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Abstract. In this paper, we introduce ordering in a commutative weak idempotent ring R with
unity. We obtain certain properties on the poset (R,<). We establish that every nonzero finite
commutative weak idempotent ring with unity admits an atomic basis. Further, we prove that
every nonzero nilpotent element is an atom whenever Ann(N) is a prime ideal of a commutative
weak idempotent ring with unity. Also, we prove NI is an RB submodule of R and every nonzero
element of NI is an atom. We obtain a relation between a submodule NI of R and atoms of N .
Finally, we establish certain results concerning nilpotent atoms.

1 Introduction

Foster [2], gave the definition of Boolean-like ring (BLR, for short) as a commutative ring with
unity R in which ab(1 − a)(1 − b) = 0 for all a, b ∈ R and a + a = 0 for all a ∈ R. A ring
(R,+, ·) is weak idempotent if it is of characteristic 2 and a4 = a2 for each a ∈ R. It is clear that
every Boolean-like ring is weak idempotent but not conversely. In [6],[7] Venkateswarlu et al
have studied the structure and submaximal ideals of a weak idempotent ring (WI-ring, for short).
For an element a in a WI-ring R: an = a, a2 or a3 for any positive integer n, a = a2 + (a2 + a)
and if 0 ̸= a is a nilpotent element, then a2 = 0, see [6, 4, 3]. Also, every completely prime ideal
of a WI-ring with unity is maximal. Further, an ideal I of a WI-ring with unity is left completely
primary if and only if for any idempotent element b ∈ R, either b ∈ I or 1 + b ∈ I (See [[6],
Theorem 2.5]). Observe that every prime ideal is a completely prime ideal.

This paper is a continuation of the work on commutative WI-rings (cWI-ring, for short). In
section 2, we introduce the ordering on a cWI-ring with unity and obtain the natural properties
of the ordering. We also prove that any cyclic module over the set of Boolean elements of a
cWI-ring with unity is a Boolean lattice. In the last section, we obtain that Ann(N) is a prime
ideal of a cWI-ring R with unity if and only if every nonzero nilpotent element of R is an atom.
Further, we establish that every finite nonzero cWI-ring R with unity admits an atomic basis.

In the entire of this paper R, RB and N will denote a cWI-ring with unity, the set of all
idempotent and the set of all nilpotent elements of R respectively.

2 Partial ordering

We now begin with the following Lemma.

Lemma 2.1. For x, y ∈ R, define y < x if and only if there exists b ∈ RB such that bx = y. Then
(R,<) is a poset. If the relation is restricted to the set of all idempotent elements, the partial
ordering ” < ” coincides with the natural partial ordering over the Boolean ring.

Proof. Clearly (R,<) is a poset. Let a, b ∈ RB . If a < b, then there exists x ∈ RB such that
bx = a. So, ab = b2x = bx = a. If ab = a, then a < b since b ∈ RB . Therefore, the partial
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ordering ” < ” is restricted to RB coincides with the natural partial ordering over the Boolean
ring.

Example 2.2. Let R be a cWI-ring with unity. Then, the direct product R × R is also a cWI-
ring with unity (1, 1). Clearly, (0, 0), (1, 0), (0, 1) and (1, 1) are idempotent elements of R ×R.
Consider (1, 0)(a, b) = (a, 0) and (0, 1)(a, b) = (0, b) for a, b ∈ R. Thus, (a, 0) < (a, b) and
(0, b) < (a, b).

Remark 2.3. R can be regarded as RBmodule with the ordering defined in Lemma 2.1 above.

Definition 2.4. (R,+) is a Boolean group. As a module over {0, 1}, R has a basis. If every
element of a basis of R is an atom, then R is said to have an atomic basis.

Definition 2.5. Let S be an additive subgroup of R. If there exists a ∈ R such that S = RBa,
then we said that S is a cyclic RB submodule of R.

Theorem 2.6. Any cyclic RB submodule of a cWI-ring with unity is a Boolean lattice under the
ordering defined in Lemma 2.1. Furthermore, the map b 7→ bx of RB → RBx is an isotone
module epimorphism.

Proof. Let RBx = {bx : b ∈ RB} be a cyclic RB submodule of a cWI-ring with unity. Let RBx
be partially ordered as in Lemma 2.1. Let b1x, b2x ∈ RBx. Then b1(b1 + b2 + b1b2)x = b1x
and b2(b1 + b2 + b1b2)x = b2x. Hence, b1x < (b1 + b2 + b1b2)x and b2x < (b1 + b2 + b1b2)x.
Suppose bx ∈ RBx be an upper bound of b1x and b2x, that is, b1x < bx and b2x < bx. There
exist c, d ∈ RB such that cbx = b1x and dbx = b2x. Since (c+ d+ cb2)bx = (b1 + b2 + b1b2)x,
(b1 + b2 + b1b2)x < bx. Therefore, (b1 + b2 + b1b2)x is the least upper bound of b1x and b2x.
Obviously, b1b2x < b1x and b1b2x < b2x. Suppose bx ∈ RBx be a lower bound of b1x and b2x,
that is, bx < b1x and bx < b2x. So, there exist c, d ∈ RB such that bx = cb1x and bx = db2x.
Thus, cb1x = db2x and hence cdb1b2x = db2x = bx. Thus, bx < b1b2x and hence b1b2x is
the greatest lower bound of b1x and b2x. Therefore, (RBx,<) is a lattice. Define the map
ϕ : RB → RBx by ϕ(b) = bx for each b ∈ RB . ϕ is a module epimorphism. Let b1, b2 ∈ RB

and b1 < b2. Then b1b2 = b1. Thus, ϕ(b1) = b1x = b1b2x = b1ϕ(b2). Therefore, ϕ(b1) < ϕ(b2)
and hence ϕ is an isotone.

Definition 2.7. A nonzero element m ∈ (R,<) is called an atom of R if for every x ∈ R, x < m
implies x = m or x = 0. Furthermore, R is called atomic if, for every nonzero element x of R,
there exists an atom m ∈ R such that m < x.

Remark 2.8. For any atom x ∈ R and b ∈ RB , bx = bx implies bx < x. Hence, bx = 0 or
bx = x.

Definition 2.9. An element m ∈ R is called simple if m ̸= 0 and there exists an atom b ∈ RB

such that bm = m. An element m ∈ R is called nil if bm = 0 for all atoms b ∈ RB .

Lemma 2.10. Let R has idempotent atoms. Then, the following holds.

i. Every simple element of R is an atom of R.

ii. Every atom of R is either nil or simple.

Proof. i. Let r ∈ R be a simple element of R. Then there exists an atom b ∈ RB such that
br = r. Suppose x < r, where x ∈ R. We get b1r = x for some b1 ∈ RB and hence
bx = b1br = b1r = x. Thus, x = b1br = br = r or x = rb1b = 0 since b1b = b or 0 for the
atom b. Therefore, r is an atom of R.

ii. Let r ∈ R be an atom of R. br < r for any b ∈ RB . Since r is an atom of R, br = r or
br = 0 for any b ∈ RB . If br = 0 for all b ∈ RB , then r is a nil element of R. Otherwise,
there exists some b ∈ RB such that br = r. Hence, r is either nil or a simple element of R.

Theorem 2.11. The following properties hold in R.

(i) 0 < a for all a ∈ R.
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(ii) b < a implies that bc < ac for any a, b, c ∈ R.

(iii) For any a ∈ R, a3 < a and aN (1 + aB) < a.

(iv) a, b ∈ R, b < a implies

a. ab = bB = aBbB .

b. aBbN = aNbB = bBbN .

c. abB = aBb = bbB .

d. xa = xb = b for some x ∈ RB .

e. bB < aB and bN < aN .

(v) a < 1 if and only if a ∈ RB .

(vi) a ∈ R, b ∈ RB , b < a if and only if ab = b.

(vii) Let a be a unit in R, b ∈ R. Then b < a if and only if ab = bB .

(viii) a ∈ RB , b ∈ R, b < a implies b ∈ RB .

(ix) a ∈ N, b ∈ R, b < a implies b ∈ N .

(x) Units in R are maximal elements in (R,<).

Proof. (i) Since a0 = 0 for all a ∈ R, 0 < a for all a ∈ R.

(ii) Suppose b < a. Then ax = b for some x ∈ RB . Thus, acx = bc. That is, bc < ac for any
c ∈ R.

(iii) For any a ∈ R, aa2 = a3 and a2 ∈ RB . Hence, a3 < a. We have a(1 + a2) = a(1 + a2)
and (1 + a2) ∈ RB that gives a(1 + a2) < a. Thus, a + a3 + a2 + a2 < a and hence
aN (1 + aB) < a.

(iv) a, b ∈ R, b < a implies

a. ax = b for some x ∈ RB . This gives us a2x = b2 = bB . Thus, ab = bB and hence
bB = aBbB .

b. aBbN = a2(b+ b2) = a2b+ a2b2 = ab2 + a2b2 = aNbB and aNbB = (a+ a2)bB =
ab2 + a2b2 = b2b+ b2

B = b2(b+ b2) = bBbN .
c. abB = ab2 = (ab)b = b2b = bbB and aBb = a2b = ab2.
d. xa = b implies that x2a = xa = xb = b for some x ∈ RB .
e. b < a implies ax = b for some x ∈ RB . Since a2x = ab = b2, bB < aB . The result

ax = b and a2x = b2 implies ax+ a2x = b+ b2. Hence, bN < aN .

(v) If a < 1, then 1x = a for some x ∈ RB . Hence, a ∈ RB . If a ∈ RB , then 1.a = a which
implies a < 1.

(vi) Let a ∈ R and b ∈ RB . If b < a, then ax = b for some x ∈ RB . Thus, a2x = b and hence
ab = b. If ab = b, then b < a as b ∈ RB .

(vii) Let a be a unit in R, b ∈ R. If b < a, then ab = bB by 4(a). If ab = bB , then b = abB and
hence b < a.

(viii) Let a ∈ RB , b ∈ R. If b < a, then ax = b and b2 = (ax)2 = ax = b which implies b ∈ RB .

(ix) Let a ∈ N, b ∈ R. If b < a, then ax = b and b2 = (ax)2 = a2x2 = 0 which implies b ∈ N .

(x) Let a ∈ R be a unit and suppose a < b. Then, bx = a for some x ∈ RB and it gives us
b2x = 1. Thus, x is a unit. So, x = 1 since it is both unit and idempotent. Hence, a = b.
That is, a is a maximal element in (R,<).

Note that from (8) and (9) above, we observe that any nonzero idempotent and nonzero
nilpotent elements are incomparable.

Remark 2.12. The unit element in R is maximal in the poset (R,<). However, the converse
fails. Consider the following example.
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+ 0 1 p 1+p
0 0 1 p 1+p
1 1 0 1+p p
p p 1+p 0 1
1+p 1+p p 1 0

· 0 1 p 1+p
0 0 0 0 0
1 0 1 p 1+p
p 0 p 0 p
1+p 0 1+p p 1

Example 2.13. Let H4 = {0, 1, p, 1 + p} where + and · are defined by the following tables and
B = {0, a, b, a+ b} be a Boolean group of 4 elements. Define a unitary H4-module structure on
B by the multiplication generated from the following: pa = a and pb = 0. Consider the ring
R = (H4×B,+, .) where the operations are defined as: (a1, b1)+(a2, b2) = (a1+a2, b1+b2) and
(a1, b1)(a2, b2) = (a1a2, a2b1 + a1b2). Then, R is a cWI-ring with unity. The element (p, a+ b)
is a maximal element with the above order relation but it is not a unit element.

Theorem 2.14. For a, b, x ∈ R, b < a and b+ x < a+ x implies ax = bx.

Proof. Suppose b < a and b+ x < a+ x. By Theorem 2.11(4a), ab = bB and (a+ x)(b+ x) =
(b+ x)B = bB + xB . Simplifying the second equation gives us ab+ x2 + ax+ bx = bB + xB

which implies ax = bx.

But b < a, ax = bx may not imply b+ x < a+ x in general.
In Example 2.13, (0, 0) < (p, 0) and (0, 0)(p, 0) = (p, 0)(p, 0) but (p, 0) ≮ (0, 0).

3 Atoms and Atomic basis

Definition 3.1. An atom is a nonzero element m ∈ R such that if for every x ∈ R, x < m implies
x = m or x = 0.

Theorem 3.2. Let N be the nil-radical of R. Ann(N) is a prime ideal of R if and only if every
nonzero nilpotent element is an atom of R.

Proof. Suppose Ann(N) is a prime ideal of R. Then, for any b ∈ RB , b ∈ Ann(N) or 1 + b ∈
Ann(N). That is, bn = 0 or (1 + b)n = 0 for any n ∈ N . Thus, bn = n or 0 for any n ∈ N .
Hence, every nonzero nilpotent element is an atom of R. Conversely, suppose every nonzero
nilpotent element is an atom of R. Assume Ann(N) is not prime. Then, there exists b ∈ RB

such that b /∈ Ann(N) and 1 + b /∈ Ann(N). That is, there exists nonzero nilpotent elements
n1, n2 such that bn1 ̸= 0 and (1+b)n2 ̸= 0. Since n1, n2 are atoms, bn1 = n1 and (1+b)n2 = n2.
Obviously b(n1 + n2) = n1. Thus, n1 + n2 is not an atom which is a contradiction. Therefore,
Ann(N) is a prime ideal of R.

Theorem 3.3. Every finite nonzero cWI-ring with unity has an atomic basis.

Proof. Let R be a finite nonzero cWI-ring with unity. Consider the partial ordering given by
Lemma 2.1 over R. Let 0 ̸= r ∈ R and consider the Boolean lattice (RBr,<). Assume br is an
atom of RBr. Let x ∈ R and x < br. Then, b1br = x for some b ∈ RB and hence x ∈ RBr.
Since br is an atom of RBr, x = br or x = 0. Thus, br is an atom of R. Since RBr is a finite
Boolean lattice it is atomic. Hence, r is the join of all atoms of RBr. Let b1r and b2r be two
distinct atoms of RBr. We know that b1b2r < b1r and b1b2r < b2r and hence b1b2r = 0 because
b1r ̸= b2r. Thus, b1r ∨ b2r = (b1 ∨ b2)r = (b1 + b2)r. Let b1r, b2r, b3r, ..., bkr be distinct atoms

of RBr. Then, b1r ∨ b2r ∨ b3r ∨ ... ∨ bkr = (b1 + b2 + b3 + ... + bk)r. Therefore, r =
n∑

i=1
bir,

where {bir}1≤i≤n are all atoms of RBr. That is, r is the sum of atoms of R. Let A be the set of
all atoms of R. A is non-empty since R is finite. As we proved above, every nonzero element of
R is the sum of elements of A. Thus, A generates R as a vector space over {0, 1}. That is, R has
a basis contained in A. Hence, R has an atomic basis.

Theorem 3.4. Let n be a nonzero nilpotent element of R. n is an atom of R if and only if Ann(n)∩
RB is a prime ideal of RB , where Ann(n) = {x ∈ R : xn = 0}.
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Proof. Let n be a nonzero nilpotent element of R. Suppose n is an atom of R. For every
b ∈ RB , bn = 0 or bn = n. That is, b ∈ Ann(n) or 1 + b ∈ Ann(n). Thus, b ∈ Ann(n) ∩ RB

or 1 + b ∈ Ann(n) ∩ RB . Let a, b ∈ RB and ab ∈ Ann(n) ∩ RB . Assume a /∈ Ann(n) ∩ RB .
Then, 1 + a ∈ Ann(n) ∩ RB . We have that Ann(n) ∩ RB is an ideal of RB and b ∈ RB which
implies b(1 + a) ∈ Ann(n) ∩ RB and hence b+ ab ∈ Ann(n) ∩ RB . Thus, b ∈ Ann(n) ∩ RB .
Hence Ann(n)∩RB is a prime ideal of RB . Conversely, suppose Ann(n)∩RB is a prime ideal
of RB . Let x < n. Then, bn = x for some b ∈ RB . If bn = x ̸= 0, then b /∈ Ann(n) ∩ RB . It
implies that 1+ b ∈ Ann(n)∩RB and Ann(n)∩RB is a prime ideal of RB . Thus, (1+ b)n = 0
which implies bn = n. Hence, n is an atom of R.

Theorem 3.5. Let n be a nonzero nilpotent element of R. n is an atom of R if and only if Ann(n)
is a prime ideal of R.

Proof. Suppose n is an atom of R. For every b ∈ RB , bn = 0 or bn = n. That is, b ∈ Ann(n) or
1 + b ∈ Ann(n). Thus, Ann(n) is a prime ideal of R. Conversely, suppose Ann(n) is a prime
ideal of R. Let x < n. Then, bn = x for some b ∈ RB . If bn = x ̸= 0, then b /∈ Ann(n) which
implies 1 + b ∈ Ann(n). Thus, (1 + b)n = 0 and it implies bn = n. Hence, n is an atom of
R.

Theorem 3.6. For every nilpotent atom n of R, if n < x for some x ∈ R, then xn = 0.

Proof. Let n be a nilpotent atom of R and n < x for x ∈ R. By Theorem 2.11 4(a), xn = nB =
0.

Theorem 3.7. Let I be a prime ideal of RB . Define NI = {n ∈ N : bn = 0 for all b ∈ I}. Then:

i. NI is an RB submodule of R.

ii. Every nonzero element of NI is an atom.

iii. For every 0 ̸= n ∈ NI , Ann(n) ∩RB = I .

Proof. i. Obvious.

ii. For every b ∈ RB , b ∈ I or 1 + b ∈ I since I is a prime ideal of RB . Thus, bn = 0 or
bn = n for every 0 ̸= n ∈ NI and every b ∈ RB . Hence, every nonzero element of NI is
an atom.

iii. For every 0 ̸= n ∈ NI , x ∈ I implies that xn = 0. Thus, x ∈ Ann(n) and hence
x ∈ Ann(n) ∩ RB . Thus, I ⊆ Ann(n) ∩ RB . We know that every prime ideal is a
maximal ideal in a Boolean ring and I and Ann(n) ∩ RB are prime ideals of RB . Hence,
Ann(n) ∩RB = I for every 0 ̸= n ∈ NI .

Theorem 3.8. Let I be a prime ideal of RB . There is no nilpotent atom if and only if NI = {0}
for every prime ideal I of RB .

Proof. Suppose NI ̸= {0} for some prime ideal I of RB . By Theorem 3.7(ii), N has a nonzero
atom. Hence, N has no atom if NI = {0} for every prime ideal I of RB . Conversely, suppose
NI = {0} for every prime ideal I of RB . Assume that 0 ̸= n ∈ N is an atom. Then, Ann(n)∩RB

is a prime ideal of RB by Theorem 3.4. Let I = Ann(n) ∩ RB . Then, 0 ̸= n ∈ NI which is a
contradiction. Hence, N has no atom.

Corollary 3.9. Let I be a prime ideal of RB and n1, n2 ∈ NI , where n1 ̸= n2. Then n1, n2, n1+n2
are all atoms of R and Ann(n1) ∩RB=Ann(n2) ∩RB=Ann(n1 + n2) ∩RB = I .

Corollary 3.10. If I and J are two distinct prime ideals of RB , then NI ∩NJ = {0}.

Proof. Suppose I and J are two distinct prime ideals of RB . Let 0 ̸= n ∈ NI ∩ NJ . Then
I = Ann(n) ∩RB = J which is a contradiction. Therefore, NI ∩NJ = {0}.

Lemma 3.11. If b is an idempotent atom of R and n ∈ N where bn ̸= 0, then bn is a nilpotent
atom.



220 T. Abera, Y.Yitayew, D. Wasihun and Venkateswarlu Kolluru

Proof. Assume that b is an idempotent atom of R and n ∈ N where bn ̸= 0. bn is a nilpotent
element. Let x < bn. Then, cbn = x for some c ∈ RB . We know that cb = 0 or cb = b since b is
an atom. If x ̸= 0, then x = cbn = bn. Hence, bn is a nilpotent atom.

Lemma 3.12. If b1 and b2 are two distinct idempotent atoms of R, then b1b2 = 0.

Proof. Assume that b1b2 ̸= 0. Then, b1b2 = b1 as b1 is an atom and b1b2 = b2 as b2 is an atom.
Thus, b1 = b2 which is a contradiction. Therefore, b1b2 = 0.

Theorem 3.13. Let NI have only one nonzero element for each prime ideal I of RB . Then,
Ann(N)∩RB = {0}. Additionally, N is finite if and only if RB is so.

Proof. Let b ∈ Ann(N) ∩ RB . Then, bn = 0 for every n ∈ N . Thus, b ∈ Ann(n) ∩ RB for
every n ∈ N . Let nI be the only nonzero element of NI . Then, b ∈ Ann(nI) ∩ RB = I for
each prime ideal of RB . Therefore, b = 0 since the intersection of all prime ideals of a Boolean
ring is {0}. Hence, Ann(N) ∩RB = {0}. Suppose RB is infinite. Then, the number of distinct
prime ideals of RB is infinite. Define a map ϕ : Spec(RB) → NA by ϕ(I) = nI , where nI is
the nonzero element in NI , NA is the set of all atoms of N and Spec(RB) is the set of all prime
ideals of RB . ϕ is a one-to-one mapping by Corollary 3.10. Thus, NA is infinite and hence N
is so. Conversely, suppose that RB is finite and n1, n2 are two distinct nilpotent atoms. Then,
Ann(n1) ∩ RB = I and Ann(n2) ∩ RB = J are prime ideals of RB . Since NI has only one
nonzero element, I ̸= J . Define a map θ : NA → Spec(RB) by θ(ni) = Ann(ni) ∩ RB for
every ni ∈ NA. We obtain that θ is a one-to-one mapping. Thus, NA is finite as Spec(RB) is so.

Since RB is finite, there exists distinct atoms b1, b2, ..., bk in RB such that
k
∨
i=1

bi = 1. Consider

the set {bin}n∈N,bin ̸=0,1≤i≤k. It is a collection of distinct atoms and hence it is finite. For any
n ∈ N , n = (b1 + b2 + ... + bk)n. Hence, {bin}n∈N,bin ̸=0,1≤i≤k generates N as a vector space
over {0, 1}. That means N has a finite atomic base. Therefore, N is finite.

Theorem 3.14. For any two distinct nonzero elements n1 and n2 of N , n2 < n1 implies n1+n2 <
n1 but n2 and n1 + n2 are incomparable.

Proof. Suppose n2 < n1. Then, bn1 = n2 for some b ∈ RB which gives (b + 1)n1 = n1 + n2.
Hence, n1 + n2 < n1. Assume that n2, n1 + n2 are comparable. If n2 < n1 + n2, then
b(n1 + n2) = n2 for some b ∈ RB . It gives us (b+ 1)(n1 + n2) = n1 and hence n1 < n1 + n2.
Thus, n1 + n2 = n1 which is a contradiction. If n1 + n2 < n2, then bn2 = n1 + n2 for some
b ∈ RB . It gives us (b+ 1)n2 = n1 and hence n1 < n2. Thus, n1 = n2 which is a contradiction.
Therefore, n2 and n1 + n2 are incomparable.

Theorem 3.15. Let n1, n2 be two distinct atoms of N . n1 + n2 is an atom if and only if bn1 =
0 ⇔ bn2 = 0 for all b ∈ RB .

Proof. Let n1 and n2 be two distinct atoms of N . Suppose n1 +n2 is an atom. Assume bn1 = 0.
Then, b(n1 + n2) = bn1 + bn2 = bn2. We have that bn2 = 0 or bn2 = n2 and b(n1 + n2) = 0
or b(n1 + n2) = n1 + n2 since n2 and n1 + n2 are atoms. If bn2 ̸= 0, then n1 + n2 = n2
which is a contradiction. Hence, bn2 = 0. Similarly, we can show bn2 = 0 ⇒ bn1 = 0 for all
b ∈ RB . Conversely, suppose that bn1 = 0 ⇔ bn2 = 0 for all b ∈ RB . Let b ∈ RB . Then,
b(n1 + n2) = bn1 + bn2 = n1 + n2 or 0 since bn1 = 0 ⇔ bn2 = 0 and n1, n2 are atoms. Hence,
n1 + n2 is an atom.

Corollary 3.16. Let n1, n2 be two distinct atoms of N . n1+n2 is an atom if and only if Ann(n1)∩
RB = Ann(n2) ∩RB = Ann(n1 + n2) ∩RB .

Theorem 3.17. Any two distinct atoms n1, n2 of N have an upper bound in R if and only if the
sum of the two distinct atoms n1, n2 of N is not an atom.

Proof. Let n1 and n2 be two distinct atoms of N and have an upper bound in R. Assume that
n1 + n2 is an atom of N . Let x ∈ R be the upper bound of n1 and n2. By Theorem 2.11(9),
x ∈ N . So, n1 < x and n2 < x implies b1x = n1 and b2x = n2 for some b1, b2 ∈ RB .
Thus, b1x = b1n1 = n1 and b2x = b2n2 = n2. By theorem 3.15, b2n2 = n2 ̸= 0 implies
that b2n1 = n1 ̸= 0. Now, we get b2b1x = b2n1 = n1 and b2b1x = b1n2 = n2 and hence
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n1 = n2 which is a contradiction. Therefore, n1 + n2 is not an atom. Conversely, suppose
that n1 + n2 is not an atom of N . By Theorem 3.15, bn1 = 0 but bn2 ̸= 0 for some b ∈ RB .
Then, b(n1 + n2) = n2 which implies n2 < n1 + n2 and (1 + b)(n1 + n2) = n1 which implies
n1 < n1 + n2. Therefore, n1 and n2 have an upper bound.

Theorem 3.18. For any two distinct atoms n1, n2 of N , if n1 + n2 is not an atom, then it is the
least upper bound of n1 and n2.

Proof. Let n1, n2 of N be any two distinct atoms. Suppose that n1 + n2 is not an atom. Then,
n1 + n2 is an upper bound of n1 and n2 by theorem 3.17. Let n1 < x < n1 + n2 and n2 < x <
n1 + n2. If n1 = x, then n2 < n1 which is a contradiction. Thus, n1 ̸= x and similarly n2 ̸= x.
We have n1 = b1x and n2 = b2x for some b1, b2 ∈ RB . Then, b1x+b2x = n1 +n2 which implies
(b1 + b2)x = n1 +n2 and hence n1 +n2 < x. Thus, x = n1 +n2. Therefore, n1 +n2 is the least
upper bound of n1 and n2.

Theorem 3.19. Let n1, n2, n3, ..., nk be a finite number of distinct atoms of N . If any two
elements of {n1, n2, n3, ..., nk} have an upper bound, then n1 + n2 + n3 + ...+ nk is the least
upper bound of {n1, n2, n3, ..., nk}.

Proof. Suppose any two elements of {n1, n2, n3, ..., nk} have an upper bound. Then, Ann(ni)∩
RB ̸= Ann(nj) ∩ RB for each i ̸= j and i, j ∈ {1, 2, ..., k}. Thus, there exists bi ∈ RB such
that bi ∈ Ann(ni) but bi /∈ Ann(nj) for i ̸= j and i, j ∈ {1, 2, ..., k}. Consider, b2b3...bk ∈
Ann(nj) ∩RB for all j ∈ {2, ..., k}. b2b3...bk /∈ Ann(n1) ∩RB since Ann(n1) ∩RB is a prime
ideal of RB . Hence, b2b3...bkn1 = n1 as n1 is an atom. We obtain that b2b3...bk(n1 + n2 +
n3 + ... + nk) = n1 and hence n1 < n1 + n2 + n3 + ... + nk. Similarly, we can show that
n1 + n2 + n3 + ...+ nk is an upper bound of ni for all i ∈ {2, ..., k}. Let no be an upper bound
of {n1, n2, n3, ..., nk}. Then, for each i = 1, 2, 3, ..., k, there exists ci ∈ RB such that cino = ni.

Thus, (
k∑

i=1
ci)no =

k∑
i=1

ni and hence n1+n2+n3+...+nk < no. Therefore, n1+n2+n3+...+nk

is the least upper bound of {n1, n2, n3, ..., nk}.

4 Conclusion.

This paper intends to obtain ordering in a commutative weak idempotent ring R with unity.
Also, certain properties on the poset (R,<) have been discussed. Further, we establish that
every nonzero finite commutative weak idempotent ring with unity admits an atomic basis. Con-
sequently, the outcomes of this work are noteworthy and stimulating to advance its further study
in the future.

References

[1] Dereje Wasihun,Tilahun Abebaw, Yibeltal Yitayew and Venkateswarlu Kolluru, Weak idempotent rings,
SINET: Ethiop. J. Sci., 45(1): 97-104, 2022.

[2] Foster A.L., The theory of Boolean-like rings, Trans.Amer.Math.Soc., Vol.59, 1946.

[3] L. Bhaskar, A.K.S. Chandrasekhar Rao and T. Srinivas, SOME THEOREMS ON SS-ELEMENTS OF A
RING, Palestine Journal of Mathematics. Vol. 12(1)(2023), 537-543.

[4] Michael Holloway, Some Characterizations of Finite Commutative Nil Rings, Palestine Journal of Mathe-
matics, Vol. 2(1) (2013), 6-8.

[5] S. Givant and P. Halmos, Introduction to Boolean Algebras, Springer, New York, 2009.

[6] Venkateswarlu K., Dereje W. and Tilahun A.,Structure of Weak Idempotent Rings, Bull.Int. Math. Virtual
Inst., Vol. 10(3)(2020), 535-545.

[7] Venkateswarlu K. and Dereje W., Submaxiamal ideals of Weak Idempotent Rings, Bull.Int. Math. Virtual
Inst., Vol. 11(1)(2021), 169-176.



222 T. Abera, Y.Yitayew, D. Wasihun and Venkateswarlu Kolluru

Author information
T. Abera, Department of Mathematics, Addis Ababa University, Ethiopia.
E-mail: tameabe2@yahoo.com

Y.Yitayew, Department of Mathematics, Addis Ababa University, Ethiopia.
E-mail: yibeltal.yitayew@aau.edu.et

D. Wasihun, Division of Mathematics, Physics and Statistics, Addis Ababa Science and Technology University,
Artificial Intelligence and Robotics Center of Excellence, Ethiopia.
E-mail: dereje.wasihun@aastu.edu.et

Venkateswarlu Kolluru, Department of Computer Science and Systems Engineering, College of Engineering,
Andhra University, India.
E-mail: drkvenkateswarlu@gmail.com

Received: 2023-03-01

Accepted: 2024-02-26


	1 Introduction
	2 Partial ordering 
	3  Atoms and Atomic basis
	4  Conclusion.

