On an open problem concerning trees with equal independent *ve*-domination and domination numbers

Nacéra Meddah, Razika Boutrig and Mustapha Chellali

Communicated by Ambat Vijayakumar

2020 Mathematics Subject Classification: 05C69.

Keywords: vertex-edge domination, independent vertex-edge domination, domination, total domination, trees.

Abstract. In this note, we address an open problem posed in [Boutrig, Chellali, Haynes and Hedetniemi, Vertex-edge domination in graphs. Aquaestiones Mathematicae 90 (2016) 355-366] concerning the characterization of nontrivial trees T with equal independent *ve*-domination number $i_{ve}(T)$ and domination number $\gamma(T)$. We provide four equivalent conditions for trees T with $i_{ve}(T) = \gamma(T)$ involving, among others, the domination number, the total domination number $\gamma_{t}(T)$ and the *ve*-domination number $\gamma_{ve}(T)$.

1 Introduction

In a graph G = (V, E), the open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$, and the closed neighborhood is $N[v] = N(v) \cup \{v\}$.

A subset $S \subseteq V$ is a *dominating set* of G if every vertex in V - S has a neighbor in S, and is a *total dominating set* if every vertex in V has a neighbor in S. The *domination number* $\gamma(G)$ (respectively, *total domination number* $\gamma_t(G)$) is the minimum cardinality of a dominating set (respectively, total dominating set) of G.

A set S of vertices in a graph G is a *packing* if the vertices in S are pairwise at distance at least 3 apart in G, or equivalently, for every vertex $v \in V$, $|N[v] \cap S| \leq 1$. It is well-known [3] that for every graph G and packing S of G, $|S| \leq \gamma(G)$. As defined in Bange et al. [1], a dominating set S for which $|N[v] \cap S| = 1$ for all $v \in V$ is an *efficient dominating set*. Equivalently, a set S is an efficient dominating set if S is both a dominating set and a packing of G. Note that not every graph has an efficient dominating set, however as shown in [1], if a graph G has such a set, then every efficient dominating set is a minimum dominating set.

A vertex $u \in V$ is said to *ve-dominate* an edge $vw \in E$ if: (i) u = v or u = w, that is, u is incident to vw, or (ii) uv or uw is an edge in G, that is, u is incident to an edge that is adjacent to vw. In other words, a vertex u ve-dominates all edges incident to any vertex in N[u].

A set $S \subseteq V$ is a vertex-edge dominating set (or simply a ved-set) if for every edge $e \in E$, there exists a vertex $v \in S$ such that v ve-dominates e. The minimum cardinality of a ved-set of G is called the ve-domination number $\gamma_{ve}(G)$.

A set $S \subset V$ is *independent* if no two vertices in S are adjacent. A set $S \subseteq V$ is an *independent vertex-edge dominating set* (or simply an *independent ved-set*) if S is both independent and *ved*-set. The *independent ve-domination number*, $i_{ve}(G)$, of G is the minimum cardinality of an independent *ved*-set of G. Clearly for every graph G, $\gamma_{ve}(G) \leq i_{ve}(G)$ (see [6]). Also, since any dominating set of a nontrivial connected graph G is a *ved*-set, we therefore have $\gamma_{ve}(G) \leq \gamma(G)$. Moreover, if a nontrivial connected graph G has an efficient dominating set S, then S is an independent *ved*-set of G leading to $\gamma_{ve}(G) \leq i_{ve}(G) \leq |S| = \gamma(G)$.

2 Main result

Restricted to the class of trees, Boutrig et al. [2] have shown that the domination number is an upper bound for the independent *ve*-domination number.

Theorem 2.1 ([2]). For every nontrivial tree T, $\gamma_{ve}(T) \leq i_{ve}(T) \leq \gamma(T)$.

Lewis et al. [7] were interested in the characterization of trees T such that $\gamma_{ve}(T) = \gamma(T)$ where both a descriptive and a constructive characterization of those trees were given. Let \mathcal{T} be the family of trees that can be obtained from r disjoint stars, each of order at least three, by first adding r-1 edges so that they are incident only with leaves of the stars and the resulting graph is a tree in which every center vertex of a star remains a support vertex.

Theorem 2.2 ([7]). For any tree T of order at least three, the following statements are equivalent:

(1)
$$\gamma_{ve}(T) = \gamma(T).$$

- (2) T has an efficient dominating set S where each vertex in S is a support vertex in T.
- (3) $T \in \mathcal{T}$.

The characterization of trees T such that $i_{ve}(T) = \gamma(T)$ remained open and this problem was the first on the list of open problems presented in [2].

Our aim in this paper is to address this problem, the proof of which is based on the next result, which establishes a relationship between the independent *ve*-domination and the total domination numbers in bipartite graphs, thereby extending and strengthening the inequality chain in Theorem 2.1. It is well-known (see [3]) that for every graph G with no isolated vertex, $\gamma_t(G) \leq 2\gamma(G)$.

Theorem 2.3. For every nontrivial connected bipartite graph G, $\gamma_{ve}(G) \leq i_{ve}(G) \leq \gamma_t(G)/2 \leq \gamma(G)$.

Proof. We only need to show that $i_{ve}(G) \leq \gamma_t(G)/2$. Let A and B be the partite sets of G with $|A| \leq |B|$, and let D be a minimum total dominating set of G. Also, let $A' = D \cap A$ and $B' = B \cap D$. Note that A' and B' are both nonempty independent sets, and every edge of G is incident with either a vertex of $A' \cup B'$ or a vertex dominated by $A' \cup B'$. Now, since every vertex of B has a neighbor in A' we deduce that A' ve-dominates all edges of G. Therefore $\gamma_{ve}(G) \leq i_{ve}(G) \leq |A'| \leq |D|/2 = \gamma_t(G)/2 \leq \gamma(G)$. \Box

It is worth noting that the characterization of the graphs G with $\gamma_t(G) = 2\gamma(G)$ is considered in [5] as one of the most important open problems in total domination in graphs. However, for the class of trees a characterization was given by Henning [4] as follows.

Theorem 2.4 ([4]). A tree T of order at least 3 satisfies $\gamma_t(T) = 2\gamma(T)$ if and only if T has a dominating set S such that the following two conditions hold:

- (1) Every vertex of S is a support vertex of T.
- (2) The set S is a packing in T.

We note that conditions (1) and (2) in Theorem 2.4 immediately imply that the set S is an efficient dominating set where each vertex in S is a support vertex in T. We therefore deduce from Theorems 2.2 and 2.4 the following corollary.

Corollary 2.5. For any tree T of order at least three, $\gamma_{ve}(T) = \gamma(T)$ if and only if $\gamma_t(T) = 2\gamma(T)$.

Corollary 2.6. For any tree T of order at least three, $i_{ve}(T) = \gamma(T)$ if and only if $\gamma_t(T) = 2\gamma(T)$.

Proof. Assume that $i_{ve}(T) = \gamma(T)$. Since $\gamma_t(T) \le 2\gamma(T)$, Theorem 2.3 implies that $\gamma(T) = i_{ve}(T) \le \gamma_t(T)/2 \le \gamma(T)$ and therefore $\gamma_t(T) = 2\gamma(T)$.

Conversely, assume that $\gamma_t(T) = 2\gamma(T)$. By Corollary 2.5, $\gamma_{ve}(T) = \gamma(T)$ and by Theorem 2.1 $i_{ve}(T) = \gamma(T)$. \Box

We are now ready to state the main result which follows directly from the previous results.

Theorem 2.7. For any tree T of order at least three, the following statements are equivalent:

- (1) $i_{ve}(T) = \gamma(T)$.
- (2) $\gamma_{ve}(T) = \gamma(T).$
- (3) $\gamma_t(T) = 2\gamma(T)$.
- (4) T has an efficient dominating set S where each vertex in S is a support vertex in T.

(5) $T \in \mathcal{T}$.

References

- D. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs. In *Applications of Discrete Math.*, R. D. Ringeisen and F. S. Roberts, eds., SIAM, Philadelphia, 1988, pp. 189–199.
- [2] R. Boutrig, M. Chellali, T.W. Haynes and S.T. Hedetniemi, Vertex-edge domination in graphs, *Aequat. Math.* 90 (2016) 355–366.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Fundamentals of Domination in Graphs*. Marcel Dekker, New York, 1998.
- [4] M.A. Henning, Trees with large total domination number, Util. Math. 60 (2001) 99-106.
- [5] M.A. Henning, A survey of selected recent results on total domination in graphs, *Discrete Math.* 309 (2009) 32–63.
- [6] J.R. Lewis, Vertex-edge and Edge-vertex Domination in Graphs, Ph.D. Thesis, Clemson University, 2007.
- [7] J.R. Lewis, S.T. Hedetniemi, T.W. Haynes and G.H. Fricke, Vertex-edge domination, Util. Math. 81 (2010) 193–213.

Author information

Nacéra Meddah, LAMDA-RO Laboratory, Department of Mathematics, University of Blida 1, B.P. 270, Blida, Algeria.

E-mail: meddahn11@yahoo.fr

Razika Boutrig, Faculty of Economic Sciences and Management, University of Boumerdes, Algeria. E-mail: r.bourtig@yahoo.fr

Mustapha Chellali, LAMDA-RO Laboratory, Department of Mathematics, University of Blida 1, B.P. 270, Blida, Algerie. E-mail: m_chellali@yahoo.com

Received: 2024-06-22 Accepted: 2024-07-06