. In this paper, we consider inverse semimodule over an additive and multiplicative
commutative semiring R with identity 1 such that R is a distributive lattice of rings. The ob-
jective of this paper is to introduce and investigate several properties of k-content semimodule
as a generalization of content module and content semimodule. Some basic definitions and pre-
liminaries are discussed in Section 2. In Section 3, we state some basic properties of k-content
semimodule and establish the relation between k-content semimodule and weak multiplication
semimodule. Finally, in Section 4, k-content semimodules over regular semiring are discussed.
In this Section, it is proved that if R is a regular semiring, then every full k-subsemimodule
of a k-content R-semimodule is a k-content R-semimodule with restricted k-content function.
We also prove that if every k-subsemimodule of a k-content R-semimodule is a k-content R-
semimodule with restricted k-content function, then R is a 2-regular semiring. Moreover, if we
take R is a semiring such that E+(R) is a k-ideal and every k-subsemimodule of a k-content
R-semimodule is a k-content R-semimodule with restricted k-content function, then R is a reg-
ular semiring. Finally, it is proved that if R is a regular semiring and M is an R-semimodule
such that E(M) is a k-set, then M is a k-content R-semimodule if and only if Ann(x) is finitely
generated for all x ∈ M .



k-Content semimodule 139

2 Definitions and Preliminaries

A semiring (R,+, ·) is a type (2, 2) algebra whose semigroup reducts (R,+) and (R, ·) are
connected by distributivity, i.e., r(s+ t) = rs+ rt and (s+ t)r = sr + tr for all r, s, t ∈ R. A
semiring (R,+, ·) is said to be additive regular if for every element a ∈ R, we have a+x+a = a
for some x ∈ R. Additive regular semirings were first studied by J. Zeleznekow [10] in 1981. If
for each element a in a semiring R, there exists unique element a′ ∈ R such that a+ a′ + a = a
and a′ + a+ a′ = a′, then (R,+, ·) is an additive inverse semiring. In 1974, Karvellas [11], first
studied additive inverse semirings. Throughout the paper, the set of all additive idempotents of
the semiring R is denoted by E+(R). A subsemiring I of a semiring (R,+, ·) is called an ideal
of R if RI, IR ⊆ I . For any ideal I of R, if E+(R) ⊆ I , then I is called a full ideal of R. For
each ideal I of a semiring R, the k-closure I of I is defined by I = {a ∈ R : a + a1 = a2

for some a1, a2 ∈ I} and is an ideal of R satisfying I ⊆ I and I = I . An ideal I is called a
k-ideal of R if and only if I = I holds. For a semiring R, let Idk(R) denotes the set of full
k-ideals of R.

We need the following result:

Corollary 2.1. [12] Let R be an additive commutative semiring. Then R is a distributive lattice
of rings if and only if it is an additive inverse semiring satisfying the following conditions:

(i) r(s+ s′) = s+ s′,
(ii) r(s+ s′) = (s+ s′)r
(iii) r + r(s+ s′) = r, for all r, s ∈ R.

Let (M,+) be a commutative semigroup and (R,+, ·) be a semiring with identity. Then M is
called a left R-semimodule or simply an R-semimodule if there exists a mapping R ×M → M ,
written as (r,m) 7→ rm, for all r ∈ R and for all m ∈ M , satisfying (i) r(m + n) = rm + rn,
(ii) (r+ s)m = rm+ sm, (iii) r(sm) = (rs)m and (iv) 1m = m for all r, s ∈ R and m,n ∈ M .
If an R-semimodule M is such that (M,+) is an inverse semigroup, then M is said to be an
inverse semimodule [3]. Any subsemimodule N of M contain the set of all idempotents of the
semigroup (M,+), denoted by E(M), is said to be full subsemimodule of M . For any two
subsemimodules N and K of M , the set {a ∈ R : aK ⊆ N} is denoted by (N : K). It is easy to
verify that (N : K) is an ideal of R. We call a subset Q of M is a k-set if a, a+b ∈ Q implies that
b ∈ Q. A subsemimodule N of an R-semimodule M is said to be a k-subsemimodule of M if for
x, x+y ∈ N for some y ∈ M imply that y ∈ N . For any subsemimodule N of an R-semimodule
M , the k-closure of N , denoted by N , is defined by N = {x ∈ M : x+ y = z for some y, z ∈
N}. For an R-semimodule M , let L (M) denotes the set of all full k-subsemimodules of M .

Throughout this paper, all semirings R are assumed to be additive as well as multiplicative
commutative which are distributive lattices of rings. This means R denotes an additive com-
mutative and multiplicative commutative additive inverse semiring satisfying the conditions of
Corollary 2.1. Also, assume that R contains an identity element 1 such that 1 /∈ E+(R) and all
semimodules are inverse semimodules with M ̸= E(M).

3 k-Content Semimodule

Similar to module theory, here we define k-content semimodule and study their some properties.

Definition 3.1. Let M be an R-semimodule and x ∈ M . Consider A = {I: I is a full k-ideal of R and
x ∈ IM}. We define the k-content of x by, cM (x) =

⋂
I∈A I . Then cM is a function from M to

the set of all full k-ideals of R.
For any subset N of M , we define cM (N) =

∑
x∈N cM (x). When no confusion arises, we

omit the subscript M and simply write c(x) instead of cM (x). It is clear that c(N) is a full ideal
of R.

Definition 3.2. An R-semimodule M will be called a k-content R-semimodule if for any x ∈ M ,
x ∈ c(x)M .

Lemma 3.3. Let M be a k-content R-semimodule and x ∈ M . Then c(x) = J for some finitely
generated full ideal J of R.
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Proof. As M is a k-content R-semimodule, we have x ∈ c(x)M . Then x+x1 ∈ c(x)M for some
x1 ∈ c(x)M . This implies x+x1+x′

1 ∈ c(x)M and so x+(x1+x′
1) = c1y1+c2y2+ · · ·+cnyn,

where ci ∈ c(x) and yi ∈ M for 1 ≤ i ≤ n. Then x + (x1 + x′
1) ∈ ⟨c1, c2, · · · , cn⟩M ⊆

(⟨c1, c2, · · · , cn⟩+ E+(R))M = JM where J = ⟨c1, c2, · · · , cn⟩+ E+(R). As E+(R) ⊆ J and
E+(R) = ⟨1+ 1′⟩, we have J is a finitely generated full ideal of R. Again, x+(x1 + x′

1) ∈ JM
and x1 + x′

1 ∈ E(M) ⊆ JM implies x ∈ JM . Then from the definition of the k-content of x,
we have c(x) ⊆ J . Also, J ⊆ c(x) implies c(x) = J , where J is a finitely generated full ideal of
R.

Theorem 3.4. Let M be a k-content R-semimodule. Then c(M) = R if and only if PM ̸= M
for any full maximal ideal P of R.

Proof. Let c(M) = R and PM = M for some full maximal ideal P of R. Then for all x ∈ M ,
x ∈ PM . Also, P = P , otherwise P = R as P is a maximal ideal of R. So 1 ∈ P . Then
1 + p ∈ P for some p ∈ P . This implies 1 = 1 + p + p′ ∈ P , which is a contradiction.
Therefore, P is a full k-ideal of R such that x ∈ PM . This implies c(x) ⊆ P for all x ∈ M .
Then c(M) ⊆ P which is not possible. Thus PM ̸= M for any full maximal ideal P of R.

For the converse part, assume that PM ̸= M for any full maximal ideal P of R. Then
for any full maximal ideal P of R, there exists an element x ∈ M such that x /∈ PM . This
implies c(x) ⊈ P , otherwise x ∈ c(x)M ⊆ PM , which is not possible. Since c(x) ⊆ c(M) and
c(x) ⊈ P , we must have c(M) ⊈ P . Since c(M) is a full ideal of R and c(M) ⊈ P for any full
maximal ideal P of R, we must have c(M) = R.

Theorem 3.5. Let M be an R-semimodule. Then the following statements are equivalent:
(i) M is a k-content R-semimodule.
(ii)

⋂
(IiM) = (

⋂
Ii)M for any collection of full k-ideals {Ii} of R.

(iii) There exists a function f : M → Idk(R) such that for all x ∈ M and for every full
k-ideal I of R, x ∈ IM if and only if f(x) ⊆ I .

Proof. The proof is similar as content module.

Theorem 3.6. Let N be a k-subsemimodule of a k-content R-semimodule M . Then the following
statements are equivalent:

(i) IM ∩N = IN for every full k-ideal I of R.
(ii) x ∈ cM (x)N for all x ∈ N .
(iii) N is a k-content R-semimodule and cM restricted to N is cN .

Proof. The proof is similar as content module.

Let M be an R-semimodule, N a subsemimodule of M and I be an ideal of R. Let s ∈ R
and consider (I :R s) = {r ∈ R : rs ∈ I} and (N :M s) = {x ∈ M : sx ∈ N}. Then
(I :R s) is an ideal of R and (N :M s) is a subsemimodule of M . Also, in this paper, (E+(R) :R
I) = {r ∈ R : rI ⊆ E+(R)} is denoted by Ann(I) and for any x ∈ M , Ann(x) is defined as
Ann(x) := (E(M) :R x) = {r ∈ R : rx ∈ E(M)}.

Theorem 3.7. Let M be a k-content R-semimodule and s ∈ R. Then the following statements
are equivalent:

(i) sc(x) ⊆ c(sx) for all x ∈ M .
(ii) (I :R s)M = (IM :M s) for every full k-ideal I of R.
(iii) (I :R J)M = (IM :M J) for every pair of full k-ideals I , J of R.

Proof. (i) =⇒ (ii): Let I be a full k-ideal of R and x ∈ (IM :M s). Then sx ∈ IM . This
implies c(sx) ⊆ I . Then from (i), sc(x) ⊆ c(sx) ⊆ I . So c(x) ⊆ (I :R s). As M is a k-content
R-semimodule, we have x ∈ c(x)M ⊆ (I :R s)M . For the reverse inclusion, let x ∈ (I :R s)M .
Then x+ y ∈ (I :R s)M for some y ∈ (I :R s)M . This implies x+ y + y′ ∈ (I :R s)M and so
x+ y+ y′ = r1m1 + r2m2 + · · ·+ rnmn, where ri ∈ (I :R s) and mi ∈ M for 1 ≤ i ≤ n. Then
for all i, sri ∈ I and hence s(x+ y + y′) = s(r1m1 + r2m2 + · · ·+ rnmn) ∈ IM . Therefore,
sx ∈ IM as s(y + y′) ∈ E(M) ⊆ IM . So x ∈ (IM :M s). Thus (I :R s)M ⊆ (IM :M s).
Hence (I :R s)M = (IM :M s).

(ii) =⇒ (iii):
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(I :R J)M = {
⋂

j∈J(I :R j)}M
=

⋂
j∈J (I :R j)M [By condition (ii) of Theorem 3.5 ]

=
⋂

j∈J(IM :M j)

= (IM :M J)

(iii) =⇒ (i): We consider the full k-ideal J = ⟨s⟩+E+(R) of R. Then by the given
condition, we have (c(sx) :R J)M = (c(sx)M :M J). Again, M is a k-content R-semimodule
implies sx ∈ c(sx)M . Now, let r ∈ J be an arbitrary element. Then r + e ∈ ⟨s⟩ + E+(R)
for some e ∈ E+(R). So r + e = ts + f for some t ∈ R and f ∈ E+(R). Therefore,
(r + e)x = tsx + fx ∈ c(sx)M . Since ex ∈ E(M) ⊆ c(sx)M , we must have rx ∈ c(sx)M .
Since r ∈ J is arbitrary, so from rx ∈ c(sx)M , we have x ∈ (c(sx)M :R J) = (c(sx) :R J)M .
Therefore, c(x) ⊆ (c(sx) :R J). Since s ∈ J , so from c(x) ⊆ (c(sx) :R J), it follows that
sc(x) ⊆ c(sx).

Definition 3.8. An R-semimodule M is said to be E-torsionfree if for any a /∈ E+(R), ax ∈
E(M) for some x ∈ M , implies x ∈ E(M).

Theorem 3.9. Let M be a k-content E-torsionfree R-semimodule such that E(M) is a k-set.
Then for every s ∈ R and x ∈ M , sc(x) ⊆ c(sx).

Proof. We assume that s /∈ E+(R), otherwise the inclusion will be trivial. Now, it is clear that
sx ∈ ⟨s⟩+E+(R)M . Then c(sx) ⊆ ⟨s⟩+E+(R). Now, let r ∈ c(sx). Then r ∈ ⟨s⟩+E+(R).
Thus r + r1 ∈ ⟨s⟩+ E+(R) for some r1 ∈ ⟨s⟩+ E+(R). Then r + (r1 + r′1) = ts+ e for some
t ∈ R and e ∈ E+(R). As r ∈ c(sx) and E+(R) ⊆ c(sx), we have ts+e ∈ c(sx). Since c(sx) is
a k-ideal of R and e ∈ E+(R) ⊆ c(sx), we have ts ∈ c(sx) and therefore, t ∈ (c(sx) :R s). This
leads to, r+(r1+r′1) ∈ ⟨s⟩(c(sx) :R s)+E+(R). Also, r1 ∈ ⟨s⟩+E+(R) implies r1 = us+f for
some u ∈ R and f ∈ E+(R). Then r1+r′1 = s(u+u′)+f ∈ ⟨s⟩(c(sx) :R s)+E+(R). Therefore,
r ∈ ⟨s⟩(c(sx) :R s) +E+(R). Then c(sx) ⊆ ⟨s⟩(c(sx) :R s) +E+(R) ⊆ c(sx). Therefore,
c(sx) = ⟨s⟩(c(sx) :R s) +E+(R). Let J = (c(sx) :R s). Then c(sx) = ⟨s⟩J +E+(R). As M
is a k-content R-semimodule, we have sx ∈ c(sx)M ⊆ ⟨s⟩JM +E(M). Then sx+ sy+m1 =
sz +m2 for some y, z ∈ JM and m1, m2 ∈ E(M). This implies s(x+ y + z′) +m1 ∈ E(M).
As E(M) is a k-set, we have s(x + y + z′) ∈ E(M). This implies x + y + z′ ∈ E(M), as
M is E-torsionfree R-semimodule. Since E(M) ⊆ JM , we have x + y + z′ ∈ JM , where
y + z′ ∈ JM and so x ∈ JM . Then c(x) ⊆ J . Hence sc(x) ⊆ sJ = s(c(sx) :R s) ⊆ c(sx).

Now, we need the following definitions and lemma from [13].

Definition 3.10. [13] Let M an R-semimodule satisfying the property (Rm : M) ̸= ∅ for all
m ∈ M . Then M is said to be a weak multiplication semimodule if for each full subsemimodule
N of M there exists a full ideal I of R such that N = IM .

Definition 3.11. [13] Let M be an R-semimodule and P be an ideal of R. We define

TP (M) = {m ∈ M : there exists p ∈ P such that (1 + p′)m ∈ E(M)}.

Then one can easily check that TP (M) is a subsemimodule of M . An R-semimodule M is said
to be faithful if (E(M) :R M) = {r ∈ R : rM ⊆ E(M)} = E+(R).

Lemma 3.12. [13] Let M be a weak-multiplication R-semimodule. Then for any maximal ideal
P of R either M = TP (M) or there exist q ∈ P and m ∈ M such that (1+q′)M ⊆ Rm+E(M).

Next theorem establishes a relation between a E-unitary weak multiplication semimodule
(i.e., a weak multiplication semimodule whose set of idempotents is a k-set) and a k-content
semimodule.

Theorem 3.13. Let M be a faithful weak-multiplication R-semimodule such that E(M) is a
k-set. Then M is a k-content R-semimodule.
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Proof. Let Iλ(λ ∈ Λ) be any non-empty collection of full k-ideals of R. To show M is a
k-content R-semimodule, it is sufficient to show that

⋂
λ∈Λ

IλM = (
⋂

λ∈Λ
Iλ)M . Let I =⋂

λ∈Λ
Iλ. Clearly, IM ⊆

⋂
λ∈Λ

(IλM). This implies IM ⊆
⋂

λ∈Λ
IλM . For the reverse inclu-

sion, let x ∈
⋂

λ∈Λ
IλM and x /∈ IM . We consider K = {r ∈ R : rx ∈ IM}. Then 1 /∈ K and

thus K is a proper ideal of R. Then there exists a maximal ideal P of R such that K ⊆ P . We
claim that x /∈ TP (M). Otherwise there exists p ∈ P such that (1 + p′)x ∈ E(M) ⊆ IM and so
1 + p′ ∈ K ⊆ P implies 1 = 1 + p+ p′ ∈ P and thus P = R, which is a contradiction. Then by
Lemma 3.12, there exist elements m ∈ M and p1 ∈ P such that (1+p′

1
)M ⊆ Rm+E(M). Now

(1 + p′1)x ∈ (1 + p′1)IλM ⊆ (1 + p′1)IλM ⊆ Iλm+E(M) for all λ ∈ Λ. Then for each λ ∈ Λ,
there exist rλ, aλ ∈ Iλ, such that (1+p′1)x+ rλm+mλ = aλm+nλ for some mλ, nλ ∈ E(M).
Choose α ∈ Λ. Then we have (1 + p′1)x + rαm + mα = aαm + nα where rα, aα ∈ Iα and
mα, nα ∈ E(M). Then for each λ ∈ Λ, we have (1 + p′1)x + rλm + mλ + rαm + mα =
aλm+ nλ + rαm+mα. Thus aαm+ nα + rλm+mλ = aλm+ nλ + rαm+mα. This implies
(aλ + a′α + rα + r′λ)m ∈ E(M), as E(M) is a k-set. Again, (1 + p′1)(aλ + a′α + rα + r′λ)M ⊆
(aλ+a′α+rα+r′λ)(Rm+E(M)) ⊆ E(M). Therefore, (1+p′1)(aλ+a′α+rα+r′λ) ∈ (E(M) :R
M) = E+(R) ⊆ Iλ for each λ ∈ Λ. So (1+p′1)(a

′
α+rα)+(1+p′1)(aλ+r′λ+a′λ+rλ) ∈ Iλ for

each λ ∈ Λ. As each Iλ is a k-ideal, we have (1 + p′1)(a
′
α + rα) ∈ Iλ for each λ ∈ Λ and hence

(1+ p′1)(a
′
α + rα) ∈ I . Also, we have (1+ p′1)((1+ p′1)x+ rαm+mα) = (1+ p′1)(aαm+nα).

So (1 + p′1)
2x+ (1 + p′1)(rαm+ r′αm+mα) = (1 + p′1)(aα + r′α)m+ (1 + p′1)nα ∈ IM and

hence (1 + p′1)
2x ∈ IM . Then (1 + p′1)

2 ∈ K ⊆ P and hence 1 ∈ P which is a contradiction.
Therefore,

⋂
λ∈Λ

IλM ⊆ IM . Hence
⋂

λ∈Λ
IλM = (

⋂
λ∈Λ

Iλ)M . Hence M is a k-content
R-semimodule.

Definition 3.14. (see [14, Definition 3.8]). Let M be an R-semimodule. An element a ∈ R is
said to be M -vn-regular if aM +E(M) = a2M +E(M).

Definition 3.15. (see [14, Definition 3.9]). An R-semimodule M is said to be a vn-regular
semimodule if for any m ∈ M , Rm + E(M) = aM + E(M) for some M -vn-regular element
a ∈ R.

Lemma 3.16. Let M be a faithful vn-regular R-semimodule such that E(M) is a k-set and
(Rm :R M) ̸= ∅. Then M is a k-content R-semimodule.

Proof. As M is a vn-regular R-semimodule, for any m ∈ M , Rm + E(M) = aM + E(M)
for some M -vn-regular element a of R. Let I = ⟨a⟩ + E+(R). Then we have Rm + E(M) =
IM + E(M), where I is a full ideal of R. Then by [13, Theorem 3.6], we have M is a weak-
multiplication R-semimodule and hence from Theorem 3.13, M is a k-content R-semimodule.

Next result establishes sufficient conditions on a k-content R-semimodule for which every
element of R is M -vn-regular.

Theorem 3.17. Let M be a finitely generated k-content R-semimodule such that E(M) is a
k-set and every k-subsemimodule of M is a k-content R-semimodule with restricted k-content
function. Then every element of R is M -vn-regular.

Proof. Let a ∈ R be arbitrary. To show a is M -vn-regular, it is enough to show that aM +
E(M) = a2M + E(M). For this, we consider the k-subsemimodule N = ⟨a⟩M of M . From
the hypothesis, we have N is a k-content R-semimodule with restricted k-content function and
hence applying Theorem 3.6, it follows that IM ∩ N = IN , for every full k-ideal I of R. We
now consider the full k-ideal J = ⟨a⟩+E+(R) of R. Then JN = ⟨a⟩+E+(R) ⟨a⟩M ⊆
(⟨a⟩+E+(R))⟨a⟩M ⊆ ⟨a⟩⟨a⟩M +E(M). Also, we have ⟨a⟩M ⊆ JM ∩ N = JN ⊆
⟨a⟩⟨a⟩M +E(M). Since M is finitely generated, it follows that ⟨a⟩M is also finitely gener-
ated. Suppose ⟨a⟩M is generated by x1 , x2 , . . . , xn

. Now, for all i = 1, 2, . . . , n; x
i
∈ ⟨a⟩M ⊆

⟨a⟩⟨a⟩M +E(M) implies

xi + fi = a
i1x1 + a

i2x2 + · · ·+ ainxn + gi ,
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where a
ij
∈ ⟨a⟩ and f

i
, g

i
∈ E(M), for all i, j ∈ {1, 2, . . . , n}.

Then similar to the proof of [14, Lemma 3.12], we have ⟨a⟩ + (E(M) :R M) = ⟨a2⟩ +
(E(M) :R M). Then a = a + a′ + a ∈ ⟨a⟩ + (E(M) : M) = ⟨a2⟩ + (E(M) : M) implies
a = ra2 + r1 for some r1 ∈ (E(M) : M) and r ∈ R. Thus aM + E(M) ⊆ a2M + E(M).
Since a2M + E(M) ⊆ aM + E(M) holds trivially, we have aM + E(M) = a2M + E(M).
Consequently, every element of R is M -vn-regular.

4 k-Content Semimodule over regular semiring

An element a of a semiring R is regular if there exists an element x of R such that a = axa. A
semiring R is regular if every element of R is regular. Also, if there is a fixed integer m such
that for every element a of R, am is regular, then R is said to be m-regular. Here we study about
k-content semimodules over regular semiring. First we state a result from [15].

Theorem 4.1. [15] In a regular semiring R, every finitely generated ideal is generated by an
idempotent element of R.

Theorem 4.2. Let R be a regular semiring and M be a k-content R-semimodule. Then every full
k-subsemimodule of M is a k-content R-semimodule with restricted k-content function.

Proof. Let N be a full k-subsemimodule of a k-content R-semimodule M . From Theorem 3.6,
it is sufficient to show that x ∈ cM (x)N for all x ∈ N . Let x ∈ N . Since M is a k-content R-
semimodule, we have x ∈ cM (x)M . Again, since M is a k-content R-semimodule from Lemma
3.3, it follows that cM (x) = J for some finitely generated full ideal J of R. Also, from Theorem
4.1, we have J = ⟨e⟩ for some idempotent element e of R. Then x ∈ cM (x)M = JM = ⟨e⟩M .
Therefore, x+ em1 = em2 for some m1, m2 ∈ M . This implies ex+ em1 = em2 = x+ em1.
Then x+ e(m1 +m′

1) = e(x+m1 +m′
1) ∈ cM (x)N . So x ∈ cM (x)N . Thus N is a k-content

R-semimodule with restricted k-content function.

Theorem 4.3. Suppose that R is a semiring. If every k-subsemimodule of a k-content R-semimodule
is a k-content R-semimodule with restricted k-content function, then R is a 2-regular semiring.

Proof. Let a ∈ R and we consider the full k-ideal I = ⟨a⟩+E+(R) of R. Since R is itself a
k-content R-semimodule over R and ⟨a⟩ is a k-subsemimodule of R, then from Theorem 3.6, it
follows that IR ∩ ⟨a⟩ = I⟨a⟩ = I⟨a⟩. Now, I⟨a⟩ = ⟨a⟩+E+(R)⟨a⟩ ⊆ (⟨a⟩+E+(R))⟨a⟩ ⊆
⟨a2⟩+E+(R). Therefore, IR ∩ ⟨a⟩ ⊆ ⟨a2⟩+E+(R). Since a ∈ IR ∩ ⟨a⟩, we have a ∈
⟨a2⟩+E+(R) and hence a + a1 ∈ ⟨a2⟩ + E+(R) for some a1 ∈ ⟨a2⟩ + E+(R). This leads
to, a + (a1 + a′1) = ra2 + e for some r ∈ R and e ∈ E+(R). Then a + f = ra2 + e, where
f = a1 + a′1 ∈ E+(R). So a2 + af = ara2 + ea. Again, a2 + af = a2 + a(f + f ′) =
a2 + f(a+ a′) = a2 + fa(a+ a′) = a2 + a2(f + f ′) = a2, implies a2 = ara2 + ea. Multiplying
both sides by ar, we get ara2 = a2r2a2 + ea2r. Thus a2 = a2r2a2 + ea2r + ea = a2r2a2 + ea.

Again, we have a2 = a2+(a2)′+a2 = a(a+a′)+a2r2a2+ea = a+a′+a(e+e′)+a2r2a2 =
a+a′+a2r2a2 = a2(a+a′)a2+a2r2a2 = a2(a+a′+r2)a2 = a2xa2, where x = a+a′+r2 ∈ R.
Therefore, for each a ∈ R, there exists an element x ∈ R such that a2 = a2xa2. Hence R is a
2-regular semiring.

Theorem 4.4. Suppose that R is a semiring such that E+(R) is a k-ideal. If every k-subsemimodule
of a k-content R-semimodule is a k-content R-semimodule with restricted k-content function,
then R is a regular semiring.

Proof. If we take M = R, then from Theorem 3.17, we have aR+E+(R) = a2R+E+(R) for
any a ∈ R. Then a = a+a′+a ∈ aR+E+(R) = a2R+E+(R) implies a = ra2+e, for some r ∈
R and e ∈ E+(R). This leads to, ea = era2+e2 = era2+e, as e2 = e·e = e(e+e′) = e+e′ = e.
Thus ea = e+(e+ e′)ra2 = e+ e(ra2 +(ra2)′) = e. Therefore, we have a = ra2 + ea. Again,
a = a+ a′+ a = a+ a′+ ra2 + ea = a+ a′+ ra2 = a(a+ a′)a+ ara = a(a+ a′+ r)a = axa,
where x = a + a′ + r ∈ R. Hence, for each a ∈ R, there exists an element x ∈ R such that
a = axa. So R is a regular semiring.
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Lemma 4.5. Let R be a regular semiring. Then for every finitely generated full ideal A of R,
Ann(A) is also finitely generated and Ann(Ann(A)) = A.

Proof. Let A be a finitely generated full ideal of R. Again, from Theorem 4.1, we have A = ⟨e⟩
where e is an idempotent element of R. Now, let r ∈ Ann(Ann(A)). Then rAnn(A) ⊆ E+(R).
Also, we have (1 + e′)e = e + (e2)′ = e + e′ ∈ E+(R). Thus (1 + e′) ∈ (E+(R) :R e)
and so (1 + e′) ∈ (E+(R) :R A) = AnnA. Therefore, r(1 + e′) ∈ E+(R). This implies,
r(1 + e′) = f for some f ∈ E+(R). So r+ re′ + re = f + re ∈ A. Hence r ∈ A. This leads to,
Ann(Ann(A)) ⊆ A. Again, the reverse inclusion is clearly holds. Hence Ann(Ann(A)) = A.

Now, we show that Ann(A) is also finitely generated. For this let, r ∈ Ann(A). Then
re ∈ E+(R), as A = ⟨e⟩. Also, we have r = r(1 + e + e′) = r(1 + e′) + re. Since re ∈
E+(R) = R(1 + 1′), we have r ∈ ⟨1 + e′, 1 + 1′⟩ ⊆ Ann(A). Thus Ann(A) = ⟨1 + e′, 1 + 1′⟩
and hence Ann(A) is finitely generated.

Lemma 4.6. Let R be a regular semiring and M be an R-semimodule. Then (E(M) :M a) =
(E+(R) :R a)M for all a ∈ R.

Proof. Let a ∈ R and x ∈ (E+(R) :R a)M . Then x = r1m1 + r2m2 + · · · + rnmn, where
ri ∈ (E+(R) :R a) and mi ∈ M for 1 ≤ i ≤ n. So, ari ∈ E+(R), for all i. Therefore,
ax = a(r1m1 + r2m2 + · · ·+ rnmn) ∈ E(M) and hence x ∈ (E(M) :M a). Thus (E+(R) :R
a)M ⊆ (E(M) :M a). For the reverse inclusion, let y ∈ (E(M) :M a). Then ay ∈ E(M).
Now, R is regular implies a = ra2 for some r ∈ R. Then we have a(1 + r′a) ∈ E+(R) and so
(1 + r′a) ∈ (E+(R) :R a). Also, y = (1 + r′a+ ra)y = ray + (1 + r′a)y ∈ (E+(R) :R a)M ,
as (1 + r′a)y ∈ (E+(R) :R a)M and ay ∈ E(M) implies ray ∈ E(M) ⊆ (E+(R) :R a)M .
Therefore, (E(M) :M a) ⊆ (E+(R) :R a)M . Hence (E(M) :M a) = (E+(R) :R a)M for all
a ∈ R.

Lemma 4.7. Let R be a regular semiring and M be an R-semimodule. Then (I ∩ J)M =
IM ∩ JM for any ideal I , J of R.

Proof. Let x ∈ IM ∩ JM . Then x = r1m1 + r2m2 + · · · + rnmn = s1x1 + s2x2 + · · · +
skxk where ri ∈ I , sj ∈ J and mi, xj ∈ M for 1 ≤ i ≤ n, 1 ≤ j ≤ k. Then x ∈
⟨r1, r2, · · · , rn⟩M ∩ ⟨s1, s2, · · · , sk⟩M . Again from Theorem 4.1, we have ⟨r1, r2, · · · , rn⟩ = ⟨e⟩
and ⟨s1, s2, · · · , sk⟩ = ⟨f⟩ for some idempotent element e, f of R. Then x ∈ ⟨e⟩M ∩ ⟨f⟩M and
so x = ey = fz for some y, z ∈ M . This implies x = efx and hence x ∈ IJM , as ef ∈ IJ .
Thus (I ∩ J)M = IM ∩ JM .

Theorem 4.8. Let R be a regular semiring and M be an R-semimodule such that E(M) is a
k-set. Then for every x ∈ M , c(x) = Ann(Ann(x)).

Proof. Let ax ∈ E(M) for some a ∈ R. This implies x ∈ (E(M) :M a) = (E+(R) :R a)M ,
(by Lemma 4.6). Now, in [16, Corollary 3.23], we have proved that for a regular semiring R,
E+(R) is a k-ideal of R. For the sake of completeness we also prove this here. For this let,
r ∈ E+(R). Then r + e ∈ E+(R) for some e ∈ E+(R). Thus r2 + re ∈ E+(R). Therefore,
r2 + (r + r′)e ∈ E+(R) and so r2 = r2 + r(r + r′)e ∈ E+(R). As R is a regular semiring,
there exists x ∈ R such that r = r2x. Hence r ∈ E+(R). Therefore, E+(R) is a k-ideal. This
implies (E+(R) :R a) is a full k-ideal of R. Therefore, by the definition of k-content of x we
have c(x) ⊆ (E+(R) :R a) = Ann(a) for all a ∈ Ann(x). Then c(x) ⊆

⋂
a∈Ann(x)Ann(a).

Therefore, c(x) ⊆ Ann(Ann(x)).
Now, we have to show that Ann(Ann(x)) ⊆ c(x). Let I be a finitely generated full ideal

of R such that x ∈ IM . First, we show that Ann(I) ⊆ Ann(x). For this let r ∈ Ann(I).
Then rx ∈ rIM ⊆ rIM ⊆ E(M) = E(M). So r ∈ Ann(x). Therefore, Ann(I) ⊆ Ann(x).
This implies Ann(Ann(x)) ⊆ Ann(Ann(I)) = I (by Lemma 4.5). Thus Ann(Ann(x)) ⊆⋂
{I : I is a finitely generated full ideal of R such that x ∈ IM} = F (x) (say). Now, let A be

any full k-ideal of R such that x ∈ AM . Then x+ x1 ∈ AM for some x1 ∈ AM . This implies
x + (x1 + x′

1) = c1m1 + c2m2 + · · · + cnmn, where ci ∈ A and mi ∈ M for 1 ≤ i ≤ n.
Then x + (x1 + x′

1) ∈ ⟨c1, c2, · · · , cn⟩M ⊆ (⟨c1, c2, · · · , cn⟩ + E+(R))M = JM , where J =
⟨c1, c2, · · · , cn⟩+E+(R). Then J is a finitely generated full ideal of R such that x ∈ JM . Then
by the definition of F (x), we have F (x) ⊆ J ⊆ A. Since A is any full k-ideal of R such that
x ∈ AM , we have F (x) ⊆ c(x). Thus Ann(Ann(x)) ⊆ F (x) ⊆ c(x). Hence the result.
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Theorem 4.9. Let R be a regular semiring and M be an R-semimodule such that E(M) is a
k-set. Then M is a k-content R-semimodule if and only if Ann(x) is finitely generated for all
x ∈ M .

Proof. Let x ∈ M such that Ann(x) is finitely generated. Then we have Ann(x) = ⟨a1, a2, · · · , an⟩
for some ai ∈ R. Then for all i = 1, 2, · · · , n; aix ∈ E(M) implies x ∈

⋂n
i=1(E(M) :M

ai) =
⋂n

i=1(E
+(R) :R ai)M = [

⋂n
i=1(E

+(R) :R ai)]M [by Lemma 4.7]. Then, we have
x ∈ Ann(Ann(x))M . Again, by Theorem 4.8, we have c(x) = Ann(Ann(x)) and hence
x ∈ c(x)M . Therefore, M is a k-content R-semimodule.

Conversely, let M be a k-content R-semimodule and r ∈ Ann(x) for any x ∈ M . Then
rx ∈ E(M) implies x ∈ (E(M) :M r) = (E+(R) :R r)M . So, c(x) ⊆ (E+(R) :R r) and
hence rc(x) ⊆ E+(R). Therefore, we have r ∈ Ann(c(x)). Thus Ann(x) ⊆ Ann(c(x)).
Again, to show Ann(c(x)) ⊆ Ann(x), let r1 ∈ Ann(c(x)). This implies r1c(x) ⊆ E+(R) and
therefore, r1c(x)M ⊆ E(M), i.e., r1

(
c(x)M

)
⊆ r1c(x)M ⊆ E(M) = E(M), as E(M) is a

k-set. Since M is a k-content semimodule, we must have x ∈ c(x)M and this implies r1x ∈
E(M), i.e., r1 ∈ Ann(x). Thus Ann(c(x)) ⊆ Ann(x) and hence Ann(c(x)) = Ann(x). Also,
from Lemma 3.3, we have c(x) = J , for some finitely generated full ideal J of R. Therefore,
Ann(J) = Ann(x). Now, we show that Ann(J) = Ann(J). For this let, s ∈ Ann(J). We have
to show that s ∈ Ann(J). Now, for any t ∈ J , we have t+ t1 ∈ J for some t1 ∈ J . This implies
s(t + t1) ∈ sJ ⊆ E+(R), where st1 ∈ E+(R). So st ∈ E+(R), as E+(R) is a k-set. This
leads to, s ∈ Ann(J) and hence Ann(J) ⊆ Ann(J). Also, it is clear that Ann(J) ⊆ Ann(J).
So Ann(J) = Ann(J). Therefore, we have Ann(x) = Ann(J). Again, from Lemma 4.5, J
is finitely generated full ideal of R implies Ann(J) is finitely generated and hence Ann(x) is
finitely generated.

5 Conclusion remarks

This paper aims to introduce and investigate several properties of k-content semimodule as a
generalization of content module and content semimodule. Also, some interesting properties
of k-content semimodules over regular semiring have been discussed. Therefore, the findings
of this study are varied and important, making it intriguing and worth exploring further in the
future.

References
[1] G. Maze, C. Monico, J. Rosenthal, Public key cryptography based on semigroup actions, Adv. Math.

Commun., 1 , 489–507, (2007).

[2] J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999.

[3] S. M. Yusuf, Inverse semimodules, J. Natur. sci. and Math., 6(1) , 111–117, (1966).

[4] M. K. Sen, A. K. Bhuniya, S. K. Maity, Inverse semimodules, Asian European Journal of Mathematics,
2150022, (2021).

[5] F. Farzalipour, P. Ghiasvand, On Weakly Semiprime Subsemimodules, Palestine Journal of Mathematics,
9(2) , 620–625, (2020).

[6] H. Dao, On colon operations and special types of ideals, Palestine Journal of Mathematics, 10(2) , 383–
388, (2021).

[7] P. Nashepour, Some remars on ideals of commutative semirings, J. Austral. Math. Soc., 20 , 257–267,
(1975).

[8] J. Ohm, D. E. Rush, Content modules and algebras, Math. Scand., 31 , 49–68, (1972).

[9] R. R. Nazari, S. Ghalandarzadeh, Content Semimodules, extracta mathematicae, 32(2) , 239–254, (2017).

[10] J. Zeleznekow, Regular semirings, Semigroup Forum, 23 , 119–136, (1981).

[11] P. H. Karvellas, Inverse semirings, J. Austral. Math. Soc., 18 , 277–288, (1974).

[12] S. K. Maity, On semirings which are distributive lattices of rings, Kyungpook Math. J., 45 , 21–31, (2005).

[13] S. K. Maity, M. K. Sen, S. Swomin, Weak multilplication semimodule, Quasigroups and Related Systems,
30 , 123–132, (2022).



146 S. Swomin

[14] M. K. Sen, S. K. Maity, S. Swomin, Von Neumann regular semimodule, An. Stiint. Univ. Al. l. Cuza lasi.
Mat. (N.S.), LXVII(2) , 279–294, (2021).

[15] M. K. Sen, S. K. Maity, Regular additively inverse semirings, Acta Math. Univ. Comenianae, LXXV(1) ,
137–146, (2006).

[16] M. K. Sen, S. K. Maity, S. Swomin, Von Neumann regular semimodule II, Asian European Journal of
Mathematics (Accepted).

Author information
S. Swomin, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road,
Kolkata-700019, India.
Department of Mathematics, Brainware University, 398, Ramkrishnapur Road, Jagadighata Market, Barasat,
Kolkata-700125, India.
E-mail: sabnam.puremath@gmail.com

Received: 2022-09-20

Accepted: 2024-02-08


	1 Introduction
	2 Definitions and Preliminaries
	3 k-Content Semimodule
	4 k-Content Semimodule over regular semiring
	5 Conclusion remarks

