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Abstract In the present paper, we study the connection between the commutativity of a WLC
semiring and derivations. Moreover, we establish a complete description and classification for
some of these derivations. Finally, we give an example to prove that the imposed hypotheses are
necessary.

1 Introduction

A semiring is an algebraic structure consisting of a non-empty set. S provided with two bi-
nary operations, called addition (which is associative, not necessary commutative, and usually
denoted by +) and multiplication (denoted by ·) such that the following conditions hold :

(i) (S,+) and (S, ·) are semigroups.

(ii) Multiplication distributes over addition from either side.

Recall that a semiring is said to be commutative if (S, ·) is commutative. If there exists a neutral
element 0 ∈ (S,+) (resp. e ∈ (S, ·)), it is called the zero of (S,+) (resp. the identity of (S, ·)).
Moreover, if a · 0 = 0 · a = 0 for all a ∈ S, then S is called a semiring with absorbing zero.
In other words, semirings with absorbing zero are just rings without subtraction. Nontrivial
examples of semirings first appeared in the work of Richard Dedekind [4] in 1894, in connec-
tion with the algebra of ideals of a commutative ring (one can add and multiply ideals, but one
cannot subtract them). Nevertheless, the formal definition of semirings was introduced by H. S.
Vandiver in 1934 and has since been studied by many authors. Semirings constitute a fairly nat-
ural generalization of rings and distributive lattices, with broad applications in different areas
of mathematics such as combinatorics, functional analysis, topology, graph theory, ring theory,
including partial ordered rings, optimization theory, automata theory, formal language theory,
coding theory, and the mathematical modeling of quantum physics and parallel computing sys-
tems.

The basic reference for semirings is [6]. Other valuable results on the structure of semirings
are contained in [15] and [17]. It is well known that the zero of a semiring S need not be ab-
sorbing and may even coincide with the identity of S (cf., e.g., [16]). An element a ∈ S is said
to be additively left (resp. right) cancellable if a+ b = a+ c (resp. b+ a = c+ a) yields b = c.
A semiring S is said to be additively left (resp. right) cancellative if all a ∈ S are additively
left (resp. right) cancellable in S. If S is both additively right and left cancellative, then S is
said to be additively cancellative. A nonzero element a of S is multiplicatively left cancellable if
ab = ac implies b = c. A semiring S is said to be multiplicatively left cancellative (MLC) if all
a ∈ S\{0} are multiplicatively left cancellable in S.
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A left (right) ideal of a semiring S is a non-empty subset I of S such that x + y ∈ I for all
x, y ∈ I and sx ∈ I (xs ∈ I) for all x ∈ I and s ∈ S. An ideal of a semiring S is a non-empty
subset I of S such that I is both a left and right ideal of S.
An additive mapping d : S −→ S is a derivation on S if d(xy) = d(x)y+ xd(y) for all x, y ∈ S.
The recent literature contains various results that indicate how the global structure of a ring S
is often tightly connected to the behavior of additive mappings defined on S. Recently, many au-
thors have studied commutativity in prime and semiprime rings, admitting suitably constrained
derivations acting on appropriate subsets of the rings (see, for example,[8, 10, 11, 12, 13]. More-
over, several authors have proved comparable results on semirings (see, for example,[1, 4, 7]
for details).

Recently, in [5], D. Filippis et al. defined a new class of semirings called weakly left can-
cellative (WLC) semirings, and they studied the connection between the commutativity of this
class of semirings and derivations. In particular, they proved that, if S is a WLC semiring, I is
a nonzero ideal of S, and d is a derivation of S such that d(xy) = d(yx) for all x, y ∈ I , or
d(xy) + yx = d(yx) + xy for all x, y ∈ I , or d(x)x = xd(x) for all x ∈ I , then S is commu-
tative. Motivated by the previous results, in the present paper, we continue this line by studying
the commutativity of a WLC semiring, provided with a derivation d satisfying certain algebraic
properties on an ideal of S. Moreover, we will give a complete description and classification of
some of these derivations.

2 The results

Throughout this paper, semiring means additively cancellative semiring. We will denote
Z(S) = {z ∈ S : zx = xz, for all x ∈ S} the center of S, and x ◦ y = xy + yx, the Jordan
product of x, y ∈ S. We begin our discussions with the following definition:

Definition 2.1. ([5], Definition 1) A semiring S is said to be weakly left cancellative (WLC) if
axb = axc for all x ∈ S implies either a = 0 or b = c.

Any left cancellative semiring is WLC, but the converse does not hold in general.

Example 2.2. ([5], Example 1) Let S =

{(
x y

z u

)
|x, y, z, u ∈ N

}
where N is the set of pos-

itive integers. It is straightforward to check that S is not a left cancellative semiring. Moreover, if
M,N,N ′ ∈ S, where M ̸= 0, then the relation MAN = MAN ′ for all A ∈ S forces N = N ′

and therefore S is a WLC semiring.

Let S be a WLC semiring and I be an ideal of S. We leave the proofs of the following easy
facts to the reader.

Fact 1 : If axb = axc for all x ∈ I, then a = 0 or b = c.

Fact 2 : If I is commutative, then S is commutative. In particular, if xy = yx for all y ∈ I then
x ∈ Z(S).

Fact 3 : If S admits a derivation d such that d(I) = (0), then d = 0.

The first important finding of this study is the following lemma:

Lemma 2.3. Let S be a 2-torsion-free WLC semiring, and let I be a nonzero ideal of S. If S
admits a derivation d such that d2(x) = 0, for all x ∈ I , then d = 0.

Proof. Assume that d2(x) = 0 for all x ∈ I . Replacing x by xy, we get d2(xy) = 0 =
d2(x)y+ 2d(x)d(y) + xd2(y), for all x, y ∈ I . But d2(x) = 0 = d2(y) by the hypothesis. Hence
2d(x)d(y) = 0, for all x, y ∈ I . Since S is 2-torsion-free, we find that d(x)d(y) = 0. Now,
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replacing y by yz, we get d(x)yd(z) = 0, for all x, y, z ∈ I . In particular, for all z1, z2 ∈ I ,
d(x)yd(z1) = d(x)yd(z2). Since S is WLC, it follows that d(x) = 0 or d(z1) = d(z2), for all
x, z1, z2 ∈ I . First, we suppose that d(z1) = d(z2), thus, d(z1 + z2) = d(z2) implies d(z1) = 0
for all z1 ∈ I . Hence, in both cases, we find d(x) = 0 for all x ∈ I , and by Fact 3, we conclude
that d = 0.

Proposition 2.4. Let d be an arbitrary additive mapping of S. Then we have d(xy) = d(x)y +
xd(y) for all x, y ∈ S if and only if d(xy) = xd(y) + d(x)y for all x, y ∈ S. Therefore, d is a
derivation if and only if d(xy) = xd(y) + d(x)y.

Proof. Suppose d(xy) = d(x)y + xd(y) for all x, y ∈ N. Since x(y + y) = xy + xy, we can see
that

d(x(y + y)) = d(x)(y + y) + xd(y + y) = d(x)y + d(x)y + xd(y) + xd(y)

and
d(xy + xy) = d(xy) + d(xy) = d(x)y + xd(y) + d(x)y + xd(y).

So d(x)y + xd(y) = xd(y) + d(x)y , we conclude that d(xy) = xd(y) + d(x)y.
The converse is proved in a similar way.

Theorem 2.5. Let S be a 2-torsion-free WLC semiring and I a nonzero ideal of S. If S admits a
nonzero derivation d such that d(x)d(y) = d(y)d(x) for all x, y ∈ I , then S is commutative.

Proof. Assume that
d(x)d(y) = d(y)d(x) for all x, y ∈ I. (2.1)

Replacing y by yx, we get

d(x)yd(x) + d(y)d(x)x = yd(x)d(x) + d(y)xd(x) for all x, y ∈ I. (2.2)

Substituting y by ry in (2.2), where r ∈ S, we get

d(x)ryd(x) + rd(y)d(x)x+ d(r)yd(x)x = ryd(x)d(x) + rd(y)xd(x) + d(r)yxd(x) (2.3)

Replacing r by d(z) in (2.3), where z ∈ I , we find that

d(x)d(z)yd(x)+d(z)d(y)d(x)x+d2(z)yd(x)x = d(z)yd(x)d(x)+d(z)d(y)xd(x)+d2(z)yxd(x)
(2.4)

Left multiplying (2.2) by d(z) and comparing the result with equation (2.4), we get

d(x)d(z)yd(x)+d(z)d(y)d(x)x+d2(z)yd(x)x = d(z)d(x)yd(x)+d(z)d(y)d(x)x+d2(z)yxd(x)

Hence
d2(z)yd(x)x = d2(z)yxd(x) for all x, y ∈ I. (2.5)

Since S is WLC, then equation (2.5) together with Fact 1, yield that

d2(z) = 0 for all z ∈ I or d(x)x = xd(x) for all x ∈ I.

In view of Lemma 2.3, we conclude that d(x)x = xd(x) for all x ∈ I . Thus, by ([5], Theorem
3), S is commutative.

We would like to recall that any prime ring R is trivially a WLC zero absorbing semiring. As
a consequence of Theorem 2.5 we have:

Corollary 2.6. ([2], Theorem 3) Let R be a prime ring. If R admits a nonzero derivation d such
that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative.

Theorem 2.7. Let S be a WLC semiring and I a nonzero ideal of S. If S admits a nonzero
derivation d such that d(x)d(y) + xy = d(y)d(x) + yx for all x, y ∈ I , then S is commutative.



weakly left cancellative semirings 189

Proof. We are given that

d(x)d(y) + xy = d(y)d(x) + yx for all x, y ∈ I. (2.6)

Replacing y by yx in the last equation, we get

d(x)yd(x) + d(x)d(y)x+ xyx = yd(x)d(x) + d(y)xd(x) + yx2 for all x, y ∈ I. (2.7)

Right multiplying (2.6) by x and comparing the result with (2.7), we get

d(x)yd(x) + d(y)d(x)x = yd(x)d(x) + d(y)xd(x) for all x, y ∈ I. (2.8)

Writing ry instead of y in (2.8), where r ∈ S, we get

d(x)ryd(x) + rd(y)d(x)x+ d(r)yd(x)x = ryd(x)d(x) + rd(y)xd(x) + d(r)yxd(x) (2.9)

Taking now r = d(x) in (2.9), we find that

d(x)d(x)yd(x)+d(x)d(y)d(x)x+d2(x)yd(x)x = d(x)yd(x)d(x)+d(x)d(y)xd(x)+d2(x)yxd(x)
(2.10)

Left multiplying (2.8) by d(x) and comparing the result with equation (2.10), we get

d(x)d(x)yd(x)+d(x)d(y)d(x)x+d2(x)yd(x)x = d(x)d(x)yd(x)+d(x)d(y)d(x)x+d2(x)yxd(x)
(2.11)

Hence
d2(x)yd(x)x = d2(x)yxd(x) for all x, y ∈ I. (2.12)

Since S is WLC, then equation (2.12) together with Fact 1, yield that

d2(x) = 0 or d(x)x = xd(x) for all x ∈ I.

Let u ∈ I such that d2(u) = 0. By equation (2.6), we have

d(x)d(u) + xu = d(u)d(x) + ux for all x ∈ I. (2.13)

Substituting xd(u) for x in equation (2.13), we get

d(x)d(u)d(u) + xd(u)u = d(u)d(x)d(u) + uxd(u) for all x ∈ I. (2.14)

Right multiplying equation (2.13) by d(u) and comparing it with equation (2.14), we find that

xd(u)u = xud(u) for all x ∈ I. (2.15)

Substituting xz for x in (2.15), we get

xzd(u)u = xzud(u) for all x, z ∈ I. (2.16)

Since S is WLC and I ̸= {0}, then equation (2.16) together with Fact 1, yield that d(u)u =
ud(u). Thus, in both cases, we find that xd(x) = d(x)x for all x ∈ I , and by ([5], Theorem 3) S
is commutative.

The following is a result of Theorem 2.7:

Corollary 2.8. ([3], Theorem 1) Let R be a prime ring and K be an ideal of R. If R admits a
nonzero derivation d such that either [d(x), d(y)] = [x, y] for all x, y ∈ K or
[d(x), d(y)] = −[x, y] for all x, y ∈ K, then R is commutative.

Theorem 2.9. Let S be a 2-torsion-free WRC semiring, and let I be a nonzero ideal of S. If S
admits a derivation d such that d(x) ◦ d(y) = 0 for all x, y ∈ I, then d = 0.
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Proof. Assume that there exists a nonzero derivation d satisfying

d(x)d(y) + d(y)d(x) = 0 for all x, y ∈ I. (2.17)

Substituting yu for y in equation (2.17), we get

d(x)d(y)u+ d(x)yd(u) + yd(u)d(x) + d(y)ud(x) = 0 for all x, y, u ∈ I. (2.18)

Right multiplying equation (2.17) by u and comparing it with (2.18), we get

d(x)yd(u) + yd(u)d(x) + d(y)ud(x) = d(y)d(x)u for all x, y, u ∈ I. (2.19)

Substituting ry for y in (2.19), where r ∈ S, we obtain

d(x)ryd(u) + ryd(u)d(x) + rd(y)ud(x) + d(r)yud(x) = rd(y)d(x)u+ d(r)yd(x)u (2.20)

Writing d(x) instead of r in (2.20), we arrive at

d(x)d(x)yd(u)+d(x)yd(u)d(x)+d(x)d(y)ud(x)+d2(x)yud(x) = d(x)d(y)d(x)u+d2(x)yd(x)u
(2.21)

Left multiplying equation (2.20) by d(x) and comparing the result with (2.21), then it follows
that

d2(x)yud(x) = d2(x)yd(x)u for all x, y, u ∈ I. (2.22)

Since S is WLC, then equation (2.22) together with Fact 1, yield that

d2(x) = 0 or d(x)u = ud(x) for all x, u ∈ I.

Let x0 ∈ I such that d(x0)u = ud(x0) for all u ∈ I . In view of Fact 2, we can see that
d(x0) ∈ Z(S). Replacing x by x0 in (2.17) and in light of 2-torsion freeness, we get

d(x0)d(y) = 0 for all y ∈ I. (2.23)

Replacing y by yx0 in (2.23), we obtain

d(x0)yd(x0) = 0 for all y ∈ I. (2.24)

This implies that d(x0) = 0, so d2(x0) = 0. Thus d2(x) = 0 for all x ∈ I , and Lemma 2.3 forces
that d = 0, which contradicts our supposition. Thus, we conclude that d = 0.

Theorem 2.10. Let S be a 2-torsion-free WLC semiring and I be a nonzero ideal of S. Then
there exists no derivation d such that either d(x) ◦ d(y) = x ◦ y for all x, y ∈ I.

Proof. Assume there exists a derivation d such that

d(x)d(y) + d(y)d(x) = xy + yx for all x, y ∈ I. (2.25)

Replacing y by yx in (2.25), we get

d(x)d(y)x+ d(x)yd(x) + yd(x)d(x) + d(y)xd(x) = xyx+ yx2 for all x, y ∈ I. (2.26)

Right multiplying equation (2.25) by x and comparing with equation (2.26), we find

d(x)yd(x) + yd(x)d(x) + d(y)xd(x) = d(y)d(x)x for all x, y ∈ I. (2.27)

Substituting d(x)y for y in (2.27), we get

d(x)d(x)yd(x)+d(x)yd(x)d(x)+d(x)d(y)xd(x)+d2(x)yxd(x) = d(x)d(y)d(x)x+d2(x)yd(x)x
(2.28)

Left multiplying equation (2.27) and comparing with equation (2.28), we obtain

d2(x)yxd(x) = d2(x)yd(x)x for all x, y ∈ I. (2.29)
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In view of Fact 1, equation (2.29) implies that

d2(x) = 0 or d(x)x = xd(x) for all x ∈ I. (2.30)

Let u ∈ I such that d2(u) = 0, we have

d(x)d(u) + d(u)d(x) = xu+ ux for all x ∈ I. (2.31)

Substituting xd(u) for x in equation (2.31), we get

d(x)d(u)d(u) + d(u)d(x)d(u) = xd(u)u+ uxd(u) for all x ∈ I. (2.32)

Right multiplying equation (2.31) by d(u) and comparing the result with equation (2.32), we
find that

xud(u) = xd(u)u for all x ∈ I. (2.33)

Substituting xz for x in (2.33), we get

xzd(u)u = xzud(u) for all x, z ∈ I. (2.34)

Since S is WLC and I ̸= {0}, using equation (2.34) and Fact 1, we get d(u)u = ud(u). Thus,
in both cases, we find xd(x) = d(x)x for all x ∈ I , and by ([5], Theorem 3) S is commutative.
Consequently, and in light of 2-torsion freeness, our hypothesis forces

d(x)d(y) = xy for all x, y ∈ I. (2.35)

Replacing y by yz in (2.35) we get d(x)yd(z) = 0 for all y, z ∈ I , so d(x) = 0 for all x ∈ I , and
by Fact 3 we conclude that d = 0, therefore equation (2.21) becomes xy = 0 for all x, y ∈ I .
Thus, I = {0}, a contradiction. This completes the proof of our result.

Remark 2.11. We can prove that, under the same hypothesis as in Theorem 2.10, there exists no
derivation d such that either d(x) ◦ d(y) + x ◦ y for all x, y ∈ I.

As an application of Theorem 2.10, the following corollary generalizes Proposition 1 in [9].

Corollary 2.12. ([9], Proposition 1) Let R be a 2-torsion free prime ring and I be a nonzero
ideal of R. Then there exists no derivation d such that either d(x) ◦ d(y) = x ◦ y for all x, y ∈ I
or d(x) ◦ d(y) + (x ◦ y) = 0 for all x, y ∈ I .

3 Examples

In this part, we go over a few illustrations that demonstrate how, in some circumstances, our find-
ings do not hold. We start by demonstrating through the following instances that the condition
"weakly left cancellative hypothesis" is required.

Example 3.1. Let S =


 0 a b

0 0 c

0 0 0

 |a, b, c ∈ N

 , where N is the set of positive integers.

If we define the map d on the set S given by

d


 0 a b

0 0 c

0 0 0


 =

 0 0 c

0 0 0
0 0 0

, therefore, it is simple to verify that S is not a WLC-

semiring and d is a nonzero derivation of S which satisfies the conditions of Theorem 2.5, The-
orem 2.7 and Theorem 2.9 . However, S is noncommutative, hence the weakly left cancellative
hypothesis is crucial.

In the following illustration, we show that the "primeness hypothesis" of R in Corollary 2.6
and Corollary 2.8 is not a purely theoretical construct.
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Example 3.2. Let us consider R =

{(
a b

c d

)
| a, b, c, d ∈ Z

}
,

d

(
a b

c d

)
=

(
0 −b

c 0

)
a derivation of R, and C be the field of complex numbers. If we

set R1 = R × C, then R1 is a semi-prime ring. Consider the derivation D : R1 → R1 defined as
D(x, s) = (d(x), 0). Furthermore D satisfies the conditions of Corollary 2.6 and Corollary 2.8,
but R1 is not commutative. Consequently, the hypothesis of primeness is required.

4 Conclusion

In this study, we have investigated the relationship between derivations and the commutativity of
a WLC semiring. We also provide a thorough description and categorization for a few of these
derivations. The study ends with the following intriguing unsolved issues.

Problem 1 : Let S be a 2-torsion-free WLC semiring and I a nonzero ideal of S. If S admits
derivations d1 and d2 such that d1(x)d2(y) = d2(y)d1(x) for all x, y ∈ I , then what can we
conclude about the structures of S, d1 and d2 ?

Problem 2 : Let S be a 2-torsion-free WLC semiring and I a nonzero ideal of S. If S admits
derivations d1 and d2 such that d1(x)d2(y) + xy = d2(y)d1(x) + yx for all x, y ∈ I , then what
can we conclude about the structures of S, d1 and d2?

Problem 3 : Let S be a 2-torsion-free WLC semiring and I a nonzero ideal of S. If S admits
derivations d1 and d2 such that d1(x) ◦ d2(y) = 0 for all x, y ∈ I , then what can we conclude
about the structures of S, d1 and d2?
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