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Abstract In this paper, modules with weak and strong notions of principally lifting modules
have been studied and four different module concepts have been defined. The relationship of
these modules with the modules in the literature has been established.

1 Introduction

Throughout this paper, each ring R is associate with identity and each module is an unitary left
R−module. Let M be such a module. By the notation A ≤ M , we mean that A is a submodule
of M . A submodule A of M is said to be small in M if M 6= A+B for any proper submodule B
of M , denoted by A � M , and we point with Rad(M), the sum of whole small submodules of
M . Dual to this concept, a submoduleA ofM is said to be essential inM , denoted byA EM , if
the intersection of A is non-zero with the other submodules of M , except for {0}. A supplement
submodule T of A in M is a minimal element of the set {B ≤M |M = A+B} that equivalents
M = A + T and A ∩ T � T . A module M is said to be supplemented if each submodule of
M has a supplement in M [16]. On the other hand, the module M is amply supplemented if, for
any submodules A,B of M with M = A+B there is a supplement T of A such that T ≤ A [16].
In [9], a module M is said to be ⊕−supplemented, if each submodule of M has a supplement
which is a direct summand. A study conducted in recent years as a proper generalization of
supplemented modules is included in [2].

Small submodules are generalized to δ−small submodules in [18]. According to Zhou, a
submodule A of M is said to be δ−small in M (denoted by A�δ M ) if for any submodule B of
M with M

B is singular, M = A+B implies that M = B [18]. The sum of δ−small submodules
of a module M is denoted by δ(M). It is easy to see that every small submodule of a module M
is δ−small in M , so Rad (M) ⊆ δ (M) and Rad (M) = δ (M) if M is singular. Also any non-
singular semisimple submodule of M is δ−small in M and δ−small submodules of a singular
module are small submodules. For more detailed discussion on δ−small submodules we refer to
[18]. Let A, B be submodules of a module M , then B is said to be a δ−supplement of A in M ,
if M = A+B and A∩B�δ B. A module M is said to be δ−supplemented, if each submodule
of M has a δ−-supplement in M .

In [9], a module M is said to be lifting if for each submodule A of M lies over a direct
summand, that is, there is a decompositionM =M1⊕M2 provided thatM1 ≤ A, A∩M2 �M2.
By [16], M is lifting if and only if M is amply supplemented and each supplement submodule
of M is a direct summand of M . A module M is said to be δ−lifting, if for each submodule A of
M , there is a direct summand K of M with K ⊆ A and A

K �δ
M
K . Equivalently, for any A ≤M ,

there exists a decomposition M = K ⊕B provided that K ≤ A and A∩B �δ B. A submodule
A of M is said to be a fully invariant provided that if ζ(A) ⊆ A for each ζ ∈ S = End(RM).
In [13], the concept of FI-δ-lifting modules is studied as a generalization of δ-lifting modules.
An R-module M is said to be FI-δ-lifting provided that each fully invariant submodule A of
M contains a direct summand B of M with A

B �δ
M
B . Also in [13], the concept of strongly

FI-δ-lifting modules is defined. M is said to be strongly FI-δ-lifting provided that each fully
invariant submodule A of M contains a fully invariant direct summand B of M with A

B �δ
M
B .
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Following [19], whole simple submodules of M which are small in M is named Socs (M),
that is, Socs (M) =

∑
{A�M |A is simple}. Note that Socs (M) ⊆ Rad (M) and Socs (M) ⊆

Soc (M). In [8], a moduleM is said to be strongly local providing thatM is local andRad (M) ⊆
Soc (M). In the same paper, a ring R is said to be left strongly local ring if RR is a strongly local
module.

Besides, ss−supplemented and semisimple lifting modules are introduced in [8] and [3] re-
spectively, as follows. Let M be a module, A,B ≤ M . If M = A+ B and A ∩ B ⊆ Socs (B),
then B is an ss−supplement of A in M . Any module M is said to be ss−supplemented if each
submodule A of M has an ss−supplement B in M . As a result of this definition, finitely gener-
ated module M is ss−supplemented if and only if it is supplemented and Rad (M) ⊆ Soc (M).
According to [3], a moduleM is said to be semisimple lifting or briefly ss−lifting if for each sub-
module A of M , there is a decomposition M =M1 ⊕M2 provided that M1 ≤ A, A ∩M2 �M
and A ∩M2 is semisimple. Some fundamental properties of ss−lifting modules were be exam-
ined in this paper.

The concept of principally supplemented modules is a generalization of semiregular modules
and the concept of principally lifting modules is a generalization of lifting modules, which are
introduced in [1]. A module M is said to be principally supplemented if for each cyclic sub-
module A of M , there is a submodule B of M provided that M = A + B with A ∩ B � B
and a module M is said to be principally lifting if for each cyclic submodule A of M , there is
a decomposition M = K ⊕ B provided that K ≤ A and A ∩ B � M . Similarly, principally
δ−supplemented and principally δ−lifting modules are studied and some features are obtained
in [5]. A module M is said to be principally δ− supplemented if for each cyclic submodule A of
M , there is a submodule B of M provided that M = A+B with A∩B �δ B and a module M
is said to be principally δ−lifting if for each cyclic submodule A of M , there is a decomposition
M = K ⊕B provided that K ≤ A and A ∩B �δ M .

We combine the above motivations by defining the following four types of modules:
(1) We sayM is principally ss−supplemented if each cyclic submodule has a ss−supplement

in M .
(2) We say M is principally ss−lifting if each cyclic submodule Rm of M , M has a decom-

position M = N ⊕K provided that N ⊆ Rm and Rm ∩K ⊆ Socs(K).
(3) We sayM is principally δss−supplemented if each cyclic submodule has a δss−supplement

in M .
(4) We say M is principally δss−lifting if each cyclic submodule Rm of M , M has a decom-

position M = N ⊕K provided that N ⊆ Rm and Rm ∩K ⊆ Socδ(K).
In Section 2,we are researching the main features of the modules which contained in the first

two definitions above. We show that principally ss−supplemented modules are closed under
extension with some special conditions. We prove the notion of principally ss−lifting is inherited
by direct summands. We obtained the decomposition as principally ss−lifting modules with the
help of composition series and semisimple submodules.

In Section 3, our Theorem 3.1 generalizes and extends the main result and we compare the
principally δss−lifting and principally δss−supplemented classes of modules that related to the
class of principally lifting modules in Theorem 3.11. In particular, we show that the following
implications hold between the various concepts:
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2 Principally ss−supplemented modules and lifting property

In this part, we give the basic algebraic properties of the principally ss−lifting and principally
ss−supplemented modules. These properties will be used in Section 3.

Firstly we give an example which shows that each principally supplemented module may not
be principally ss−supplemented.

Example 2.1. Consider the Z−module M = Z8. Follows from [1, Example 7(3)], M is princi-
pally supplemented. Since every submodule ofZ8 is cyclic,M is not principally ss−supplemented
by [8, Example 2.17].

Recall from [16] that a submodule A of M is said to be fully invariant if for each endomor-
phism ϕ of M , ϕ (A) ⊆ A and the module M is said to be duo module if each submodule of M
is fully invariant by [12].

Let us recall the fundamental lemma in [12] that we will use in the following.
Let M be a module which is a direct sum of submodules Mi (i ∈ I) and A be a fully invariant

submodule of M then A =
⊕
i∈I

(A ∩Mi).

Proposition 2.2. Let M be a direct sum of principally ss−supplemented modules M1 and M2. If
M is a duo module, then M is principally ss−supplemented.

Proof. Let M = M1 ⊕M2 be a duo module and A = Rm be a cyclic submodule of M . Then
A = (A ∩M1) ⊕ (A ∩M2). Let m = m1 + m2 where m1 ∈ M1 and m2 ∈ M2. We have
A1 = Rm1 = A ∩ M1 and A2 = Rm2 = A ∩ M2. As A1 and A2 are cyclic submodules
of M1 and M2 respectively, there is a submodule B1 ⊆ M1 provided that M1 = A1 + B1,
A1 ∩B1 ⊆ Socs (B1) and B2 ⊆M2 with M2 = A2 +B2, A2 ∩B2 ⊆ Socs (B2). Then

M =M1 +M2 = A1 +B1 +A2 +B2 = (A ∩M1) +B1 + (A ∩M2) +B2 = A+B1 +B2

and
A ∩ (B1 +B2) ⊆ [(A ∩M1) ∩ (B1 +M2)] + [(A ∩M2) ∩ (B2 +M1)] .

Here (A ∩M1) ∩ (B1 +M2) ⊆ A1 ∩ (B1 +M2). So we have A1 ∩ (B1 +M2) = B1 ∩
(A1 +M2) = A1 ∩ B1. Similarly we can obtain that A2 ∩ (B2 +M1) = B2 ∩ (A2 +M1) =
A2∩B2. SinceA1∩B1 ⊆ Socs (B1) andA2∩B2 ⊆ Socs (B2), we have (A1 ∩B1)+(A2 ∩B2) ⊆
Socs (B1 +B2) by [8, Corollary 2.4]. Since A∩ (B1 +B2) ⊆ (A1 ∩B1)+(A2 ∩B2), it is clear
that A ∩ (B1 +B2) ⊆ Socs (B1 +B2). Therefore B1 + B2 is an ss−supplement of A in M .
Hence M is principally ss− supplemented.
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Now we show that principally ss−supplemented modules are closed under direct sum-
mands.

Theorem 2.3. Let M be a duo module. If M is principally ss−supplemented, then each direct
summand of M is so.

Proof. Let M = N ⊕K and m ∈ N . Then there is a submodule L of M provided that M1 =
Rm+ L and Rm ∩ L ⊆ Socs (L) by the hypothesis. We have N = Rm+ (N ∩ L). As M is a
duo module, then L = (N ∩ L) ⊕ (K ∩ L). We have to prove that Rm ∩ (N ∩ L) ⊆ Socs (L).
It is obvious that Rm ∩ (N ∩ L) is semisimple because Rm ∩ (N ∩ L) ⊆ Rm ∩ L. If we show
that Rm ∩ (N ∩ L) � N ∩ L, as desired. Let V be a submodule of N ∩ L with N ∩ L =
[Rm ∩ (N ∩ L)] + V . Then L = (N ∩ L) ⊕ (K ∩ L) = [Rm ∩ (N ∩ L)] + V + (K ∩ L). It
follows from Rm ∩ L � L that L = V ⊕ (K ∩ L). Thus V = N ∩ L. So the desired is
achieved.

Corollary 2.4. Let M =M1 ⊕M2 be a duo module. Then M is principally ss−supplemented if
and only if M1 and M2 are principally ss−supplemented.

Proof. (⇒) Clear by Theorem 2.3.
(⇐) Clear by Proposition 2.2.

Recall that a module M is distributive provided that A ∩ (B + C) = (A ∩B) + (A ∩ C) for
submodules A,B and C.

With the similar method to the above theorem, the following corollary is obtained.

Corollary 2.5. LetM be a distributive module. If each direct summand of principally ss−supple-
mented module is principally ss−supplemented.

We prove that notion of principally ss−supplemented preserves in factor modules in the
following.

Proposition 2.6. If M is a principally ss−supplemented module, then each factor module of M
is so.

Proof. Let M be a principally ss−supplemented module and M
N be a factor module of M . By

the hypothesis, for any cyclic submodule Rm of M which includes N , there is a submodule B
of M provided that M = Rm+B and Rm ∩B ⊆ Socs (B). Let ϕ : M → M

N be the canonicial
projection. Then

M
N = Rm

N + B+N
N and Rm

N ∩
B+N
N � B+N

N by [16, 19.3(4)]. Since Rm ∩B is semisimple, it
follows from [7] that π (Rm ∩B) = (Rm∩B)+N

N = Rm
N ∩

B+N
N is semisimple. ThusRmN ∩

B+N
N ⊆

Socs
(
B+N
N

)
, as required.

Now we show that the class of principally ss−supplemented modules is closed under exten-
sions if we take certain conditions.

Theorem 2.7. Let 0 → A
ϕ→ M

ψ→ B → 0 be a short exact sequence and M be a duo module.
If A and B are principally ss−supplemented, so does M . If the sequence splits, the converse
holds.

Proof. Without losing the generality, we assume that A ⊆ M . Since M
A
∼= B and A princi-

pally ss−supplemented, then we have M is principally ss−supplemented by Proposition 2.6.
On the other hand, suppose that the sequence splits. Then M ∼= A ⊕ B. If M is principally
ss−supplemented, then A and B are so by Theorem 2.3.

Proposition 2.8. LetN be a submodule of the duo moduleM . If MN is principally ss−supplemented,
then M is so.

Proof. Let Rm be a cyclic submodule of M . Then Rm+N
N is a cyclic submodule of M

N . By the
assumption, there is a submodule L

N of M
N provided that MN = Rm+N

N + L
N and (Rm+N)

N ∩ L
N =

(Rm+N)∩L
N = (Rm∩L)∩N

N ⊆ Socs
(
L
N

)
.
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Let M and N be modules with M is projective. M is said to be a projective cover of a
module N if there is an epimorphism f : M → N provided that Kerf � M . A ring R is
said to be semiperfect if each simple R−module has a projective cover [16]. Also, a module
M is said to be principally semiperfect if each factor module of M by a cyclic submodule has
a projective cover. R is said to be a principally semiperfect ring in case the RR−module is
principally semiperfect [1].

Recall from [10] that a ring R is semiregular if and only if for any a ∈ R, R
Ra has a projective

cover. Then, Tuganbaev defines semiregular modules in [14]. The definition is the same as
principally lifting modules in [6]. It is clear that a ring R is semiregular if and only if it is
principally lifting.

We obtained the concide of principally ss−lifting with principally semiperfect in the
following.

Theorem 2.9. Let M be a projective module with Rad (M) ⊆ Soc (M). Then the following
statements are equivalent:

(i) M is principally semiperfect.
(ii) M is principally ss−lifting.

Proof. Using [16] and [8, Lemma 39], the proof is clearly obtained.

Corollary 2.10. Let R be a ring with Rad (R) ⊆ Soc (RR). Then the following statements are
equivalent:

(i) R is principally semiperfect.
(ii) RR is semiregular.
(iii) RR is principally lifting.
(iv) RR is principally ss−lifting.

Proof. It can be seen clearly by the same techniques of proofs of [15, Corollary 1.29] and [3,
Theorem 2.12].

Recall from [6] that a non-zero module M is said to be p−hollow if each proper cyclic
submodule is small in M .

Let’s continue the section by giving the properties of principally ss−lifting modules.

Proposition 2.11. The condition principally ss−lifting is inherited by direct summands.

Proof. Let M be principally ss−lifting and N be a direct summand of M . Take any cyclic
submodule Rm of N . Since Rm ⊆M , M has a decomposition M = K ⊕ L with K ⊆ Rm and
Rm ∩ L ⊆ Socs (L) ⊆ Socs (M). Then N = K ⊕ (N ∩ L) and Rm ∩ (N ∩ L) ⊆ Socs (M),
so Rm ∩ (N ∩ L) ⊆ Socs (N), since N is a direct summand of M . Hence N is principally
ss−lifting.

The following lemmas are important to give us the characterization of principally ss−lifting
modules with their cyclic submodules.

Recall that a submodule N of M is a direct summand of M if there is some other submodule
N

′
of M provided that M is the direct sum of N and N

′
. In this case, N and N

′
are said to be

complementary submodules.

Lemma 2.12. If M is a principally ss−lifting module, then each cyclic submodule A has an
ss−supplement B that is a direct summand and A contains a complementary direct summand of
B in M .

Proof. Obvious from the defining of principally ss−lifting and the fact that a small submodule
of M is small in any direct summand of M .

Lemma 2.13. The following statements are equivalent for a module M :
(i) M is principally ss−lifting.
(ii) Each cyclic submodule A ofM can be written as A = N⊕K withN is a direct summand

of M and K ⊆ Socs (M).
(iii) For each m ∈M , there is principal ideals K and J of R provided that R = Km⊕ Jm,

where Km is a direct summand of M and Jm ⊆ Socs (M).
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Proof. (i) (⇒)(ii) Clear.
(ii) (⇒)(i) Let A be a cyclic submodule of M , then by the hypothesis, A = N ⊕ K with

N is a direct summand of M and K ⊆ Socs (M). We consider that M = N ⊕ N1. Then
A = N ⊕ (A ∩N1). Let ϕ : N ⊕ N1 → N1 be the canonicial projection, we have A ∩ N1 =
ϕ (A) = ϕ (N ⊕K) = ϕ (K) ⊆ Socs (M). Hence M is principally ss−lifting.

(ii) (⇒)(iii) Obvious.

Proposition 2.14. Let M be a principally ss−lifting module. If M = A+ B provided that B is
a direct summand of M and A ∩B is cyclic, then B contains a ss−supplement of A in M .

Proof. Since M is principally ss−lifting and A ∩ B is cyclic, A ∩ B = N ⊕ K, where B is a
direct summand of M and K ⊆ Socs (M) by Lemma 2.13. Since K �M , then K � B. Write
B = N⊕N1. We haveA∩B = N⊕(A ∩B ∩N1) = N⊕(A ∩N1). Let ϕ : N⊕N1 → N1 be the
canonicial projection. It follows thatA∩N1 = ϕ (N ⊕ (A ∩N1)) = ϕ (A ∩B) = ϕ (N ⊕K) =
ϕ (K), thus A ∩N1 ⊆ Socs (N1). In addition M = A+B = A+N +N1 = A+N1. So N1 is
an ss−supplement of A in M that is included in B.

Corollary 2.15. Let M be a principally ss−lifting module over a principally ideal ring R. If
M = A+Rm, then Rm contains an ss−supplement of A in M .

Proof. By Lemma 2.13, we have Rm = N ⊕ K, where N is a direct summand of M and
K ⊆ Socs (M). From here, M = A + N where N is a cyclic direct summand of M . Thus
X ∩N is a cyclic submodule of M . By applying Proposition 2.11, the proof is complete.

We need the following proposition to classify indecomposable cyclic submodule of prin-
cipally ss−lifting modules.

Proposition 2.16. Let M be a principally ss−lifting module. Then each indecomposable cyclic
submodule A of M is either in Socs (M) or a direct summand of M .

Proof. By Lemma 2.13, there exists A = N ⊕ K where N is a direct summand of M and
K ⊆ Socs (M). As A is indecomposable, we obtain that either A = N or A = K. So A is a
direct summand of M or A ⊆ Socs (M).

As each cyclic module over a local ring is a local module, we have the following.

Corollary 2.17. Let M be a module over a local ring R. If M is principally ss−lifting, then
each cyclic submodule of M is either in Socs (M) or a direct summand of M .

The following theorem is important for the indecomposition of principally ss− lifting mod-
ules.

Theorem 2.18. Let M =N⊕K, where N is simple and K has a composition series 0 ≤ A ≤ K
and semisimple, then M is principally ss−lifting.

Proof. Let B be a non-zero proper cyclic submodule of M . Without loss of generality, we can
take that B = R (n+ k), where 0 6= n ∈ N and 0 6= k ∈ K. It is obvious that B+N = N ⊕Rk
and that Rk is either A or K. Since N is simple, we have either N ≤ B or N ∩ B = 0. If
N ≤ B, then Rk = A and B = N ⊕A, where N is a direct summand of M and A ⊆ Socs (M).
By Lemma 2.13, the proof is completed. If N ∩B = 0 then B⊕N = N ⊕Rk. If Rk = K, then
B is a direct summand of M , and if Rk = A, then B ∼= A is a simple module. But M = B +K
with B � K; and hence B ∩K = 0 which yields B is a direct summand of M . Therefore M is
principally ss−lifting.

Recall from [14] that a module M is said to be regular if each cyclic submodule of M is a
direct summand of M .

Lemma 2.19. Let M be a principally ss−lifting module. Then M
Socs(M) is a regular module.
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Proof. Let Rm
Socs(M) be any cyclic submodule of M

Socs(M) . Then Rm is a cyclic submodule of M .
By the hypothesis, there is a decomposition M = M1 ⊕M2 provided that M1 ⊆ Socs (M) and
Rm ∩M2 ⊆ Socs (M2). Thus Rm ∩M2 ⊆ Socs (M) because M2 ⊆M . Then we have

M

Socs (M)
=

Rm

Socs (M)
+
M2 + Socs (M)

Socs (M)
.

Here

Rm

Socs (M)
∩ M2 + Socs (M)

Socs (M)
=

[Rm ∩ (M2 + Socs (M))]

Socs (M)

=
[(Rm ∩M2) + Socs (M)]

M
= {Socs (M)} .

Therefore M
Socs(M) is regular.

Proposition 2.20. Let M be a principally ss−lifting module. Then M =M1 ⊕M2 where M1 is
regular and M2 is a module with Socs (M) is essential in M2.

Proof. Let M1 be a submodule of M such that Socs (M) +M1 is essential in M and m ∈ M1.
By the hypothesis, there is a decomposition M = M2 ⊕ M ′2 provided that M2 ⊆ Rm and
Rm ∩M ′2 ⊆ Socs (M ′2). Thus Rm ∩M ′2 ⊆ Socs (M). Then Rm ∩M ′2 = 0. So m ∈ M2 and
Rm =M2. SinceM2∩Socs (M) = 0, there exists a submoduleX ofM such thatM2 ∼= X

Socs(M) .
By using Lemma 2.19, M2 is regular. In addition, Socs (M) = Socs (M ′2) is essential in M2,
that it is obvious by the construction of M ′2.

Example 2.21. Let K be the quotient field of a local Dedekind domain R. Consider the left
R−module K. It is clear that K is principally lifting. Since Socs (K) = 0, K is not principally
ss−lifting.

Recall from [17] that, a module M is said to be refinable if for any submodules N and
K of M with M = N + K, there is a direct summand N ′ of M provided that N ′ ⊆ N and
M = N ′ +K.

Proposition 2.22. Let M be a refinable module with Socs (M)�M . If M
Socs(M) is regular, then

M is principally ss−supplemented.

Proof. Let Rm be a cyclic submodule of M . By the hypothesis, there is a submodule A
Socs(M)

such that M
Socs(M) =

Rm+Socs(M)
Socs(M) ⊕ A

Socs(M) . Then M = Rm+A. Since

Rm+ Socs (M)

Socs (M)
∩ A

Socs (M)
=

[(Rm ∩A) + Socs (M)]

Socs (M)
= {Socs (M)} ,

Rm ∩ A ⊆ Socs (M). As M is refinable, there is a direct summand B of M with B ⊆ A and
M = Rm + B. Thus Rm ∩ B ⊆ Socs (M). Since Socs (M) � M , Rm ∩ B � M . Here
Rm ∩B � B, because B is a direct summand of M . Therefore Rm ∩B ⊆ Socs (B).

Proposition 2.23. Let M be a p−hollow module. Then M is principally ss− supplemented if
and only if principally ss−lifting.

Proof. Obvious by [8, Proposition 16] and [3, Corollary 2.4].

Before completing this section, let’s give the reverse transition of principally ss−supple-
mented and principally ss−lifting module concepts in the diagram we have given in the intro-
duction with a special condition.

Theorem 2.24. Let M be a π−projective and principally ss−supplemented module. Then M is
principally ss−lifting.

Proof. Let Rm be a cyclic submodule of M . By [8, Proposition 37], there is a submodule K
of M such that M = Rm +K, Rm ∩K ⊆ Socs (K) and a submodule N of M provided that
N ⊆ Rm, M = N +K and N ∩K ⊆ Socs (N). Hence N ∩K = 0 by [16, 41.14(2)]. Thus
M = N ⊕K. Therefore M is principally ss−lifting.
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3 Principally δss−supplemented module and lifting property

In this part, we present properties, characterizations and decompositions of principally
δss−supplemented modules and principally δss−lifting modules.

Theorem 3.1. Let M be a duo module. If M is principally δss−supplemented module, then each
direct summand of M is so.

Proof. Let M be a principally δss−supplemented duo module. Let M = N1 ⊕N2 and m ∈ N1.
By the assumption, there is a submodule K of M provided that M = Rm + K and Rm ∩
K ⊆ Socδ (K). If we take an intersection the equality M = Rm + K with N1, we have
N1 = Rm + (N1 ∩K). We have to prove that Rm ∩ (N1 ∩K) ⊆ Socδ (N1 ∩K). Since
Rm ∩ K is semisimple, Rm ∩ (N1 ∩K) is semisimple. To complete this proof, we indicate
Rm∩(N1 ∩K)�δ N1∩K. Suppose thatN1∩K = [Rm ∩ (N1 ∩K)]+A and N1∩K

A is singular.
We have K = (K ∩N1)⊕ (K ∩N2) because M is a duo module. From here, K = (N1 ∩K)⊕
(N2 ∩K) = [Rm ∩ (N1 ∩K)] +A+ (N2 ∩K). Now, K

A⊕(N2∩K) =
(N1∩K)⊕(N2∩K)

A⊕(N2∩K) = N1∩K
A is

singular. Therefore K = A⊕ (N2 ∩K). Since K = (N1 ∩K)⊕ (N2 ∩K) and A ≤ N1 ∩K, it
is implies that A = N1 ∩K. Finally, Rm ∩ (N1 ∩K)�δ N1 ∩K and so the proof ends.

Corollary 3.2. Let M be a principally δss−supplemented distributive module. Then each direct
summand of M is principally δss−supplemented.

For to show that notion of principally δss−supplemented modules is conserved in a finite
sum in a distributive module, we need the following Lemma.

Lemma 3.3. Let M be a principally δss−supplemented module and L be a submodule of M .
If each cyclic submodule Rm has a δss−supplement T with L ≤ T , then M

L is principally
δss−supplemented.

Proof. Suppose that TL be a cyclic submodule M
L . For some m ∈M , we can write T = Rm+L.

By the hypothesis and since M is principally δss−supplemented, there is a submodule N of M
provided that M = Rm + N and Rm ∩ N ⊆ Socδ (N) for any cyclic submodule Rm of M
which contains L. We consider α : M → M

L be the canonicial projection. From here, we obtain
that ML = (Rm+L)

L + N
L = T

L+ N
L and (Rm+L)

L ∩ NL = L+(N∩Rm)
L = α (Rm ∩N)�δ α (N) = N

L

by [18, Lemma 2.1]. If we consider [7, Chapter 8.1.5], we say that α (Rm ∩N) = (Rm∩B)+L
L =

Rm+L
L ∩ N

L is semisimple because Rm ∩N is semisimple. Finally, T=Rm+L
L ∩ N

L ⊆ Socδ
(
N
L

)
,

as required.

Proposition 3.4. Let M =M1⊕M2 be a module where M1 and M2 are principally δss−supple-
mented module. If M is a distributive module, then M is principally δss−supplemented.

Proof. Assume that M = M1 ⊕M2 be a distributive module and A = Rm be a submodule of
M . Taking the intersection of the equality with A, we get that Rm = (Rm ∩M1)⊕ (Rm ∩M2).
It is clear that A1 = Rm∩M1 and A2 = Rm∩M2 are cyclic submodules of M1 and M2. By the
assumption, there are submodules B1 ≤M1 such that M1 = A1 +B1, A1 ∩B1 ⊆ Socδ (B1) and
B2 ≤M2 with M2 = A2 +B2, A2 ∩B2 ⊆ Socδ (B2). From here

M = M1 +M2 = A1 +B1 +A2 +B2 = (Rm ∩M1) +B1 + (Rm ∩M2) +B2

= Rm+B1 +B2.

We will prove that
Rm ∩ (B1 +B2) ≤ (Rm ∩B1) + (Rm ∩B2) .

It is clear that (Rm ∩B1) + (Rm ∩B2) ≤ Rm ∩ (B1 +B2). On the other hand,

Rm ∩ (B1 +B2) ≤ B1 ∩ (Rm+B2) +B2 ∩ (Rm+B1)

= (B1 ∩ [(Rm ∩M1) +M2]) + (B2 ∩ [M1 + (Rm ∩M2)]) .
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Here

B1 ∩ [(Rm ∩M1) +M2] ≤ (Rm ∩M1) ∩ (B1 +M2) + (M2 ∩ (Rm ∩M1)) +B1

= Rm ∩B1.

SimilarlyB2∩[M1 + (Rm ∩M2)] ≤ Rm∩B2. It follows fromRm∩(B1 +B2) ≤ (Rm ∩B1)+
(Rm ∩B2). So, we have that Rm ∩ (B1 +B2) = (Rm ∩B1) + (Rm ∩B2). Finally, if we use
[11, Proposition 4.9], then we can say that (Rm ∩B1)+ (Rm ∩B2) ⊆ Socδ (B1 +B2) because
A1 ∩B1 ⊆ Socδ (B1) and A2 ∩B2 ⊆ Socδ (B2). Thus, M is principally δss−supplemented.

Recall that, a module M is said to be principally semisimple if each cyclic submodule
is a direct summand of M . It is clear that every semisimple module is principally semisimple.

Lemma 3.5. Let M be a principally δss−supplemented distributive module. Then M
Socδ(M) is a

principally semisimple module.

Proof. By the hypothesis, there is a submodule N of M provided that M = Rm + N and
Rm ∩ N ⊆ Socδ (N) ⊆ Socδ (M). Considering that the module M is distributive module, we
have Socδ (M) = (Rm ∩N)+Socδ (M) = (Rm+ Socδ (M))∩ (N + Socδ (M)). In addition,

M

Socδ (M)
=
Rm+ Socδ (M)

Socδ (M)
+
N + Socδ (M)

Socδ (M)
.

Therefore, M
Socδ(M) = Rm+Socδ(M)

Socδ(M) ⊕ N+Socδ(M)
Socδ(M) and so M

Socδ(M) is principally semisimple.

We investigate under which conditions their direct summand of principally δss-supplemented
modules are principally δss−supplemented modules.

Lemma 3.6. Let M = M1 ⊕ M2 be a module. Then M2 is principally δss− supplemented if
and only if for each cyclic submodule L

M1
of M

M1
, there exists a submodule N of M2 such that

M = N + L and N ∩ L ⊆ Socδ (N).

Proof. Assume that M2 be principally δss−supplemented and L
M1

be cyclic of M
M1

. Now, we
take m = m1 +m2 where m1 ∈ M1, m2 ∈ M2 and L

M1
= Rm1+M1

M1
. Then L

M1
= Rm2+M1

M1
. By

the hypothesis, there exists a submodule N of M2 such that M2 = Rm2 +N with Rm2 ∩N ⊆
Socδ (N). From here L = Rm2 +M1 and M = N + L. Otherwise

L ∩N = (Rm2 +M1) ∩N ≤ Rm2 ∩ (M1 +N) +M1 ∩ (N +Rm2)

≤ N ∩ (M1 +Rm2) +M1 ∩ (N +Rm2) .

SinceM1∩(N +Rm2) = 0, M1∩(N +Rm2) =Rm2∩(Rm1 +K). Therefore, N ∩L ≤ Rm2
and N ∩ L ⊆ Socδ (N). Conversely, suppose that L+M1

M1
be a cyclic submodule of M

M1
for a

cyclic submodule L of M2. By the assumption, there is a submodule N of M2 provided that
M = (L+M1) +N and N ∩ (L+M1) ⊆ Socδ (N). It is clear that M2 = N + L. If we show
that N ∩ (M1 + L) = L ∩ (M1 +N) = L+N , the proof is completed. Here L ∩ (M1 +N) ≤
M1 ∩ (N + L) +N ∩ (L+M1) ≤ L ∩ (M1 +N) +M1 ∩ (N + L) = L ∩ (M1 +N) because
M1 ∩ (N + L) = 0. Hence L∩ (M1 +N) = N ∩ (L+M1). It is obvious that (M1 +N)∩L =
N ∩ (M1 + L) = L ∩N . Finally, M2 is principally δss−supplemented.

Proposition 3.7. LetM =M1+M2 be a module withM1 andM2 are principally δss−supplemented
modules. Then M is principally δss−supplemented if and only if for each cyclic submodule L of
M with M = N + L for any proper submodule N of M has a δss−supplement in M .

Proof. (⇒) The proof is clear.
(⇐)By the hypothesis, for every cyclic submodule L of M with M = N + L for any proper

submodule N of M has a δss−supplement in M . Suppose that L = Rm be a cyclic submodule
of M . If M = L +Mi or L ≤ Mi, the proof is completed. Other than we can accept m =
m1 +m2 and m1, m2 are non-zero. By the assumption, there are submodules T1,T2 of M such
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that M1 = Rm1 + T1, Rm1 ∩ T1 ⊆ Socδ (T1) and M2 = Rm2 + T2, Rm2 ∩ T2 ⊆ Socδ (T2).
Rm1 + Rm2 = L+ Rm2 = L+ Rm1 and M = L+ Rm1 + T1 + T2 = L+M1 + T2. In the
same way, we have M = L+M2 +T1. Suppose that M =M1 +T2. It follows that M = T2 and
so m2 = 0 and L ≤M1. This is contradiction. Therefore M1 + T2 is a proper submodule of M .
In the same way, M2 + T1 is proper. Finally, L has a δss−supplement in M .

Recall from [4] that, a non-zero module M is said to be principally δ−hollow if every cyclic
module is δ−small in M . It is clear that every principally δss−lifting module is principally
δss−supplemented.

It is clear that principally δ−hollow module is principally δss−supplemented. The fol-
lowing lemma shows that notions of principally δss−lifting modules and principally δ−hollow
modules are the same.

Lemma 3.8. Let M be indecomposable module. If M is principally δss−lifting module, then M
is principally δ−hollow module.

Proof. Suppose that m ∈ M . By the hypothesis, there are submodules N and L of M such that
N ≤ Rm, Rm ∩ L ⊆ Socδ (L) and M = N ⊕ L. Since M is indecomposable, L = M . Hence
Rm ∩ L = Rm is δ−small in M . Thus, M is a principally δ−hollow module.

Theorem 3.9. LetM be a module with non-zero δ (M). Then the following conditions are equiv-
alent: (i) M is principally δss−supplemented.

(ii) M is principally δ−supplemented.
(iii) M is projective semisimple.

Proof. The proof is clear by [11, Theorem 3.14].

Corollary 3.10. Let M be a module with non-zero δ (M). Then the following statements are
equivalent:

(i) M is principally δss−supplemented.
(ii) M is principally δ−supplemented.
(iii) M is regular.

Recall from [9] that, M is said to have the summand intersection property (SIP ) if the
intersection of any direct summands of M is a direct summand.

Theorem 3.11. Let M be a refinable module. Then (i)⇒(ii)⇒(iii).
(i) M is principally δss−lifting.
(ii) M is principally δss−supplemented.
(iii) M is weakly principally δss−supplemented.
If M has the (SIP ), then (iii)⇒(i).

Proof. (i)⇒(ii)⇒ (iii) proofs are clear from definitions.
(iii)⇒(i) Suppose that M has the (SIP ) and let m ∈ M . Since M is weakly principally

δss−supplemented, there is a submodule N of M with M = Rm+N and Rm∩B ⊆ Socs (M).
By the assumption, there is a direct summand X1 of M provided that X1 ≤ N and M =
Rm + X1 = X ′1 ⊕ X1. Rm ∩ X1 �δ X1, since Rm ∩ N �δ M and X1 is a direct summand
of M . As M is a refinable module, there is a direct summand X2 of M such that X2 ≤ Rm and
M = X2 +X1 = X2 ⊕X ′2. We obtain that X2 ∩X1 is a direct summand of and so we can write
M = (X2 ∩X1) ⊕ T for some submodule T of M because M has the (SIP ) property. Then
X1 = (X2 ∩X1)⊕(T ∩X1) andM = X2⊕(T ∩X1). SinceRm∩(T ∩X1) ≤ Rm∩X1 ≤ X1,
Rm ∩X1 �δ X1 and T ∩X1 is a direct summand of M , we have Rm ∩ (T ∩X1)�δ T ∩X1.
Also, Rm ∩ (T ∩X1) is semisimple because Rm ∩ (T ∩X1) ⊆ Rm ∩ (T ∩N) ⊆ Rm ∩ N is
semisimple. Therefore, M is principally δss−lifting.

Theorem 3.12. Let M be a principally δ−supplemented module with δ (M) ⊆ Soc (M). Then
M is principally δss−supplemented.

Proof. The proof is clear from [11, Proposition 4.6].

Proposition 3.13. Let M be a principally δ−lifting module with δ (M) ⊆ Socδ (M). Then M is
principally δss−lifting.
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Proof. Since M is a principally δ−lifting module, we get that M = N ⊕ K with N ⊆ Rm
and Rm ∩K �δ K for each cyclic submodule Rm of M . Because of δ (M) ⊆ Socδ (M) it is
obvious that Rm ∩K ⊆ Socδ (M). So M is principally δss−lifting.

Proposition 3.14. Let M be a projective module. If M is semilocal and principally δss−supple-
mented, then M is principally ss−supplemented.

Proof. The proof can be obtained by using the similar method in [11, Proposition 5.9].

Theorem 3.15. Let M be a module with non-zero δ (M). Then the following statements are
equivalent:

(1) M is principally δss−supplemented.
(2) M is principally δ−supplemented.
(3) M is projective semisimple.

Proof. The proof can be done in a similar way in [11, Theorem 3.14].

Recall from [11] that, a module M is said to be strongly δ−local if it is δ−local and δ (M) ⊆
Soc (M). Here, M is said to be δ−local if δ (M) �δ M and δ (M) is a maximal submodule of
M .

Before completing this section, let’s see that notions of a strongly δ−local module and
principally δss−supplemented module coincide in δ−local module.

Lemma 3.16. Let M be strongly δ−local module. Then it is principally δss− supplemented.

Proof. Suppose that A = Rm be a cyclic submodule of M and A ⊆ δ (M). A is semisimple
because δ (M) is semisimple. If we consider [11, Lemma 2.2], we get that A�δ M and so M is
the δss−supplement of A in M . Assume that A " δ (M). We have the equality M = A+ δ (M)
because δ (M) is maximal. Since δ (M)�δ M , there exists a projective semisimple submodule
B of δ(M) such that M = A⊕B. Finally, M is principally δss−supplemented.

Corollary 3.17. Let M be δ−local module. Then M is principally δss−supplemented if and only
if M is strongly δ−local.

In Example 2.1, since the Z−module M is δ−local and strongly δ−local, M may not
be principally δss−supplemented by Corollary 3.17.

Example 3.18. ([11, Example 4.4.(1)]) Let S be the non-noetherian commutative ring S which

is the direct product
∞∏
i≥1

Fi, where Fi = Z2 and R be a subring of S generated by
∞⊕
i≥1

Fi and

1S . Consider the module M =R R. M is a δ−local module and strongly δ−local but not
ss−supplemented. By Corollary 3.17, M is principally δss−supplemented. Otherwise, M is not
principally ss−supplemented.
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4 Conclusion remarks

In this article, we have focused on principally ss−supplemented modules and in particular we
have related the notions of an ss−supplement submodule, a δss−supplement submodule via
cyclic and semisimple submodules. This study is an important study that contains many char-
acterizations as a possession of a strong notion of the principally supplemented module class.
In addition it is aimed to define principally δ−lifting (principally δss-supplemented) modules
as its proper generalization of the principally ss-lifting (principally ss-supplemented) modules
on the occasion of this study. Relevant properties of these modules classes have been obtained.
Especially, the class of principally ss−supplemented modules is closed under extensions under
certain conditions. We show that the notion of principally δss−supplemented modules is con-
served in a finite sum in a distributive module. We prove that the notion of principally δss−lifting
and the notion of principally δss−supplemented coincide with a refinable module. We believe
that this study may open up new research areas on the subject.
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stanta Ser. Mat., 28(3), 193-216, 2020.

[12] A.Ç. Özcan and M. Alkan, Duo modules, Glasgov Mathematical Journal, 48(3), 533-545, (2006).

[13] Y. Talebi, M. Hosseinpour and S. Khajvand Sany, Strongly FI-δ-lifting modules, Palestine Journal of
Mathematics, 4(2), 380-385, 2015.

[14] A. A. Tuganbaev, Semiregular, weakly regular and π−regular rings, J. Math. Sci., 109(3), 1509-1588,
(2002).

[15] B. Üngör, S. Halıcıoğlu and A. Harmancı, On a class of ⊕−supplemented modules, Ring Theory and Its
Applications, Contemp. Math., 609, 123-136, (2014).

[16] R.Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadel-
phia, (1991).

[17] R. Wisbauer, Modules and Algebras: Bimodule Structure on Group Actions and Algebras, Pitman Mono-
graphs and Surveys in Pure and Applied Mathematics, Longman, Harlow, (1996).

[18] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. , 7(3), 305-318,
(2000).

[19] D.X. Zhou and X.R. Zhang , Small-essential submodules and Morita duality, Southeast Asian Bull. Math.,
35(6), 1051–1062, (2011).

Author information
Figen ERYILMAZ, Ondokuz Mayıs University, Department of Mathematics Education, Samsun, Turkey.
E-mail: fyuzbasi@omu.edu.tr
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