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Abstract In this paper, we study the fundamental solution of the partial differential equation,
iterated k-times of the form

⊛kG(x,m) = (⊕+m2)k
(

1
8
△4 +

1
8
□4 +

6
8
⋄2
)k

G(x,m) = δ

where m is a non-negative real number, p+ q = n is the dimension of the Euclidean space Rn,
x = (x1, x2, . . . , xn) ∈ Rn, k is a non-negative integer. After that, we apply the fundamental
solution related to the operator ⊗k , ultra - hyperbolic operator □k, Laplace operator △k and
wave operator.

1 Introduction

The diamond operator iterated k-times, first introduced by Kananthai [2], is one of the most well-
known partial differential operators in the theory of distribution or the generalized function.
Kananthai [2] has studied the fundamental solution of the equation ♢ku(x) = δ, we obtain
u(x) = RH

2k(u) ∗ (−1)kRe
2k(v) is the fundamental solution and δ is the Dirac delta function.

Later, Kananthai, Suantai and Longani [3] have studied the relationship between the operator
⊕k and the wave operator, and the relationship between the operator ⊕k and the Laplacian.
Moreover, the equation ⊕kK(x) = δ we have K(x) = [RH

2k(u)∗(−1)kRe
2k(v)]∗S2k(w)∗T2k(z)

is the fundamental solution of the operator ⊕k, which is defined by

⊕k =

( p∑
r=1

∂2

∂x2
r

)4

−

 p+q∑
j=p+1

∂2

∂x2
j

4

k

=

( p∑
r=1

∂2

∂x2
r

)2

−

 p+q∑
j=p+1

∂2

∂x2
j

2

k ( p∑

r=1

∂2

∂x2
r

)2

+

 p+q∑
j=p+1

∂2

∂x2
j

2

k

, δ is the Dirac delta function. Kananthai [2] has studied the diamond operator, which is defined
by

♢k =

( p∑
r=1

∂2

∂x2
r

)2

−

 p+q∑
j=p+1

∂2

∂x2
j

2

k

. (1.1)
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Otherwise, the operator ♢k can also be expressed in the form ♢k = □k△k = △k□k, where □k

is the ultra-hyperbolic operator iterated k-times, which is defined by

□k =

 p∑
r=1

∂2

∂x2
r

−
p+q∑

j=p+1

∂2

∂x2
j

k

, (1.2)

△k is the Laplace operator iterated k-times, which is defined by

△k =

 p∑
r=1

∂2

∂x2
r

+
p+q∑

j=p+1

∂2

∂x2
j

k

, p+ q = n. (1.3)

By putting p = k = 1 and x1 = t (time) in (1.2), then we obtain the wave operator

□ =
∂2

∂t2 −
n−1∑
j=1

∂2

∂x2
j

. (1.4)

Tariboon and Kananthai [4] have studied the Green’s function of the operator

(⊕+m2)k =

( p∑
r=1

∂2

∂x2
r

)4

−

 p+q∑
j=p+1

∂2

∂x2
j

4

+m2


k

(1.5)

, iterated k-times. Moreover, the operator (⊕+m2)k can be related to the ultra-hyperbolic Klein
Gordon operator (□+m2)k , the Helmholtz operator (△+m2)k and the diamond Klein - Gordon
operator of the form (♢+m2)k. Satsanit [11] has shown that

⊙k =

( p∑
r=1

∂2

∂x2
r

)2

+

 p+q∑
j=p+1

∂2

∂x2
j

2


k

=

(
△2 +□2

2

)k

. (1.6)

Therefore, from (1.6), we obtain

⊗k =

( p∑
r=1

∂2

∂x2
r

)4

+

 p+q∑
j=p+1

∂2

∂x2
j

4

k

=

(
1
8
△4 +

1
8
□4 +

6
8
⋄2
)k

, (1.7)

where p+q = n is the dimension of the Euclidean space, Rn and k are a non-negative integer. In
1988, Trione [8] studied the fundamental solution of the ultra-hyperbolic Klein-Gordon operator
iterated k-times such that operator (□+m2)k, which is defined by

(□+m2)k =

 p∑
r=1

∂2

∂x2
r

−
p+q∑

j=p+1

∂2

∂x2
j

+m2

k

. (1.8)

From (1.5) and (1.7) the operator ⊛k can be expressed in the form

⊛k =


( p∑

r=1

∂2

∂x2
r

)4

+
m2

2

2

−


 p+q∑

j=p+1

∂2

∂x2
j

4

− m2

2


2

k

=

( p∑
r=1

∂2

∂x2
r

)4

−

 p+q∑
j=p+1

∂2

∂x2
j

4

+m2


k ( p∑

r=1

∂2

∂x2
r

)4

+

 p+q∑
j=p+1

∂2

∂x2
j

4

k

= (⊕+m2)k
(

1
8
△4 +

1
8
□4 +

6
8
⋄2
)k

= (⊕+m2)k ⊗k . (1.9)
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For m = 0 then (1.9) becomes

⊛k = ⊕k⊗k =

( p∑
r=1

∂2

∂x2
r

)8

−

 p+q∑
j=p+1

∂2

∂x2
j

8

k

. (1.10)

Kananthai, Suantai and Longani [3] have studied the relationship between Lk
1 and Lk

2 are defined
by

Lk
1 =

 p∑
r=1

∂2

∂x2
r

+ i

p+q∑
j=p+1

∂2

∂x2
j

k

(1.11)

and

Lk
2 =

 p∑
r=1

∂2

∂x2
r

− i

p+q∑
j=p+1

∂2

∂x2
j

k

. (1.12)

Following that

Lk = Lk
1L

k
2 = Lk

2L
k
1 =

( p∑
r=1

∂2

∂x2
r

)2

+

 p+q∑
j=p+1

∂2

∂x2
j

2

k

. (1.13)

Bupasiri [9] has studied the operator ⊕k
m, iterated k-times of the equation ⊕k

mH(x,m) = δ,H(x,m) =
W2k(x,m)∗Y2k(x,m)∗M2k(x,m)∗N2k(x,m), δ is the Dirac delta function, k is a non-negative
integer and m is a non-negative real number. From (1.9) with q = m = 0 and k = 1, we obtain
the Laplace operator of p-dimension

⊛ = △8
p,

where

△p =
p∑

i=1

∂2

∂x2
i

. (1.14)

In this paper, we study the fundamental solution of the equation ⊛kG(x,m) = δ, where G(x,m)
is the fundamental solution, δ is the Dirac delta function, k is a non-negative integer and m is
a non-negative real number. In particular, for m = 0 and m = q = 0 the fundamental solution
related to the operator ⊗k , □k and △k.

2 Preliminary Notes

We have studied some properties of the ultra-hyperbolic kernel and the elliptic kernel of Marcel
Riesz which will be used as follows.

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point of the n - dimensional space Rn,

u = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q, (2.1)

where p+ q = n. Define Γ+ = {x ∈ Rn : x1 > 0 and u > 0} which designates the interior of
the forward cone and Γ+ designates its closure and the following functions introduce by Nozaki
(see [12], p.72) that

RH
α (u) =

{
u

α−n
2

Kn(α)
, if x ∈ Γ+;

0, if x ̸∈ Γ+

(2.2)

RH
α (u) is called the ultra-hyperbolic kernel of Marcel Riesz. Here α is a complex parameter and

n the dimension of the space. The constant Kn(α), which is defined by

Kn(α) =
π

n−1
2 Γ

( 2+α−n
2

)
Γ
( 1−α

2

)
Γ(α)

Γ

(
2+α−p

2

)
Γ
(
p−α

2

) (2.3)
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and p is the number of positive terms of

u = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q, p+ q = n

and let supp RH
α (x) ⊂ Γ+. Now RH

α (x) is an ordinary function if Re α ≥ n and is a distribution
of α if Re α < n.

Now, if p = 1 then (2.2) reduces to the function Mα(u) say, and is defined by

Mα(u) =

{
u

α−n
2

Hn(α)
, if x ∈ Γ+;

0, if x ̸∈ Γ+

(2.4)

where u = x2
1 − x2

2 − · · · − x2
n and Hn(α) = π

(n−1)
2 2α−1Γ(α−n+2

2 ). The function Mα(u) is
called the hyperbolic kernel of Marcel Riesz.

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of the n - dimensional space Rn,

v = x2
1 + x2

2 + · · ·+ x2
p + x2

p+1 + x2
p+2 + · · ·+ x2

p+q. (2.5)

Define the function

Re
α(v) =

v
α−n

2

Hn(α)
(2.6)

where α is any complex number and the constant Hn(α) is given by the formula

Hn(α) =
π

1
2 2αΓ

(
α
2

)
Γ
(
n−α

2

) . (2.7)

Now the function Re
α(v) is called the Elliptic Kernel of Marcel Riesz.

Lemma 2.3. [2] Given the equation △ku(x) = δ for x ∈ Rn, where △k is the Laplace oper-
ator iterated k-times, which is defined by (1.3). Then u(x) = (−1)kRe

2k(v) is the fundamental
solution of the operator △k where

Re
2k(v) =

Γ
(
n−2k

2

)
22kπ

n
2 Γ(k)

|v|2k−n. (2.8)

Lemma 2.4. [8] If □ku(x) = δ for x ∈ Γ+ = {x ∈ Rn : x1 > 0 and u > 0}, where □kis the
ultra-hyperbolic operator iterated k-times, which is defined by (1.2). Then u(x) = RH

2k(u) is the
unique fundamental solution of the operator □k where

RH
2k(u) =

u(
2k−n

2 )

Kn(2k)
=

(x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q)

( 2k−n
2 )

Kn(2k)
(2.9)

for

Kn(2k) =
π

n−1
2 Γ

( 2+2k−n
2

)
Γ
( 1−2k

2

)
Γ(2k)

Γ

(
2+2k−p

2

)
Γ(p−2k

2 )
. (2.10)

Lemma 2.5. [2] Given the equation ♢ku(x) = δ for x ∈ Rn, then u(x) = (−1)kRe
2k(v) ∗

RH
2k(u) is the unique fundamental solution of the operator ♢k, where ♢k is the diamond operator

iterated k- times, which is defined by (1.1), Re
2k(v) and RH

2k(u) are defined by (2.8) and (2.9),
respectively. Moreover, (−1)kRe

2k(v) ∗RH
2k(u) is a tempered distribution.

It is not difficult to show that Re
−2k(v)∗RH

−2k(u) = (−1)k♢kδ, for k is a non-negative integer.

Lemma 2.6. [3] Given the equation Lk
1u(x) = δ for x ∈ Rn, where Lk

1 is the operator, which is
defined by (1.11), then u(x) = (−1)k(−i)

q
2 S2k(w) is the fundamental solution of the operator

Lk
1 , where

S2k(w) =
Γ
(
n−2k

2

)
22kπ

n
2 Γ(k)

[x2
1 + x2

2 + · · ·+ x2
p − i(x2

p+1 + · · ·+ x2
p+q)]

( 2k−n
2 ), i =

√
−1, (2.11)

w = x2
1 + x2

2 + · · ·+ x2
p − i(x2

p+1 + · · ·+ x2
p+q).
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Lemma 2.7. [3] Given the equation Lk
2u(x) = δ for x ∈ Rn, where Lk

2 is the operator, which is
defined by (1.12), then u(x) = (−1)k(i)

q
2 T2k(z) is the fundamental solution of the operator Lk

2 ,
where

T2k(z) =
Γ
(
n−2k

2

)
22kπ

n
2 Γ(k)

[x2
1 + x2

2 + · · ·+ x2
p + i(x2

p+1 + · · ·+ x2
p+q)]

( 2k−n
2 ), i =

√
−1. (2.12)

z = x2
1 + x2

2 + · · ·+ x2
p + i(x2

p+1 + · · ·+ x2
p+q).

Lemma 2.8. [3] Given the equation Lku(x) = δ for x ∈ Rn, then u(x) = S2k(w) ∗ T2k(z) is
the fundamental solution of the operator Lk, which is defined by (1.13), S2k(w) and T2k(z) are
defined by (2.11) and (2.12), respectively.

Lemma 2.9. [11] (Convolution of Re
α(v) and RH

α (u) ). If Re
α(v) and RH

α (u) are defined by (2.8)
and (2.9) respectively, then

(i) Re
α(v) ∗Re

β(v) = Re
α+β(v) where α and β are complex parameters;

(ii) RH
α (u) ∗RH

β (u) = RH
α+β(u) where α and β are both integers and except only the case both

α and β are both integers.

Lemma 2.10. The function RH
−2k(u) and (−1)kRe

−2k(v) are the inverse in the convolution alge-
bra of RH

2k(u) and (−1)kRe
2k(v) respectively. That is,

RH
−2k(u) ∗RH

2k(u) = RH
−2k+2k(u) = RH

0 (u) = δ,

(−1)kRe
−2k(v) ∗ (−1)kRe

2k(v) = (−1)2kRe
−2k+2k(v) = Re

0(v) = δ.

Proof. For proof of the this Lemma is given (see [6, 7, 10]).

Lemma 2.11. [5] (Convolution of Sγ(w) and Tγ(z) ). If Sγ(w) and Tγ(z) are defined by (2.11)
and (2.12), respectively., then

(i) Sγ(w) ∗ Sγ′(w) = (i)q/2Sγ+γ′(w);

(ii) Tγ(z) ∗ Tγ′(z) = (−i)q/2Tγ+γ′(z) where γ and γ′ are complex parameters.

Moreover, S0(w) = (i)q/2δ and T0(w) = (−i)q/2δ.

Lemma 2.12. [4] Given the equation

(⊕+m2)ku(x) = δ, (2.13)

where (⊕+m2)k is the operator iterated k-times, which is defined by (1.5), δ is the Dirac delta
function, x = (x1, x2, . . . , xn) ∈ Rn, m is a non-negative real number and k is a non-negative
integer, we obtain

u(x) = Y2k,2k,2k,2k(u, v, w, z,m)

=
∞∑
r=0

(
−k

r

)
m2rRH

2k+2r(u) ∗ (−1)k+rRe
2k+2r(v) ∗ S2k+2r(w) ∗ T2k+2r(z) (2.14)

is the fundamental solution of (2.13). Since

Y2k,2k,2k,2k(u, v, w, z,m)

=

(
−k

0

)
m2(0)RH

2k+2(0)(u) ∗ (−1)k+0Re
2k+2(0)(v) ∗ S2k+2(0)(w) ∗ T2k+2(0)(z)

+
∞∑
r=1

(
−k

r

)
m2rRH

2k+2r(u) ∗ (−1)k+rRe
2k+2r(v) ∗ S2k+2r(w) ∗ T2k+2r(z). (2.15)

The second summand of the right-hand member of (2.15) vanishes for m = 0 and then, we have
Y2k,2k,2k,2k(u, v, w, z, 0) = RH

2k(u) ∗ (−1)kRe
2k(v) ∗ S2k(w) ∗ T2k(z) which is the fundamental

solution of the operator ⊕k .
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3 Main Results

Theorem 3.1. Given the equation

⊗kG(x) =

(
△4 +□4 + 6⋄2

8

)k

G(x) = δ (3.1)

for x ∈ Rn, where ⊗k is the operator iterated k-times, which is defined by (1.7) . Then we obtain
G(x) is the fundamental solution of the equation (3.1), where

G(x) = (RH
12k(u) ∗ (−1)6kRe

12k(v)) ∗ (H∗k(x))∗−1 (3.2)

or
G(x) = (RH

12k(u) ∗Re
12k(v)) ∗ (H∗k(x))∗−1 (3.3)

and

H(x) =
1
8
(
RH

12(u) ∗ (−1)2Re
4(v)

)
+

1
8
(
RH

4 (u) ∗ (−1)6Re
12(v)

)
+

6
8
(
RH

8 (u) ∗ (−1)4Re
8(v)

)
(3.4)

or

H(x) =
1
8
(
RH

12(u) ∗Re
4(v)

)
+

1
8
(
RH

4 (u) ∗Re
12(v)

)
+

6
8
(
RH

8 (u) ∗Re
8(v)

)
.

Here H∗k(x) denotes the convolution of H(x) itself k-times, (H∗k(x))∗−1 denotes the inverse of
H∗k(x) in the convolution algebra. Moreover, G(x) is a tempered distribution.

Proof. We have

⊗kG(x) =

(
△4 +□4 + 6⋄2

8

)k

G(x) = δ

or we can write (
△4 +□4 + 6⋄2

8

)(
△4 +□4 + 6⋄2

8

)k−1

G(x) = δ.

Convolving both sides of the above equation by RH
12(u) ∗ (−1)6Re

12(v),(
1
8
△4 +

1
8
□4 +

6
8
⋄2
)(

RH
12(u) ∗ (−1)6Re

12(v)
)(1

8
△4 +

1
8
□4 +

6
8
⋄2
)k−1

G(x)

= δ ∗
(
RH

12(u) ∗ (−1)6Re
12(v)

)
or (

1
8
△4 +

1
8
□4 +

6
8
⋄2
)(

RH
12(u) ∗ (−1)6Re

12(v)
)(1

8
△4 +

1
8
□4 +

6
8
⋄2
)k−1

G(x)

=
1
8
△4 (RH

8 (u) ∗ (−1)4Re
8(v) ∗ (RH

4 (u) ∗ (−1)2Re
4(v))

)
+

1
8
□4 (RH

8 (u) ∗ (−1)4Re
8(v) ∗ (RH

4 (u) ∗ (−1)2Re
4(v))

)
+

6
8
⋄2 (RH

8 (u) ∗ (−1)4Re
8(v) ∗ (RH

4 (u) ∗ (−1)2Re
4(v))

)
×
(

1
8
△4 +

1
8
□4 +

6
8
⋄2
)k−1

G(x) (by Lemma 2.9)

= δ ∗
(
RH

12(u) ∗ (−1)6Re
12(v)

)
.
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By Lemma 2.3, Lemma 2.4 and Lemma 2.5, we obtain

1
8
δ ∗
(
RH

8 (u) ∗ (RH
4 (u) ∗ (−1)2Re

4(v))
)
+

1
8
δ ∗
(
(−1)4Re

8(v) ∗ (RH
4 (u) ∗ (−1)2Re

4(v))
)

+
6
8
δ ∗
(
RH

8 (u) ∗ (−1)4Re
8(v)

)(1
8
△4 +

1
8
□4 +

6
8
⋄2
)k−1

G(x)

= δ ∗
(
RH

12(u) ∗ (−1)6Re
12(v)

)
.

By properties of convolutions and Lemma 2.9,

1
8
(
RH

12(u) ∗ (−1)2Re
4(v)

)
+

1
8
(
RH

4 (u) ∗ (−1)6Re
12(v)

)
+

6
8
(
RH

8 (u) ∗ (−1)4Re
8(v)

)(1
8
△4 +

1
8
□4 +

6
8
⋄2
)k−1

G(x)

=
(
RH

12(u) ∗ (−1)6Re
12(v)

)
.

Keeping on convolving both sides of the above equation by RH
12(u) ∗ (−1)6Re

12(v), up to k − 1
times, we obtain

H∗k(x) ∗G(x) =
(
RH

12(u) ∗ (−1)6Re
12(v)

)∗k
(3.5)

the symbol ∗k denotes the convolution of itself k-times. By properties of RH
2k(u) and Re

2k(v) in
Lemma 2.9, we have(

RH
12(u) ∗ (−1)6Re

12(v)
)∗k

(x) = RH
12k(u) ∗ (−1)6kRe

12k(v).

Thus (3.5) becomes,
H∗k(x) ∗G(x) = RH

12k(u) ∗ (−1)6kRe
12k(v),

G(x) =
(
RH

12k(u) ∗ (−1)6kRe
12k(v)

)
∗
(
H∗k(x)

)∗−1
(3.6)

or
G(x) =

(
RH

12k(u) ∗Re
12k(v)

)
∗
(
H∗k(x)

)∗−1
(3.7)

is the fundamental solution of (3.1). We consider the function H∗k(x), since RH
12(u)∗(−1)6Re

12(v)
is a tempered distribution. Thus H(x) defined by (3.4) is tempered distribution, we obtain
H∗k(x) is tempered distribution.

Now, RH
12k(u) ∗ (−1)6kRe

12k(v) ∈ S′, the space of tempered distribution. Choose S′ ⊂
D′

R, where D′
R is the right-side distribution which is a subspace of D′ of distribution. Thus

RH
12k(u) ∗ (−1)6kRe

12k(v) ∈ D′
R. It follows that RH

12k(u) ∗ (−1)6kRe
12k(v) is an element of

convolution algebra, since D′
R is a convolution algebra. Hence Zemanian [1], (3.3) has a unique

solution
G(x) =

(
RH

12k(u) ∗ (−1)6kRe
12k(v)

)
∗
(
H∗k(x)

)∗−1
,

or
G(x) =

(
RH

12k(u) ∗Re
12k(v)

)
∗
(
H∗k(x)

)∗−1
,

where
(
H∗k(x)

)∗−1 is an inverse of H∗k(x) in the convolution algebra. G(x) is called the
fundamental solution of the operator ⊗k.

Since RH
12k(u) ∗ (−1)6kRe

12k(v) and
(
H∗k(x)

)∗−1 are lies in S′, then by (see [1], p.152)
again, we have

(
RH

12k(u) ∗ (−1)6kRe
12k(v)

)
∗
(
H∗k(x)

)∗−1 ∈ S′. Hence, G(x) is a tempered
distribution.

Theorem 3.2. Given the equation

⊛kG(x,m) = (⊕+m2)k ⊗k G(x,m) = δ (3.8)

where (⊕+m2)k and ⊗k are the operators iterated k-times, which is defined by (1.5) and (1.7),
respectively, δ is the Dirac delta function, x ∈ Rn, m is a non-negative real number and k is a
non-negative integer. Then we obtain

G(x,m) = Y2k,2k,2k,2k(u, v, w, z,m) ∗
[
RH

12k(u) ∗ (−1)6kRe
12k(v) ∗ (H∗k(x))∗−1] (3.9)
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or
G(x,m) = Y2k,2k,2k,2k(u, v, w, z,m) ∗

[
RH

12k(u) ∗Re
12k(v) ∗ (H∗k(x))∗−1] (3.10)

is the fundamental solution for the operator ⊛k iterated k-times, which is defined by (1.9). In
particular, m = 0 then (3.8) becomes

⊛kG(x, 0) = ⊕k ⊗k G(x, 0) =

( p∑
r=1

∂2

∂x2
r

)8

−

 p+q∑
j=p+1

∂2

∂x2
j

8

k

G(x, 0) = δ, (3.11)

we obtain

G(x, 0) = (−1)7kRe
14k(v) ∗RH

14k(u) ∗ S2k(w) ∗ T2k(z) ∗ (H∗k(x)∗−1 (3.12)

is the fundamental solution of the (3.11), for q = m = 0 then (3.8) becomes

△8k
p G(x, 0) = δ, (3.13)

we obtain
G(x, 0) = Re

16k(v) (3.14)

is the fundamental solution of (3.13), where △8k
p is the Laplace operator of p-dimension, iterated

8k-times, which is defined by (1.14). Moreover, from (3.12) we obtain(
RH

−12k(u) ∗ (−1)7kRe
−14k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0) = RH

2k(u) (3.15)

is the fundamental solution of the ultra-hyperbolic operator □k iterated k-times, which is defined
by (1.2),(

RH
−14k(u) ∗ (−1)6kRe

−12k(v) ∗ S−2k(w) ∗ T−2k(z)
)
∗
(
H∗k(x)

)
∗G(x, 0) = (−1)kRe

2k(v)
(3.16)

or (
RH

−14k(u) ∗Re
−12k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0) = (−1)kRe

2k(v) (3.17)

is the fundamental solution of the Laplace operator △k iterated k-times, which is defined by
(1.3) and(

RH
−14k(u) ∗ (−1)7kRe

−14k(v)
)
∗
(
H∗k(x)

)
∗G(x, 0) = S2k(w) ∗ T2k(z) (3.18)

is the fundamental solution of the operator Lk = Lk
1L

k
2 iterated k-times, which is defined by

(1.13), where Re
−14k(v), R

H
−14k(u), S−2k(w), and T−2k(z) are the inverse of Re

14k(v), R
H
14k(u),

S2k(w), and T2k(z), respectively. From (3.12) and (3.15) with p = 1, q = n− 1, k = 1, m = 0
and x1 = t (time), we obtain(

(−1)7Re
−14(v) ∗MH

−12(u) ∗ S−2(w) ∗ T−2(z) ∗ (H∗(x))
)
∗G(x, 0) = MH

2 (u) (3.19)

or (
−Re

−14(v) ∗MH
−12(u) ∗ S−2(w) ∗ T−2(z) ∗ (H∗(x))

)
∗G(x, 0) = MH

2 (u) (3.20)

is the fundamental solution of the wave operator is defined by (1.4), where M2(u) is defined by
(2.4) with α = 2.

Proof. From (1.9) and (3.8), we have

⊛kG(x,m) = (⊕+m2)k
(

1
8
△4 +

1
8
□4 +

6
8
⋄2
)k

G(x,m) = δ. (3.21)

Convolving both sides of (3.21) by Y2k,2k,2k,2k(u, v, w, z,m)∗
[
RH

12k(u) ∗ (−1)6kRe
12k(v) ∗ (H∗k(x))∗−1

]
,

we obtain(
Y2k,2k,2k,2k(u, v, w, z,m) ∗

[
RH

12k(u) ∗ (−1)6kRe
12k(v) ∗ (H∗k(x))∗−1])

∗ (⊕+m2)k
(

1
8
△4 +

1
8
□4 +

6
8
⋄2
)k

G(x,m)

=
(
Y2k,2k,2k,2k(u, v, w, z,m) ∗

[
RH

12k(u) ∗ (−1)6kRe
12k(v) ∗ (H∗k(x))∗−1]) ∗ δ.
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By properties of convolution

(⊕+m2)k(Y2k,2k,2k,2k(u, v, w, z,m))

∗
(

1
8
△4 +

1
8
□4 +

6
8
⋄2
)k ([

RH
12k(u) ∗ (−1)6kRe

12k(v) ∗ (H∗k(x))∗−1]) ∗G(x,m)

= Y2k,2k,2k,2k(u, v, w, z,m) ∗
[
RH

12k(u) ∗ (−1)6kRe
12k(v) ∗ (H∗k(x))∗−1] .

By Lemma 2.12 and Theorem 3.1, we obtain,

δ∗δ∗G(x,m) = G(x,m) = Y2k,2k,2k,2k(u, v, w, z,m)∗
[
RH

12k(u) ∗ (−1)6kRe
12k(v) ∗ (H∗k(x))∗−1]

(3.22)
is the fundamental solution of the operator ⊛k. In particular, m = 0 then (3.8) becomes

⊕k ⊗k G(x, 0) = δ, (3.23)

from Lemma 2.12, Lemma 2.9 , (3.22) and by properties of convolution, we obtain

G(x, 0) =
(
(−1)kRe

2k(v) ∗RH
2k(u) ∗ S2k(w) ∗ T2k(z)

)
∗
(
(RH

12k(u) ∗ (−1)6kRe
12k(v)) ∗ (H∗k(x))∗−1)

= (−1)7kRe
14k(v) ∗RH

14k(u) ∗ S2k(w) ∗ T2k(z) ∗ (H∗k(x)∗−1 (3.24)

is the fundamental solution of (3.11), for q = m = 0 then (3.8) becomes

△8k
p G(x, 0) = δ, (3.25)

where △8k
p is the Laplace operator of p-dimension iterated 8k-times. By Lemma 2.3, we have

G(x, 0) = (−1)8kRe
16k(v) = Re

16k(v)

is the fundamental solution of (3.25). Convolving both sides of (3.24) by(
RH

−12k(u) ∗ (−1)7kRe
−14k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
,

we obtain(
RH

−12k(u) ∗ (−1)7kRe
−14k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0)

= (RH
12k(u) ∗RH

−12k(u)) ∗ ((−1)7kRe
14k(v) ∗ (−1)7kRe

−14k(v))

∗ (S−2k(w) ∗ S2k(w)) ∗ (T2k(z) ∗ T−2k(z)) ∗
((

H∗k(x)
)
∗
(
H∗k(x)

)∗−1
)
∗RH

2k(u))

or (
RH

−12k(u) ∗ (−1)7kRe
−14k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0)

= δ ∗ δ ∗ δ ∗ δ ∗ δ ∗RH
2k(u) = RH

2k(u)

by Lemma 2.9, Lemma 2.10, Lemma 2.11, Theorem 3.1 and properties of convolution. It follows
that(

RH
−12k(u) ∗ (−1)7kRe

−14k(v) ∗ S−2k(w) ∗ T−2k(z)
)
∗
(
H∗k(x)

)
∗G(x, 0) = RH

2k(u) (3.26)

as the fundamental solution of the ultra-hyperbolic operator □k iterated k-times, which is defined
by (1.2). Similarly,(
RH

−14k(u) ∗ (−1)6kRe
−12k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0)

=
(
RH

14k(u) ∗RH
−14k(u)) ∗

(
(−1)7kRe

14k(v) ∗ (−1)6kRe
−12k(v)

))
∗ (S−2k(w) ∗ S2k(w)) ∗ (T2k(z) ∗ T−2k(z)) ∗

((
H∗k(x)

)
∗
(
H∗k(x)

)∗−1
)
∗ (−1)13kRe

2k(v))
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or (
RH

−14k(u) ∗ (−1)6kRe
−12k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0)

= δ ∗ δ ∗ δ ∗ δ ∗ δ ∗ (−1)13kRe
2k(v)) = (−1)kRe

2k(v)).

It follows that(
RH

−14k(u) ∗ (−1)6kRe
−12k(v) ∗ S−2k(w) ∗ T−2k(z)

)
∗
(
H∗k(x)

)
∗G(x, 0) = (−1)kRe

2k(v)

is the fundamental solution of the Laplace operator △k iterated k-times, which is defined by
(1.3), and

(
RH

−14k(u) ∗ (−1)7kRe
−14k(v)

)
∗
(
H∗k(x)

)
∗G(x, 0)

=
(
RH

14k(u) ∗RH
−14k(u)) ∗

(
(−1)7kRe

14k(v) ∗ (−1)7kRe
−14k(v)

))
∗
((

H∗k(x)
)
∗
(
H∗k(x)

)∗−1
)
∗ S2k(w) ∗ T2k(z)

or (
RH

−14k(u) ∗ (−1)7kRe
−14k(v)

)
∗
(
H∗k(x)

)
∗G(x, 0)

= δ ∗ δ ∗ δ ∗ S2k(w) ∗ T2k(z) = S2k(w) ∗ T2k(z).

It follows that(
RH

−14k(u) ∗ (−1)7kRe
−14k(v)

)
∗
(
H∗k(x)

)
∗G(x, 0) = S2k(w) ∗ T2k(z)

is the fundamental solution of the operator Lk iterated k-times, which is defined by (1.13). In
particular, if we put p = 1, q = n − 1, k = 1,m = 0 and x1 = t (time) in (3.26) then RH

−12(u)

reduces to MH
−12(u) and RH

2 (u) reduce to MH
2 (u) where MH

−12(u) and MH
2 (u) are defined by

(2.4) with α = −12, α = 2 respectively. Thus, (3.26) becomes(
MH

−12(u) ∗ (−1)7Re
−14(v) ∗ S−2(w) ∗ T−2(z)

)
∗ (H∗(x)) ∗G(x, 0) = MH

2 (u) (3.27)

or (
MH

−12(u) ∗ (−Re
−14(v)) ∗ S−2(w) ∗ T−2(z)

)
∗ (H∗(x)) ∗G(x, 0) = MH

2 (u) (3.28)

as the fundamental solution of the wave operator, which is defined by (1.4) and Re
−14(v) which

is defined by (2.8). This completes the proof.
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