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Abstract We show the power of Bruno Buchberger’s seminal Gröbner Basis algorithm, inter-
faced, seamlessly, with what we call symbolic dynamical programming, to automatically gener-
ate algebraic equations satisfied by the generating functions enumerating so-called Generalized
Dyck Walks, i.e. 2D walks that start and end on the x-axis, and never dip below it, for an ar-
bitrary set of steps. More impressively, we combine it with calculus (that Maple knows very
well!), to automatically compute generating functions for the sum-of-the-areas of these gener-
alized Dyck paths, and even for the sum of any given power of the areas, enabling us to get
statistical information about the area under a random generalized Dyck path.

Maple package and Output Files

This article is accompanied by a Maple package, GDW.txt, and numerous output files, some of
which will be referred to later.

They are all obtainable from the front of this article
https://sites.math.rutgers.edu/�zeilberg/mamarim/mamarimhtml/area.html .

1 Bruno Buchberger: the Gauss of Non-Linear Algebra

Using Gaussian elimination, we can solve, efficiently, any system of linear equations with any
(finite) number of unknowns. Using the Buchberger algorithm [4] [5] (see the modern classic
[7] for a lucid and engaging account) we can solve any system of non-linear equations with any
(finite) number of unknowns. Alas, due to the non-linearity, we can only go so far, but yet, with
modern computers, and computer algebra systems (our favorite being Maple), one can do a lot.

In the applications that we need, the scenario is that we have N quantities X1, . . . , XN and
they satisfy N polynomial equations

Pi(t;X1, . . . , Xn) = 0 , 1 ≤ i ≤ N ,

where t is variable (or multi-variable), that may be viewed as a parameter. We are really only
interested in the first quantity, X1 = X1(t).

In our application, these equations are derived using combinatorial considerations, that we
can teach to the computer. There is our primary object, X1, that we really care about, but in
order to determine it, we need to introduce secondary objects, X2, . . . , Xn, that we don’t care
about, and whose sole raison d’être is that they enable us to get a grip on X1.

All we want is a succinct algebraic relation of the form Q(X1, t) = 0, where Q is a bi-variate
polynomial of X1 and t.

In order to eliminate the unwanted quantities X2, . . . , Xn, and get a pure equation only in-
volving X1 (and the auxiliary variable (or variables), t), the command in Maple is:

Groebner[Basis]({P1, P2, . . . , Pn}, plex(X2, X3, . . . , Xn, X1))[1]; .

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/area.html
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To take a random example (we just made up), suppose that we have the system of three
equations in the three unknowns X,Y, Z that depend on some auxiliary variable t:

X = Y 2 + Z2 + 1 , Y = X2 + 3Z2 + t , Z = XY Z + t+ 1 ,

and we want to eliminate Y and Z, i.e. get an algebraic equation in X = X(t) that only involves,
in addition to X , the variable t. Then type in a Maple session

Groebner[Basis]({X-Yˆ2-Zˆ2-1,Y-Xˆ2-3*Zˆ2-t, Z-X*Y*Z-t-1},plex(Y,Z,X))[1]=0;
getting that our quantity of interest X = X(t), satisfies the following degree-12 polynomial
equation in X(t) (abbreviated X), with coefficients that are polynomials of t:

X12 + 6X11 + (4t+ 3)X10 + (18t− 21)X9 +
(
6t2 − 8

)
X8 +

(
18t2 − 44t− 9

)
X7

+
(
4t3 + 9t2 + 20t+ 60

)
X6+

(
6t3 + 29t2 + 96t+ 43

)
X5+

(
t4 + 30t3 + 16t2 − 14t− 24

)
X4

+
(
52t3 + 177t2 + 232t+ 50

)
X3 +

(
18t4 − 12t3 + 89t2 + 242t+ 149

)
X2

+
(
54t3 + 12t2 − 150t− 105

)
X + 81t4 + 378t3 + 612t2 + 396t+ 99 = 0 .

2 The Art of Counting in General

In enumerative combinatorics, we are interested in counting families of sets {A(n)}, defined
by some combinatorial conditions, indexed by (one or more) discrete parameter(s) n. The best
possible scenario is an explicit (aka closed form) expression for a(n) := |A(n)|, where as usual
|S| denotes the number of elements of the finite set S.

For example, the number of words in the alphabet {0, 1} of length n (Ans.: 2n), or the number
of permutations of length n (Ans.: n!).

Alas, in many cases there is no closed form (unless you consider
∑

s∈A(n) 1 as one), and
one looks for a closed-form, or failing this, an equation, satisfied by the (ordinary) generating
function

X(t) =
∞∑
n=0

a(n)tn .

In many applications, including all those in the present paper, it is better to think of X(t) as
a weight enumerator of the (usually) ‘infinite’ set

A :=
∞⋃
n=0

A(n) ,

and define, Weight(s) := tn if s ∈ A(n). The generating function, X(t), is the total weight
(i.e. sum of all the weights of its members) of A, denoted by Weight(A).

3 Reminders about Counting Classical Dyck and Motzkin Walks

In order to illustrate our general approach, already initiated in [2], and further pursued in [16],
[9], and [10], let’s revisit the very classical problem of counting (ungeneralized) Dyck walks.
These are walks that start at the origin (0, 0), end somewhere on the x-axis, using the atomic
steps [1, 1], [1,−1] (i.e. moving from (x, y) to either (x+1, y+1) or (x+1, y−1), respectively)
and crucially, always stay in the upper-half plane y ≥ 0.

The weight of a walk w is tNumberOfSteps(w), in other words tn, if the endpoint of our walk
is (n, 0).

Let f [0, 0](t) be our object of desire, the weight-enumerator of all Dyck walks. There are
two possibilities.

• The walk is empty (of length 0), with weight t0 = 1.
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• The walk, let’s call it w, sooner of later, again touches the x-axis. Let w1 be the prefix of
w consisting of this portion and let w2 be the rest, so we can express w as the catenation
w = w1 w2, where w2 is a (possibly empty) shorter walk weight-counted by f [0, 0](t),
but w1 is a strict Dyck path, a walk that starts and ends on the x-axis, and except at the
endpoints, is strictly above the x-axis. Let’s call the weight-enumerator of these kind of
walks g[0, 0](t).

Taking weights, we get a first equation

f [0, 0](t) = 1 + g[0, 0](t) · f [0, 0](t) .

Note that we were forced to introduce the quantity g[0, 0](t).
Let’s look at the anatomy of such a walk that is weight-enumerated by g[0, 0](t). Since it is

non-empty, and can’t get below the x-axis, it must start with the step [1, 1], i.e. the first step is
from the origin (0, 0) to (1, 1). Since sooner or later it must return to the x-axis, its last step must
be a down step [1,−1], from (n− 1, 1) to (n, 0) (say). Removing this first and last step is a walk
that is shorter by two steps that is weakly above the line y = 1. But these walks are in obvious
bijection with walks weight-counted by f [0, 0](t). Hence we get a second equation

g[0, 0](t) = t2 · f [0, 0](t) .

So we get a system of two equations and two unknowns.
In this case, we don’t need a computer, or Bruno Buchberger, to solve this system, and

eliminating g[0, 0](t) gives the quadratic equation for f [0, 0](t) (let’s abbreviate it to f [0, 0])

t2 f [0, 0]2 − f [0, 0] + 1 = 0 ,

that thanks to the Babylonians can be solved in terms of radicals, yielding the Catalan numbers.
Similarly, for Motzkin walks, where the set of steps is {[1, 1], [1, 0], [1,−1]}, we still only

have one extra quantity g[0, 0](t), and the two equations are

{f [0, 0] = 1 + tf [0, 0] + g[0, 0] · f [0, 0] , g[0, 0] = t2 · f [0, 0]} ,

that again lead to a simple quadratic equation, whose solution is the generating function for
Motzkin numbers.

The primary novelty of the present article is to keep track of the area statistics. Let f [0, 0](t, q),
that we will still call f [0, 0](t) for short (not to be confused with the previous f [0, 0](t)), but it
is implied that there is also a variable q, that may be viewed as a parameter, be the weight-
enumerator of Dyck walks according to the bi-variate weight

Weight(w) := tLengthOf(w) qAreaUnder(w) .

One way to define the ‘area’ without geometry is as the sum of the y-coordinates of all the
intermediate points on the walk.

Going back to the classical Dyck case, instead of a system of algebraic equations, we get a
system of functional equations. It is easy to see that we have .

{f [0, 0](t) = 1 + g[0, 0](t) · f [0, 0](t) , g[0, 0](t) = qt2 · f [0, 0](qt)} .

Of course one can eliminate g[0, 0](t) and get a pure functional equation for f [0, 0](t) (let’s call
it X(t)).

X(t) = 1 + qt2 ·X(t) ·X(qt) .

Alas f [0, 0](t) = X(t) is no longer an algebraic formal power series.
The study of the area under Dyck paths was pioneered in [13] and further explored in

[17],[15], and for higher moments by Robin Chapman [6]. We will soon see how to fully au-
tomate this to a much more general setting. In particular, our Maple package, GDW.txt, can
confirm, in a few nano-seconds, all their beautiful human-generated results.

Similarly, for the Motzkin case, the system of functional equations is:

{f [0, 0](t) = 1 + t · f [0, 0](t) + g[0, 0](t) · f [0, 0](t) , g[0, 0](t) = qt2 · f [0, 0](qt)} ,
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and the pure functional equation for f [0, 0](t) (again let’s call it X(t)) is:

X(t) = 1 + t ·X(t) + qt2 ·X(t) ·X(qt) .

The bi-variate generating function contains lots of statistical information. To get the average
area under a random Dyck walk, we must first compute the generating function for the ‘sum of
the areas of all walks’ that is given by

d

dq
f [0, 0](t)

∣∣
q=1 ,

(recall that f [0, 0](t) is really a function of both t and q). More generally, the generating function
for the sum of the r-th powers of the areas, is(

q
d

dq

)r

f [0, 0](t)
∣∣
q=1 .

If you are interested in these quantities up to the r-th power of the area, we can Taylor expand
f [0, 0](t) (and similarly g[0, 0](t)) as a Taylor expansion about q = 1:

f [0, 0](t) = f [0, 0, 0](t)+f [0, 0, 1](t)(q−1)+f [0, 0, 2](t)(q−1)2+· · ·+f [0, 0, r](t)(q−1)r+. . .

where f [0, 0, 0](t), f [0, 0, 1](t), . . . are formal power series of t alone, and do not depend on q.
(Note that what we now call f [0, 0, 0](t) is identical to what we called f [0, 0](t) in the original,
straight-enumeration case).

It would follow from the algorithm to be described shortly, that these are all algebraic formal
power series, and thanks to the Buchberger Gröbner basis algorithm, we can actually find the
pure equations that they each satisfy.

Plugging this series expansion into the functional equation, would introduce quantities like
f [0, 0, 0](qt).

For this we need an elementary lemma from Calculus:

Lemma 3.1. Let f(t) be a formal power series of a single variable t, and q be another variable,
then

f(qt) = f(t) + (q − 1)tf ′(t) +
1
2
(q − 1)2t2f ′′(t) + · · ·+ 1

r!
(q − 1)rtrf (r)(t) + . . . .

So we can Taylor-expand it with respect to q around q = 1, and thanks to Calculus, that Maple
knows so well, automatically express it in terms of f [0, 0, 0]′(t), f [0, 0, 1]′(t) . . . . It seems that
we have too many quantities, and that we need more equations. But we can also (automatically!)
differentiate with respect to t the algebraic equation satisfied by f [0, 0, 0](t), (and if needed, by
f [0, 0, 1](t) etc.) using implicit differentiation (that Maple also knows!), and collect terms, and at
the end of the day we would have as many algebraic equations as quantities. If we want to focus,
say, on f [0, 0, 1](t) (alias ( ∂

∂q )f [0, 0](t)
∣∣
q=1, alias the generating function for the ‘sum of areas’

of the walks), we can use Buchberger’s algorithm as above with plex, singling out f [0, 0, 1](t).
Ditto for higher (factorial) moments, i.e. f [0, 0, 2](t), f [0, 0, 3](t), . . . except that things do get
more and more complicated, even for computerkind.

4 Straight Enumeration of Generalized Dyck Paths

Let’s recall the method initiated in [2], extended in [9] and [10], and continued in [16], but
with a new implementation, that makes full use of Gröbner bases. Alternative approaches to
the problem of (straight) enumeration have been undertaken by Banderier et. al. [3], using the
kernel method, and in [11], using “Guess and Check”.

The input is an arbitrary set of integers, S, and our goal is to find a pure algebraic equation
of the form

d∑
i=0

pi(t)X(t)i = 0,
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where pi(t) are polynomials in t for the following formal power series

X(t) =
∞∑
n=0

aS(n) t
n ,

where aS(n) is the number of walks from (0, 0) to (n, 0), in the 2D lattice, with the set of
allowable steps

(x, y) → (x+ 1, y + s) , s ∈ S ,

and that always stay in the upper half plane y ≥ 0. Equivalently, and more useful for us, it is
the weight enumerator, according to the weight tNumberOfSteps, of the (infinite) set of all these
walks.

Remark. If you don’t insist on always staying above the x-axis, then the number of such n-step
walks from the origin to the x-axis, is the constant term of(∑

s∈S

ts

)n

,

and it is possible, very fast, to use the Almkvist-Zeilberger algorithm [1] (see [8] for a great
exposition) to get a linear recurrence equation with polynomial coefficients.

Note that if S only consists of positive integers, or only consists of negative integers, then
X(t) is trivially 1. So for things to be non-trivial, S must have at least one positive member and
at least one negative member.

We will rename X(t), f [0, 0](t), since we need to introduce auxiliary quantities f [a, b](t) and
g[a, b](t).

For integer a ≥ 0 and b ≥ 0,

• Let f [a, b](t) be the weight-enumerator of walks with a set of steps given by S, that start at
the point (0, a) and end on the horizontal line y = b and stay weakly above the x-axis.

• Let g[a, b](t) be the weight-enumerator of non-empty walks with a set of steps given by S,
that start at the point (0, a) and end on the horizontal line y = b and stay strictly above the
x-axis, except at an endpoint when a = 0 or b = 0. If both a > 0 and b > 0 then we have
no need for it, and we declare that it is 0.

For each f [a, b](t) and g[a, b](t) that will show up we would need to set its own equation.

How to form the Equations for the f [a, b]
• If a > 0 and b > 0 then

f [a, b] = g[a, 0] · f [0, b] + f [a− 1, b− 1] .

Explanation: If such a walk, that starts at y = a and ends at y = b, touches the x-axis,
then the first portion until that first encounter is a walk weight-counted by g[a, 0], while the
second part is a walk weight-counted by f [0, b] (it starts at y = 0, ends at y = b and stays
weakly above the x-axis). On the other hand, if it never touches the x-axis it must stay in
y ≥ 1, so lowering it by 1 unit, yields a walk weight-counted by f [a− 1, b− 1].

• If a > 0 and b = 0 then
f [a, 0] = g[a, 0] · f [0, 0] .

Explanation: A walk that starts at (0, a) and ends on y = 0, must meet the x-axis for the
first time, this initial portion is weight-counted by g[a, 0], the remaining portion of the walk
is weight-counted by f [0, 0].

• Similarly, if a = 0 and b > 0 then

f [0, b] = f [0, 0] · g[0, b] .
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• If a = 0 and b = 0 and 0 ̸∈ S

f [0, 0] = 1 + g[0, 0] · f [0, 0] .

Explanation: A walk that starts and ends on y = 0 may be the empty walk (weight=1).
If not, it can be broken up into the portion until the first encounter with the x axis, that is
weight-counted by g[0, 0], followed by any-old (shorter) walk weight-counted by f [0, 0].

• If a = 0 and b = 0 and 0 ∈ S

f [0, 0] = 1 + t · f [0, 0] + g[0, 0] · f [0, 0] .

Explanation: Now the first step could also be (0, 0) → (1, 0), and after that it is a typical
walk weight-counted by f [0, 0].

This is implemented in procedure MakeEqF(f,g,x,a,b,S) in our Maple package. In fact, it is
more general, keeping track of the individual steps.

How to form the Equations for the g[a, b]

We also need to set up equations for g[a, b] for those (a, b) that would be needed. Let P be
the subset of S consisting of the (strictly) positive members of S, and let N be the subset of S
consisting of the (strictly) negative members of S, so if 0 ∈ S then

S = P ∪N ∪ {0} ,

while, if 0 ̸∈ S then
S = P ∪N .

• If a = 0 and b > 0 then

g[0, b] = t

(∑
i∈P

f [a+ i− 1, b− 1]

)
.

Explanation: Such a walk must start with a step of the form [1, i] where i ∈ P , and then
it is always in y ≥ 1. Removing that first step (weight t) and ‘lowering’ it by 1 unit, is in
bijection with a walk weight-counted by f [a+ i− 1, b− 1].

• If a > 0 and b = 0 then

g[a, 0] = t

∑
j∈N

f [a− 1, b− j − 1]

 .

Explanation: Such a walk must end with a step of the form [1, j] where j ∈ N , and before
that it is always in y ≥ 1. Removing that last step (weight t) and ‘lowering’ it by 1 unit, is
in bijection with a walk weight-counted by f [a− 1, b− j − 1].

• If a = 0 and b = 0 then

g[0, 0] = t2

∑
i∈P

∑
j∈N

f [a+ i− 1, b− j − 1]

 .

Explanation: Every non-empty walk that starts at y = 0 and ends at y = 0 and that never
touches the x-axis except at the two endpoints, must start with a positive step [1, i] and end
with a negative step [1, j]. Deleting the first and last steps gives you a shorter walk (with
two steps shorter) that is always in the region y ≥ 1. Lowering the remaining walk by 1
unit gives a walk weight-counted by f [a+ i− 1, b− j − 1].
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This is implemented in procedure MakeEqG(f,g,x,a,b,S) in our Maple package. Again, it is
more general keeping track of the individual steps.

To get the full system of equations with a set of steps S, type:

MakeSysT(f, g, t, S);

It returns the set of equations, followed by the set of quantities that participate. For example

MakeSysT(f, g, t, {1, 2,−1,−2})[1];

gives

{f00 = f00g00 + 1 , f01 = f00g01 , f10 = g10f00 , f11 = f01g10 + f00,

g00 = t2f00 + t2f01 + t2f10 + t2f11 , g01 = tf00 + tf10 , g10 = tf00 + tf01} ,

while
MakeSysT(f, g, t, {1, 2,−1,−2})[2];

gives the set of quantities

{f00 , f01 , f10 , f11 , g00 , g01 , g10} .

5 Weighted Enumeration of Generalized Dyck Paths According to the Area

We can teach Maple how, all by itself, set up a system of functional equations, for the q-analog,
where one keeps track of the area. Everything is analogous.

For integer a ≥ 0 and b ≥ 0,

• Let f [a, b](t) be the weight-enumerator of walks with a set of steps given by S, that start
at the point (0, a) and end on the horizontal line y = b and stay weakly above the x-axis,
but now the weight of a walk is not just tlength but rather tlength · qAreaUnder. For the sake
of notational convenience, We still write f [a, b](t) rather than f [a, b](t, q), but one should
keep in mind that they all depend on q. We can think of q as a parameter.

• Similarly, let g[a, b](t) be the weight-enumerator (in the above sense of tlength ·qAreaUnder)
of non-empty walks with a set of steps given by S, that start at the point (0, a) and end
on the horizontal line y = b and stay strictly above the x-axis, except at an endpoint when
a = 0 or b = 0. If both a > 0 and b > 0 then we have no need for it and we declare that it
is 0.

How to form the Functional Equations for f [a, b](t)
• If a > 0 and b > 0 then

f [a, b](t) = g[a, 0](t) · f [0, b](t) + f [a− 1, b− 1](q t) .

Explanation: if such a walk that starts at y = a and ends at y = b touches the x-axis, then
the first portion until that first encounter is a walk weight-counted by g[a, 0](t), while the
second part is a walk weight-counted by f [0, b](t) (it starts at y = 0, ends at y = b and stays
weakly above the x-axis). On the other hand, if it never touches the x-axis, it must stay in
y ≥ 1, so lowering it by 1 unit, results in a walk weight-counted by f [a− 1, b− 1](t). But,
by lowering it, we lost some area! If the length of the walk is n, then we lost n units of area
(the area of an n× 1 rectangle), hence this is bi-weight-enumerated by f [a− 1, b− 1](q t),
(rather than f [a− 1, b− 1](t).)
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• If a > 0 and b = 0 then

f [a, 0](t) = g[a, 0](t) · f [0, 0](t) .

Explanation: Each walk that starts at y = a must meet the x-axis for the first time, this
portion is weight-counted by g[a, 0](t), the remaining portion of the walk is weight-counted
by f [0, 0](t).

• Similarly, if a = 0 and b > 0 then

f [0, b](t) = f [0, 0](t) · g[0, b](t) .

• If a = 0 and b = 0 and 0 ̸∈ S

f [0, 0](t) = 1 + g[0, 0](t) · f [0, 0](t) .

Explanation: Each walk that starts and ends on y = 0 must either be the empty walk (of
length 0, area 0, and hence with weight t0 · q0 = 1), or else meet the x-axis for the first time
(weight-counted by g[0, 0](t)), followed by any-old walk (possibly empty) weight-counted
by f [0, 0](t).

• If a = 0 and b = 0 and 0 ∈ S

f [0, 0](t) = 1 + t · f [0, 0](t) + g[0, 0](t) · f [0, 0](t) .

Explanation: Now the first step could also be (0, 0) → (1, 0), and after that it is a typical
walk weight-counted by f [0, 0](t), and there is no area gain.

This is implemented in procedure qMakeEqF(f,g,t,q,a,b,S) in our Maple package.

How to form the Functional Equations for g[a, b](t)

We also need to set up equations for g[a, b](t) for those (a, b) that would be required.
As before:
Let P be the subset of S consisting of the (strictly) positive members of S, and let N be the

subset of S consisting of the (strictly) negative members of S, so if 0 ∈ S then

S = P ∪N ∪ {0} ,

while, if 0 ̸∈ S then
S = P ∪N .

• If a = 0 and b > 0 then

g[0, b](t) = t

(∑
i∈P

qi/2 f [a+ i− 1, b− 1](qt)

)
.

Explanation: Such a walk must start with a step of the form [1, i] where i ∈ P , and then it
is always in y ≥ 1. Removing that first step reduces the area by 1×i/2 = i/2 and ‘lowering’
by 1 unit, it looses n units of area (if the remaining path has length n), to account for the
lost area we need f [a+ i− 1, b− 1](qt), (rather than f [a+ i− 1, b− 1](t)).

• Similarly, if a > 0 and b = 0 then

g[a, 0](t) = t

∑
j∈N

q−j/2f [a− 1, b− j − 1](qt)

 .

• If a = 0 and b = 0 then

g[0, 0](t) = t2

∑
i∈P

∑
j∈N

qi/2−j/2 f [a+ i− 1, b− j − 1](qt)

 .
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Explanation: Every walk that starts at y = 0 and ends at y = 0 and that never touches the
x-axis except at the endpoints, must start with a positive step [1, i] and end with a negative
step [1, j]. Deleting the first and last steps gives you a shorter walk (with two steps shorter)
that is always in the region y ≥ 1. Removing the first step (i.e. (0, 0) → (1, i)) reduces the
area by i/2. Removing the last step (i.e. (n− 1,−j) → (n, 0)) reduces the area by −j/2.

Lowering it by 1 unit gives a walk weight-counted by f [a+ i− 1, b− j − 1](qt).

This is implemented in procedure qMakeEqGt(f,g,t,q,a,b,S) in our Maple package.

To get the full system of functional equations, followed by the quantities that feature in them,
with set of steps S, type:

qMakeSysT(f, g, t, q, S);

For example, if the set of steps is S = {2, 1, 0,−1,−2}, typing

qMakeSyst(f, g, t, q, {2, 1, 0,−1,−2})[1];

gives
{f01(t)− f00(t) g01(t) , f10(t)− g10(t) f00(t) ,

f11(t)− f01(t) g10(t)− f00(qt) , g01(t)− t
√
q f00(qt)− tqf10(qt) ,

g10(t)− tqf01(qt)− t
√
q f00(qt) , f00(t)− f00(t) g00(t)− f00(t) t− 1 ,

g00(t)− t2q
3
2 f01(qt)− t2qf00(qt)− t2q2f11(qt)− t2q

3
2 f10(qt)} .

While to see the set of featured quantities, type

qMakeSyst(f, g, t, q, {2, 1, 0,−1,−2})[2];

to get

{f00(t) , f00(qt) , f01(t) , f01(qt) , f10(t) , f10(qt) ,

f11(t) , f11(qt) , g00(t) , g01(t) , g10(t)} .

From Functional Equations to Algebraic Equations

After the computer finds the system of functional equations described above, we instruct it to find
a system algebraic equations for the ‘components’ of the f [a, b](t) (and we also need g[a, b](t)).
If we are interested in finding the pure algebraic equation satisfied by the formal power series
f [0, 0, 0](t), f [0, 0, 1](t), . . . , f [0, 0, k](t). We write

f [0, 0](t) =
k∑

i=0

f [0, 0, i](t)(q − i)i +O((q − 1)k+1) ,

and analogously for the other f [a, b](t) and g[a, b](t), then expand in powers of (q − 1), collect
terms, use the Lemma, and get more equations by differentiating with respect to t each of these
equations up to the k-th derivative, using implicit differentiation.

Because of the extreme complexity, we decided only to implement this scheme for k = 1, i.e.
for finding the algebraic equation satisfied by the generating function for the ‘sum of the areas’.

This is implemented in procedure

qEqGFt(S, X, t) .

For example, to get the algebraic equation for the generating function for ‘sum of areas’ of the
classical Dyck paths, type:

qEqGFt({1,−1}, X, t);
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getting
t2 − (4t2 − 1)(2t2 − 1)X + t2(4t2 − 1)2 X2 = 0 .

(This is A8549 of [14], https://oeis.org/A008549).
For Motzkin walks, typing

qEqGFt({1, 0,−1}, X, t); ,

gives
t2 − (3t− 1) (t+ 1)

(
t2 + 2t− 1

)
X + t2 (3t− 1)2

(t+ 1)2
X2 = 0 .

(This is A57585 of [14], https://oeis.org/A057585).
For a more complicated example, to get the pure algebraic equation satisfied by the generating

function for the ‘sum of the areas under generalized Dyck paths with set of steps given by the
set {[1, 2], [1, 1], [1, 0], [1,−1], [1,−2]}’, type:

qEqGFt({2, 1, 0,−1,−2}, X, t); ,

getting, after less than a minute,

t2 (775t4 − 1460t3 + 1006t2 − 264t+ 24
)

+(t− 1) (5t− 1)
(
425t6 − 1520t5 + 1527t4 − 68t3 − 282t2 + 88t− 8

)
X

−t
(
150t5 + 540t4 − 889t3 − 240t2 + 228t− 32

)
(t− 1)2

(5t− 1)2
X2

−2t2 (5t+ 4)
(
5t3 − t2 − 17t+ 4

)
(t− 1)3

(5t− 1)3
X3+t4 (5t+ 4)2

(t− 1)4
(5t− 1)4

X4 = 0 .

This is not (yet, May 15, 2023) in the OEIS. Note that the straight enumeration version is
A104184 of [14], https://oeis.org/A104184. For the sake of the OEIS, here are the first
30 terms:

0, 0, 3, 18, 113, 636, 3487, 18656, 98429, 514012, 2664690, 13737758, 70522801, 360806214,

1840913908, 9371761174, 47621259557, 241601881822, 1224111502194, 6195045902854,

31321134873744, 158217553824544, 798622703316154, 4028438371631942,

20308239308212037, 102323623873153810, 515313296262175206, 2594054240062008690,

13053194513626873348, 65659889953142043376 .

6 Strict Generalized Dyck paths

If we want to count strict generalized Dyck paths (respectively, sum of the areas), i.e. paths that
never touch the x-axis except at the endpoints, use procedures EqGFtS(S,X,t) and qEqGFtS(S,X,t)
respectively.

For the algebraic equation for the generating function for the sum of the areas under strict
classical Dyck paths, type

qEqGFtS({1,−1}, X, t); ,

getting that the equation is (
4t2 − 1

)
X + t2 = 0 ,

that implies

X(t) =
t2

1 − 4t2 ,

confirming, purely automatically, the following elegant proposition first discovered, and proved,
in [15] (see also [6]):

Proposition 6.1 (Shapiro, Rogers, and Woan). The sum of the areas of the strict Dyck paths of
length 2n is 4n−1.

https://oeis.org/A008549
https://oeis.org/A057585
https://oeis.org/A104184
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What about sum-of-the-areas of strict Motzkin paths? Typing

qEqGFtS({1, 0,−1}, X, t);

gives (
3t2 + 2t− 1

)
X + t2 = 0 ,

implying that

X(t) =
t2

1 − 2t− 3t2 .

This is A015518[n-1] of [14] (see https://oeis.org/A015518). This sequence has numerous
combinatorial interpretations, but so far, the connection to the sum of the areas under strict
Motzkin paths escaped notice.

7 Efficient Computation of many terms

It is well-known and fairly easy to see (e.g. the modern classic [12]) that every algebraic formal
power series is D-finite, and equivalently, the sequence itself satisfies some linear recurrence
equation with polynomial coefficients. The Maple package gfun (designed by Bruno Salvy
and Paul Zimmermann) can do it for you, but it is just as easy to use guessing. Using dynamical
programming one can easily crank out many terms, and then use ‘guessing’ (implemented in
listtorec in gfun, but we have our own home-made version). Now we can even talk about
sum-of-square-of-areas, and even higher powers.

Sample Output

Straight Enumeration of Generalized Dyck Paths

• If you want to see 16 theorems stating algebraic equations satisfied by generating functions
enumerating generalized Dyck paths with set of steps that are subsets of {−2,−1, 0, 1, 2}
(excluding trivial cases) and sometimes linear recurrences with polynomial coefficients sat-
isfied by the sequences themselves, enjoy

https://sites.math.rutgers.edu/�zeilberg/tokhniot/oGDW1.txt .

• If you want to see 94 theorems stating algebraic equations satisfied by generating functions
enumerating generalized Dyck paths with set of steps that are subsets of {−3,−2,−1, 0, 1, 2, 3}
(excluding trivial cases) and sometimes linear recurrences with polynomial coefficients sat-
isfied by the sequences themselves, enjoy

https://sites.math.rutgers.edu/�zeilberg/tokhniot/oGDW2.txt .

[Of course this file includes all the theorems in the previous file].

• If you want to see (one) theorem about the algebraic equation satisfied by the generating
function enumerating generalized Dyck paths with set of steps {−4,−3,−2,−1, 0, 1, 2, 3, 4},
look at

https://sites.math.rutgers.edu/�zeilberg/tokhniot/oGDW3.txt .

It has degree 41 in X(t)!

Enumeration According to the Sum of Areas of Generalized Dyck Paths

• If you want to see 16 theorems stating algebraic equations for the SUM OF THE AREAS
under generalized Dyck paths for all non-trivial subsets of {−2,−1, 0, 1, 2}, as well, as
estimates for the asymptotics of the average area (divided by n3/2 (the ratio always tends to
some constant)), see

https://sites.math.rutgers.edu/�zeilberg/tokhniot/oGDW7.txt .

https://oeis.org/A015518
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGDW1.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGDW2.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGDW3.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oGDW7.txt
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• If you want to see interesting information about generalized Dyck paths for all non-trivial
subsets of {−2,−1, 0, 1, 2}, that consist of linear recurrences (obtained by guessing, but
definitely correct, since we know they exist from theoretical reasons), for the straight enu-
meration, enumeration by ‘sum of areas’, and sometimes, enumeration by ‘sum of area-
squared’, enabling estimates not only of the asymptotic average area, but also of the asymp-
totic variance, look here:

https://sites.math.rutgers.edu/�zeilberg/tokhniot/oGDW8.txt .

8 Conclusion

We described an interesting application of Bruno Buchberger’s seminal Gröbner Basis algorithm,
and at the same time demonstrated how an important class of enumerative combinatorics prob-
lems can be fully automated, using the great power of modern Computer Algebra Systems (in
our case Maple), also using calculus (that Maple knows very well), as well as good-old numer-
ical (and symbolic) dynamical programming. We also demonstrated how to teach the computer
to build, ab initio, the system of equations (sometimes quite large) before asking it to kindly
solve it.
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