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Abstract In this article, we obtained a new fractional integral identity, and using it, we
established some new Simpson’s type inequalities for s-convex functions in the second sense
through the fractional integral operators of a function with respect to another function. Some
applications of the obtained results to special means are also provided. Our results are more
generalized in nature.

1 Introduction

Integral inequalities have been more prevalent in many areas of mathematics, applied sciences,
and engineering because they are essential in approximation theory and numerical analysis
[1, 2]. Many researchers have studied and generalized the classical integral inequalities like
Simpson’s inequality, the Hermite-Hadamard inequality, Ostrowski’s inequality, and Chebyshev
inequality to fractional integral inequalities, for instance [3]-[5],[8],[12]-[14],[21]-[23] and
the reference cited therein. In this paper, our attention will be given to Simpson’s type inequality.

Let ¥ : [01,02] — R be a four times continuously differentiable function on (o1, 02) and
9]l = sup |9 (2)| < oc. Then the Simpson’s inequality is given by:
z€(01,02)

et (2] 2

We cannot apply the classical Simpson quadrature formula when either f is not four times dif-
ferential or when its fourth derivative is not bounded on the interval o1, 02]. Alomari in [6]
established new Simpson’s type inequalities in terms of the first derivative for s-convex functions
and provided some numerical quadrature rules. Recently, many authors studied similar inequal-
ities where a regular integral in the Simpson’s inequality is replaced by fractional integral of
different forms. This inequality has been studied and generalized by many scholars; see for
instance, [7, 10],[15]-[17],[20, 26] and the reference cited therein.

(02— 0)* | 0
< — .
<222 ),

Definition 1.1. The function ¢ : [0, c0) — R is said to be a convex function if the inequality

¥V (px + (1= p)y) < pd(z) + (1 = p)i(y),
holds for all -,y € [0,00) and p € [0, 1].
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Definition 1.2. The function ¢ : [0, c0) — R is said to be s-convex function (in the second sense)
or 9 belongs to the class Kg, if

U (pz + (1= p)y) < p*d(z) + (1 — p)*I(y),
forall z,y € [0,00), p € [0,1] and s € (0, 1].
Remark 1.3. If s = 1 in Definition 1.2, then we have the Definition 1.1 of a convex function.

Theorem 1.4 ((Holder’s inequality for integral)[19]). Let p > 1 and % + % = 1. If ¥ and ¢ are

real function defined on |1, 02| and if |9(x)|P and |(x)|P are integrable on g1, 02|, then the
following inequality holds:

/:2 |9(2)¢(x)|dx < (/:2 Iﬂ(x)lpd:cy (/:2 |w(x)|qcla:)q, (1.1)

with equality if and only if K1|9(z)|P = K,|v|? almost everywhere, where K, and K, are
constants.

Theorem 1.5 ((Power-mean integral inequality)). Let g > 1. If 9 and v be real function defined
on |01, 02) and if |9(z)| and |9(x)||1)(x)|? are integrable on (o1, 03], then the following inequality

holds: | )
/Q [9(2)(a) | de < ( / m(x)wm) -4 < / w(xw(qux)" )

which is the variant of the Holder’s inequality for integral.

Theorem 1.6 ([11]). Suppose that 9 : [0,00) — [0,00) is an s—convex function in the second
sense, where s € (0,1) and let 01,0, € [0,00), 01 < g2- If ¥ € Li([01, 02]), then the following
inequality holds:

Q2
21y <91 + 92) < 1 / 9(z)dz < J(01) +19(92). (1.3)
2 02— 01 J,, s+ 1

Definition 1.7 ([18]). Suppose that the function ¥ is integrable on [g;, 0] and ¢; > 0. Then for
all 5 > 0, we have

1 x B
T40e) = / (-, >0 (1.4)
and :
TP () = 1 /Q“ (€ — )P~ 19(&)de, = < o (1.5)
o LB) Ja ’ ’

oo

where T'(3) = / e~ *xP~Vdx is the gamma function. The notations \7519(33) and jf,ﬁ(:c) are
1 2

0
respectively called the right- and left-sided Riemann—Liouville fractional integral of a function
¥ of order j.

Definition 1.8 ([18, 24]). Let ¢ : [o1, 02] — R be an increasing and positive function on [y, 03],

having a continuous derivative ¢'(z) on [g1, g2]. The right and left-sided fractional integrals

v/’JQ’BJS‘(y) and U’jf,q?(y) of ¥ with respect to the function ¥ on [g;, 0] of order 3 > 0 are
1 2

defined by

YT =5 [ [P - v] W@ v 00
and | o st
T =g [ [P —vw)] @ < e (17

respectively.
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Remark 1.9.If ¢)(z) = z in Definition 1.8, then we obtain the classical Riemann-Liouville
fractional integral( Definition 1.7).

Motivated by the above work, we introduce some Simpson’s type inequalities for s-convex func-
tions in the second sense via the fractional integral of a function with respect to another function
and its application. The paper is organized as follows: In Section 2, we state our main results on
inequalities of Simpson’s type for s-convex functions via a generalized fractional integral given
by Definition 1.8. Section 3 is devoted to some application of newly established inequalities to
special means. Finally, Section 4 is devoted to the conclusion of our work.

2 Main results

In the accompanying lemma, we introduce a new integral identity which will serve as a pillar for
the forthcoming results. Throughout this paper, we assume that

Y @ [o1,0] — R is an increasing and positive function on |y, 02, having a continuous
derivative V' () on [p1, 02]-

Lemma 2.1. Let ¥ : I C [0,00) — R be an absolutely continuous mapping on I° such that
V' € Li([o1, 02]), where I° denotes the interior of an interval I, o1, 0> € I° with o1 < 2. Then
the following identity holds:

1 01+ 8 B B8
— %0 w’B—O—Zﬁ( ) W Fwy |+ o)w
6(w<gz>;w<gl>>ﬁ [ (21 7o) (40 +ed) e

T L) e (59

1 B B
02— 01 / wy  wy ) o 14€ 1-¢
=—————3 = -2 |5+ o1)d¢
z(wez)—w(m))ﬁ[o (2 3) (= 7o)
2
Yol W) g 1-¢
+/0 <3—2 V(e + e

2.1

where

= (252) - vl

wr =Y(02) — ¥ <Ql ;m) ;

1 1—
w3=¢(;592+ 2591)¢<QH2—92>,

= (252) - (Fra+ ).

Proof. Let £, and £, represent the first and second integral on the right side of equation (2.1).
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Using integration by parts and change of variables, we get

e [ [ (5 550 o (252)) 4 (o (252)) ]

(1 1 1280 )ae

O ) o (15)) 3 e o(252)

1
><19(1 ;ggva 1 ;gm)

0

e 1 e 1-
g/o (w( ;5924‘2591)1/1(91;92)) w'( —;592—1- 2%1)

1+ 1— -
oL+ 2§Q1>92291d§}

- {}9(92) (ve -0 (25 QZ))B - 39(e) (e - v (W))ﬁ
+ 30 52) (vl - v (929))5 -7 (vt - (@;@))ﬁ wuw(u)du}
S — {émgz) (vien—v (252)) + 1o (252 (w0 - v (252) )

B F<5+1)¢j[5_19<gl +92> }

2 2
2.2)

and similarly

s [T (o (5 o) (o (252) o (5t 50

1+¢ 1-¢ )

/7
0 (0 + o) d

o [ () ) 3 (e (15 o (e )

1
X§(1;591+ 15592)

0

1 _ p-1 —
_g/o <¢<91;Q2>—¢(1;591+12592>> ¢/<1;§Q1+12§Q2>

(Lt 1;592)91—92d5}

2 2



162 Henok Desalegn Desta et al.

- e (o (5) ot i (o (252) o)
ey (o(252) o) -3 [ (o
s (o (452) o) St

T8+ 1)¢j519<91+92> }
of ’

N
S
2|+
IS
[\5]
—+ N——
|
<
£
S~
T
=
=
=
2
QU
S
——

2 2
2.3)
From equation (2.2) and (2.3), we have
%ﬁ |:19(Ql)w1ﬁ + 29 (Ql t Qz) (wlﬁ —I—wzﬁ) + ﬁ(gz)wzﬁ]
6 (’lb(az)—w(gl)) 2
2
28-1T 1
B (B + )5[wjfrﬁ<m;m)+wjf19<m;mﬂ
(¥(e2) = vlen)
- LIB [21 + 22}7
2 (1/1(92)—'4/)(91)>
2
which is equation (2.1). O

Remark 2.2. If we choose 1)(x) = z, then the identity (2.1) becomes the identity equation 7 in
[9].

Remark 2.3. If we choose 1(z) = x and 8 = 1, then the identity (2.1) becomes the identity
equation 1.3 in [25].

Throughout this paper, let

L 1 8 01+ 02 8 8 8
£(9,9, 01, 02) ._—6 (w@z)—w(g]))B {19(91)“’1 +219< 7 ) (w1 +w2> +9(02)ws
7

Gty b )]

and

. _ 1 +
s ) T, (w<92>;¢(91>)ﬁ {19 (Ql 2 Qz) (wlﬁ +w§)]

ooy 23] e (059))

Now, our next results are stated as follows:

Theorem 2.4. Let the assumptions of Lemma 2.1 hold and assume that |’ | is s-convex on [p1, 02],
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fors € (0,1], |¢'| < L on [o1, 02], then the following inequality holds:

‘3(197 Y, 01, 92)‘

e L O ) ( |
25“(#’(92)*@0(91))5 { ) 92} /0

5 —i\ (a+e +a —e)&}ag) .

(2.4)

Proof. Since v is increasing, differentiable and |)'| < L on [gy, 02], % is the Lipschitzian func-
tion.

:1”(1;5@ 12591) _w<9';92>} SLg(szgl),

-1&(92)_1/}(91;&” <L(92591>_ 2.5)
and _

(5) (1 ) e (759),

:w<9142r@) w(gl)} SL(&;@)' (2.6)

From Lemma 2.1, inequalities (2.5) and (2.6) and |¢’| is s—convex on [g1, 2], we get

‘2(ﬁ7¢791792)‘ < oo

(L6 (55 50) w3 S oo (252)]

V(e iyt
e L (o (2 ) o) 4 (w2 o (e ) )
5]

{/Ol;(w@z;@l))ﬁ i (z 9””) (55) Wi+ (15°) el ae
e[ () - e ) () e >+<1;5>5|ﬁ'<m>|}ds}
) 2(1/)(9922);5(;1))ﬁ : Lﬁ(?)ﬁ{ﬂ N

2 3‘ (L) 19 (o)l + (1 = &)°10 (o1)] ] d
11q gﬁ
“

-S| [arorwe+a —f)sw’@”'}dg}’

X

dg

W =

which is the required inequality (2.4). O
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Corollary 2.5. In Theorem 2.4 if we choose s = 1, then we obtain the following inequality for
the convex function.

’3(19’1% 01, Qz)’

(02 — 01)"™!

2<¢(92) - 1/’(91))

__ (ea—e)! , , B (2\7F 1 1
) z(w(i; Qlw@l))BLg e vie] <5+1 G) e 3) |

<

5L° {m’(m)l + W(gz)ﬂ (/01

The generalized midpoint inequality in terms of the first derivative is given as follows:

Corollary 2.6. If we have ¥(p1) = ¥ (%) = 9(02) in Theorem 2.4, then we get the following

midpoint inequality:
‘L*(QZ QZ}7 01, 92)’

< (o2 = )™ L9 (o) + 19 (e2)] ( |
25+1(¢(92)—w<g]))ﬁ [ ’ 92} /0

Remark 2.7. The special cases are given below:

a. In theorem 2.4, if we put ¢)(z) = =, then inequality (2.4) coincides with inequality 11 in

[9].

b. In theorem 2.4, if we put ¢)(z) = x and 8 = 1, then the inequality (2.4) coincides with
inequality 2.1 in [25].

c. In Corollary 2.5, if ¢/(z) = 2, 8 = 1 and ¥(0;) = 0(%) — 9(0), then the inequality
reduces to

1 02
9 (91 +Q2> _ / 9(u)du
2 02— 01 Jy

which coincide with equation 2.6 in [25].

< 20 [y () 4 '),

Theorem 2.8. Let the assumptions of Lemma 2.1 hold and assume that |)'|? is s-convex on
lo1, 02), for s € (0, 1], |¢'| < L on |01, 02) and q > 1, then the following inequality holds:

’2(197 ¥, 01, Qz)‘

< (QZ*Ql)ﬁH LB( ! ]
)’ I

‘ d£>3“ l<|ﬁ'(gz>q+ ﬁ’(%%ﬁ)q
2(4(02) — (e o @)

i (et I

s+ 1

¢ 1

2 3

1,1
where;—i—a—l.
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Proof. From Lemma 2.1, using inequalities (2.5) and (2.6) and Hélder’s inequality, we get

‘3(19»1/%91,@2)‘ < 2o

(L3 (3t 532 - (oo (252))

19'(1+§02+12§01)

8 B 8

) ) (52 5255)
§ 1-¢

ot — )dg}
02— 01

Sz T/J.Ql {/

+/1 ( Qz—Ql
0

X

dg

O

o) ezt )
3z o (e )]

: 2<w(<9922>_—mz)02:>>ﬂw (/ol pd5>; [</01 )
—i—(/ol 15‘/<1;§ 1-0—125@2) qd§>q],

by using the change of variable, equation (1.3) and |¥'|? is s-convex, we have

Y] 1 ! 2 e
/0 19( —;5 0+ 2591) d§ = /g ¥ (2)|"da

¢ 1

2 3

; 2t e

g\
)

0,(1+§ 1-¢

02 — 01 %
02 19/ q 19’
— e [ W < [ PR
02 — (91‘592) 91;92 S + l

and

[

e1t+ep

q 2 —5
dé = JRRERE
01

02 — 01

1+ 1-—
v’ (2§QI + 5 ng)

e1t+on

S w/(x)wdms[ﬂ'<gl>|q+|z9'<ﬁ@f@>)'q].
01 Jog

(9142-92)7 s+ 1

Hence, by using inequalities (2.8) and (2.9), we obtain

(92 - Ql)ﬁ+l B < !
E(ﬂawa ) ) S L
‘ e ‘ 2(1/1(@2) *w(gn))ﬁ /0

19 (0|7 + [0'(252)[e\ 7
o (et S

Thus, the proof is complete. O

¢ 1

2 3

PONF T (19(0)|7 4 [0 (ke ®
o) | ()
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Corollary 2.9. In Theorem 2.8 if we choose s = 1, then we obtain the following inequality for a
convex function.

‘9(797 ¥, 01, Qz)‘

< (92*91)[”1 L3< !
)’ I

2(le2) = len

N <19'(91)q +2|19/(m;az)|q> : ]

1 1

’lg) 5 [ (W(em + zw/(@l;@ﬂ)w) :

S
273

Corollary 2.10. Ifwe have ¥(p;) = 9 (%) = 9(02) in Theorem 2.8, then we get the following
midpoint inequality:

‘L*(ﬂﬂ/% o1, Qz)‘

- (02— 01)"™! L5<1
)’ I

2(le2) = len

N (ww - wzwﬂ_

! ”d§>" Kw'@z)w + w/(m;@zw)é
s+1

&
2

s+1

Remark 2.11. The special cases are given below:

a. In theorem 2.8, if we put ¢)(z) = =, then inequality (2.7) coincides with inequality 14 in
[9].

b. In theorem 2.8, if we put ¢)(x) = z and 3 = 1, then inequality (2.7) coincides with inequal-
ity 2.7 in [25].

c. In Corollary 2.9, if ¢(z) = z, 8 = 1 and ¥(p;) = ﬁ(%) = 9(02), then the inequality
reduces to

1 02
19<91+92) / I(u)du
2 02— 01 Jy,

o= o (14270 [ (100l + [9/(252)0\ T (19(00)|7 + [0(252)p \ *
o (i) [ (o) s (e ]

Theorem 2.12. Let the assumptions of Lemma 2.1 hold and assume that |9'|? is s-convex on
lo1, 02), for s € (0,1], |¢'| < L on [o1, 02) and q > 1, then the following inequality holds:

‘2(197 ¥, 01, 92)‘

< (QZ—QI)BJrl Lﬁ( !
)’ I

B 2(1/)(92) — (o1

P\
df)

[((28“ D (el + w'(‘-";“)w)é N <<28+1 DI (o) + |z9'<‘-"§92>|q> :
25(s+1) 25(s+1) ’

&1

2 3

X

(2.10)

1,1
where;—i—a—l.
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Proof. From Lemma 2.1, s-convexity of |9'|? and Holder’s inequality, we have

‘2(19»1/1» Ql»QQ)’ < M

1 1 1— | A
2(1/1( ;592-%25@1)—1/1(@1;92)) —3<¢(Q2)—¢(g1—;92)>

25) =5 ()l (e )
<M> ( o) o (e )
sttt (L1540 4) ([ (55550 )

(Lo (55 )

x| ”df> (£ (5o (Y ore)
([ (5w (5 wiona) |

Si /1 LHE e 271 d/ Sdg— the proof i let
1mnce A 2 25 5+ an 2 = 1) eproo 1S Compee.

O

1

¢ 1

2 3

+

8=

¢ 1

2 3

Corollary 2.13. In Theorem 2.12 if we choose s = 1, then we obtain the following inequality for
a convex function.

'Q(ﬁ,w,m,gz)‘
(02— 01)""! B( I P >L
< I i
2(v(e2) ~ ver))” I
x [(MQZ)'” W’(Q‘;”)'q)é + <3|ﬁf<@]>|q+|ﬁ'<“§“>'q>1
4 1 ,

Corollary 2.14. If we have ¥(o1) = 19(%) = 9(02) in Theorem 2.12, then we get the follow-

¢ 1

2 3
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ing midpoint inequality:

‘L*(ﬁv¢agl;02)’
< (e—o)™ LB( 156—11)&);
2((e2) ~ ve1)) b5

x [((M ~ DY ()| + W(Q‘?Z)l(’)é + <<2‘“*‘ = DIV (1)1 + |ﬁf<“¥“)|q> é]
25(s+1) 25(s+1) '

Remark 2.15. The special cases are given below:

a. In theorem 2.12, if we put ¢)(z) = =z, then inequality (2.7) coincides with inequality 16 in
[91.

b. In theorem 2.12, if we put ¢)(z) = z and 8 = 1, then inequality (2.7) coincides with
inequality 2.9 in [25].

c. In Corollary 2.13, if ¢(z) = z, § = 1 and ¥(0;) = 0(91+@2) — 9(02), then the inequality
reduces to

1 2
9 <Ql i Qz) — / 9(u)du
2 02— 01 Jy,

<3|19/(92)|q * ’9'”‘?2)‘1)é + <3|19’(91>|q+ w/(@‘?z)lqﬂ .

02— o1 [(1+2°"!

- 12 (3(p+1))

4 4

Theorem 2.16. Let the assumptions of Lemma 2.1 hold and assume that |9'|? is s-convex on
[o1, 02] for s € (0,1] and q¢ > 1, || < L on |01, 02], then the following inequality holds:

’5(197 ¥, 01, Qz)‘

( QZ_QI)EJrl )5LB (/01

</ ’(( S wer+ (5F) Iﬁ’(@1)|>d§> 1
( S((55) e )|+(125>5|ﬂ'<92>|q)d§>q],

1,1
where;—l—gfl.

@2.11)

Q=

Proof. Using Lemma 2.1, s-convexity of ||, inequalities (2.5), (2.6) and power mean inequal-
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ity, we have

‘2(1971/}791792>’ S CE

U5 (o (e 55a) —o(252)) 5 (s -w (252))

19/(1%5924- ! 5591)

[ B 3 6(e7) (3655

51+12 )df}

0o e
{/ (s m) 5 (s™)
) -

_ B _
< Ql Ql ( 1>> ﬂ/(1+592+1 592)

2 2

X

dg

|-

dg

1+ 1 -
19/( 25924- 2591)

y

+

o -0 156_1‘ ,(1+§ 1-¢ )
Sz(w(gz)*ﬁi(gl))ﬁL {/o 2 3 v 2 @+ 7 dg
S S S 3
+/0 377 19<2 2+ — Qz) d¢

: z<$fézig‘if§f>>ﬁﬁﬁ{ </0 3 dE) h
. ( [18 - 31((55) e+ (455 w/(gl)wds))
;56‘&)1_; </01 ;f\ ((45) Wi+ <12€>S|19'(92)|qd§>>; }

Q

ais

which is the desired inequality. O

Corollary 2.17. In Theorem 2.16 if we choose s = 1, then we obtain the following inequality for
a convex function.

’3(79’ ¥, 01, Qz)‘

1—1
gz—gl)ﬁ“ ( lgh 1‘ ) ’
5L > _lde
2 ) /0 2 3

(vlex
l( 3 (55 e+ (5% e )))l;
+</ 52( LY o+ (155) e )H

(2.12)

w\~
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Corollary 2.18. If we have 9(p;) = ﬁ(%) = 9(02) in Theorem 2.16, then we get the follow-

ing midpoint inequality:

L*(ﬁawa 01, QZ)‘

(02 — 1) )BLB (/01

2(9(e2) - vler)

1

Soi)
(/01 C-al () wer+ (55) ﬁ’(goq)) E
n (/0 - S5 e+ (152) ﬁ'<gz>|Q)>é]-

Remark 2.19. In theorem 2.16, if we put

a. ¢(z) = z, then inequality (2.11) coincides with inequality 20 in [9].
b. (x) =z and 8 = 1, then inequality (2.7) coincides with inequality 2.10 in [25].

3 Application to special means

Now we give some applications of our results:

The Arithmetic mean is defined as:

_ 01+ 0

A(917Q2) D) 3 01, 02 Z 0.

Proposition 3.1. Let 91, 00 € Rand 0 < o1 < 0 then, we have

1

w [wa? +2A4° (Q17 Qz) (wlﬂ + w?) n inﬂ

_ 2B+ 1) ; [M’?As(m,m) +¢j£,,45(91,92)}

3.1
(7/1(92) - 1/1(91)) G-D
— )Pt e
Q S S S— S—
Gl VAL 75 (/ % - 3‘ (1+9 +1-9 }df) Alei™ o7,
2(¥le)—v(e)  \°
Proof. This can be proved by applying ¥(z) = z* in Theorem 2.4, s € (0, 1]. m]
The P-logarithmic mean is defined as :
{9”“ - QPHF if o1 = 0
Ep = Lp(@l»@Z) = 2 1
01 if o1 = 02, peR/{-1,0}; o01,00>0

Remark 3.2. If we put ¢/(z) = z and 8 = 1 in Proposition 3.1, then we obtain
1 S S 2 S S
Al 03) + 3 A%(er, 02) = L3(01, 02)

(s —4)6° +2 x 552 — 2 x 3572 4.2
652(s+1)(s+2)

<2s(02— 01) Alei™ " o5,

which is proved in Sarikaya et al. [25].
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Proposition 3.3. Let 91,00 € Rand 0 < 91 < 03. Then for all ¢ > 1 and % + é =1, we have
1 { . B : B B , B
—— |ojw +2A5(91,92) w) +w >+95w }
6(w<gz>;¢<gl>)5 o CREIRL S

2105 + 1)
(¢(92) - 1/’(91))

< (02 — QI)B7L1 B ( :
2(¢(@z) - ¢(91))B /0

+ (Q?“*l) + A1 (g, Qz))

5 (0Tl A (o102) + 0T A (o122 |

&b 1”d€>” s
(s+1)7

Q=

2 3

Proof. This can be proved by applying ¥(z) = z* in Theorem 2.8, s € (0, 1].
Remark 3.4. If we put ¢)(z) = z and 8 = 1 in Proposition 3.3, then we obtain

(Qg(sfl) +Aq(s—l) (91792))

Q=

(3.2)

1 2
‘3A(9?7 05) + gAS(Qla 02) — L3(o1,02)

1
<(92_Q1>(1+2p+1>p s
- 12 3p+1)) (s+1)w

1
(93(5‘” + A=Y (g, Qz)) !

+ (g‘ll(sfl) + Aq(sfl) (Ql, Qz)) q ] .

which is established in Sarikaya et al. [25].

Proposition 3.5. Let 91,00 € Rand 0 < o1 < 05. Thenforallq>1and%+é:1, we have
1
s5.,8 S B B s B
———3 |0jw| +2A% (01,0 (w] +w; ) + w
i ) ()

25-10(8 + 1)
(¢(92) - 7/)(91))

< (02 — QI)BH B ( :
2(#}(@2) - ¢(91))ﬁ /0

+ ((25+] _ 1)9111(371) +Aq(s—]) (Q17Q2)>

5 [wIl A (o1.02) + 0T A (o1 e2) |

& 1

2 3

g ’ S s+1 _ 1y a(s—1) (s—1)
df) (28(s+1));[((2+1 Def™™" +47 (o1, 0))

Proof. This can be proved by applying ¥(z) = z* in Theorem 2.12, s € (0, 1].
Remark 3.6. If we put ¢)(z) = z and 8 = 1 in Proposition 3.5, then we obtain

Q=

(3.3)

1 2
3A(Qf, 05) + §v48(917 02) — L3(01,02)

Q=

(02— 01) (1 +277! v s ot (o a(o—t
= 2121 (3(p+1)> (25( 1))}1[((2 _1)92( DAl )(91,Q2>)

o

Q=

+ ((25+1 N l)gtll(sfl) + Aq(sfl) (Ql» 92))

Q=
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which is shown by Sarikaya et al. [25].

4 Conclusion

In the present article, we introduced a new integral identity. Using this identity, we generate a
new version of fractional Simpson’s inequality via the s—convex function in the second sense
with respect to another function. Moreover, we have shown that our result generalizes the in-
equalities introduced by Sarikaya et al.[25] and we applied the newly established Simpson’s
inequality to some special means. Further research could aim to generalize these findings by
using different types of convex function classes or fractional integral operators.
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